UNIVERSIDAD TÉCNICA DEL NORTE

Escuela de Ingeniería en Biotecnología

"DETERMINACIÓN DE LA CONCENTRACIÓN DEL eDNA DE Poecilia reticulata EN SEDIMENTOS ACUÁTICOS Y AGUAS SUPERFICIALES"

AUTORA

Ana Judith Encarnación Díaz

DIRECTORA

Ing. Elizabeth Velarde. MsC

INTRODUCCIÓN

Especies invasoras

Sobreexplotación de recursos biológicos

Contaminación

Cambio climático

ESPECIES INVASORAS

Afectan al 42% de las especies en peligro de extinción

Los efectos varían de indetectables a drásticos

- -Tipo de especie,
- -Magnitud de la invasión,
- -Vulnerabilidad del ecosistema

(Jaramillo Hoyos et al., 2005) (Jiménez, Torres, & Corcuera, 2010)

INTRODUCCIÓN

Cotacachi

Cerro
Imbabura

Agonchagua

Otavalo

Laguna de Yahuarcocha

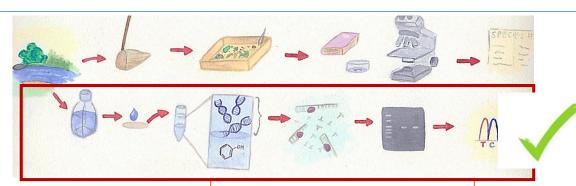
San Miguel de Ibarra

Agonchagua

Otavalo

Ministerio del Ambiente presentó un plan de acción para la prevención, manejo y control de especies invasoras en el Ecuador

Técnicas que permitan la detección temprana de especies.


Registro de varias especies invasora en el lago Yahuarcocha

INTRODUCCIÓN

Técnica nueva de muestreo genético no invasivo

Técnica basada en el análisis del ADN que los organismos liberan al medio ambiente (eDNA) a manera de huella genética

Permite estimar la población y diversidad de especies; de modo sencillo y a bajo costo

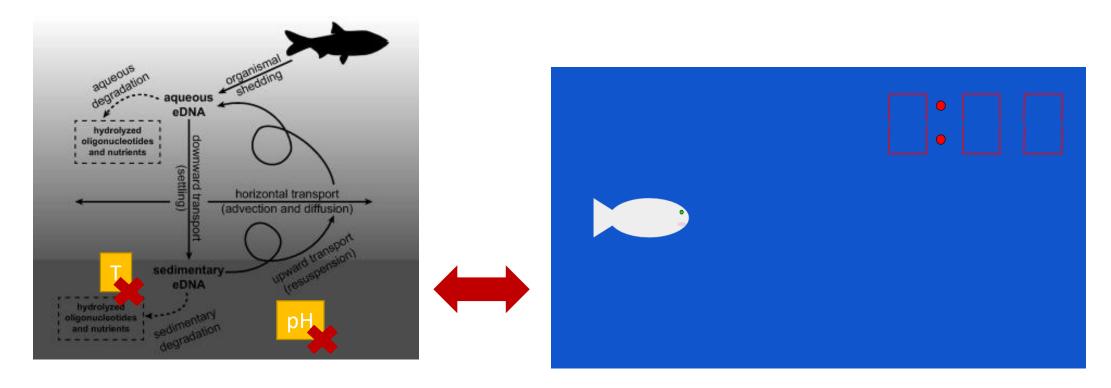
Limitaciones del eDNA

Tiende a degradarse o transformase al interactuar con varios factores bióticos y abióticos

Factores bióticos: bacterias, enzimas

Factores abióticos: Temperatura,

pH, luz, entre otros


La concentración y persistencia del eDNA depende del sustrato y del entorno

JUSTIFICACIÓN

Considerando que la especies invasoras constituyen una amenaza ecológica y económica para la biodiversidad, es importante su detección en la etapas iniciales de su propagación.

(Turner et al., 2015a)

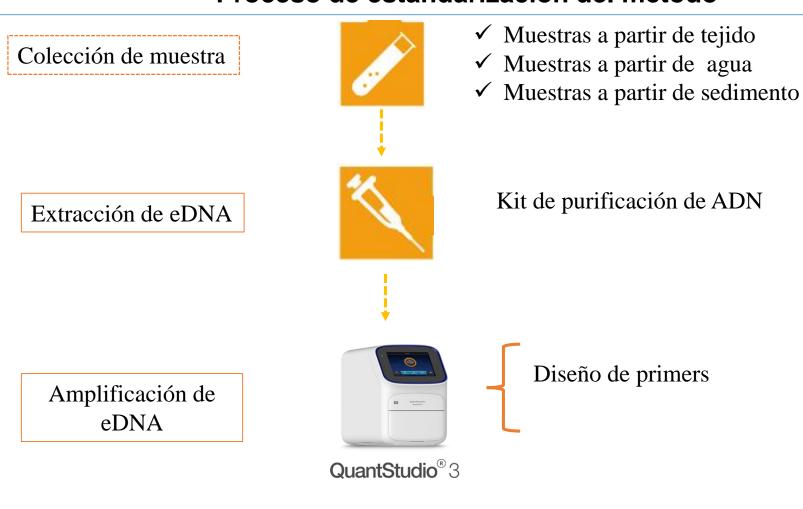
¿El eDNA, es un método capaz detectar la presencia de especies invasoras en muestras de agua y sedimento?

OBJETIVOS

GENERAL

Determinar la concentración del eDNA de una especie invasora en sedimentos acuáticos y aguas superficiales.

ESPECÍFICOS


- ✓ Estandarizar el método de extracción y purificación del eDNA de *P. reticulta* para sedimentos acuáticos y aguas superficiales.
- ✓ Cuantificar la concentración del eDNA de P. reticulata mediante la Reacción en Cadena de la Polimerasa en Tiempo Real.
- ✓ Analizar la relación entre la concentración de eDNA de *P. reticulata*, la densidad de individuos y el tiempo de permanencia del ADN en aguas superficiales y sedimentos acuáticos.

HIPÓTESIS

¿La concentración del eDNA permite estimar la densidad poblacional de especies invasoras?

Proceso de estandarización del método

Análisis de resultados

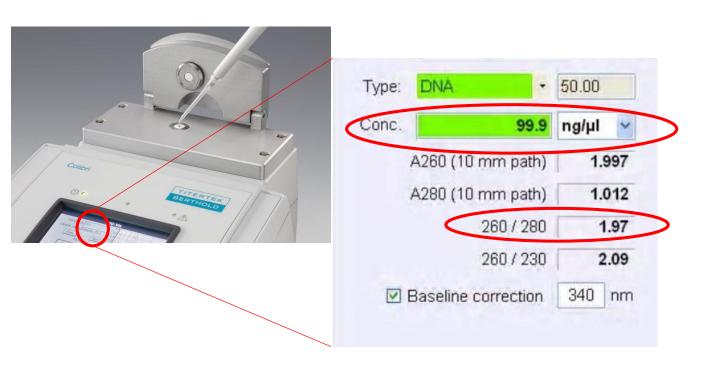
Extracción, cuantificación y análisis de la integridad del eDNA

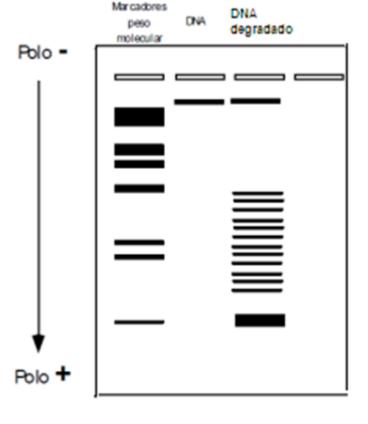
- Aleta
- Cola

sedimento

•

Sedimentador manual


MasterPureTM de Epicentre ®.

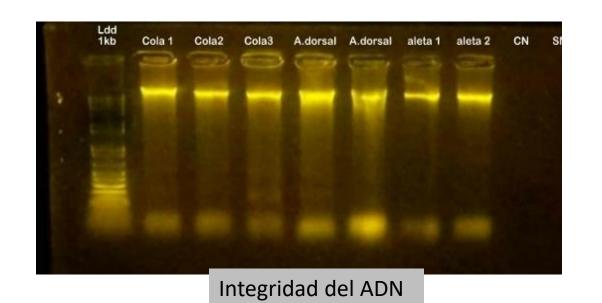

Extracción, cuantificación y análisis de la integridad del eDNA

Cantidad y pureza de eDNA

Se usó el espectrómetro de microvolumen Colibri UV-VIS

Integridad de eDNA

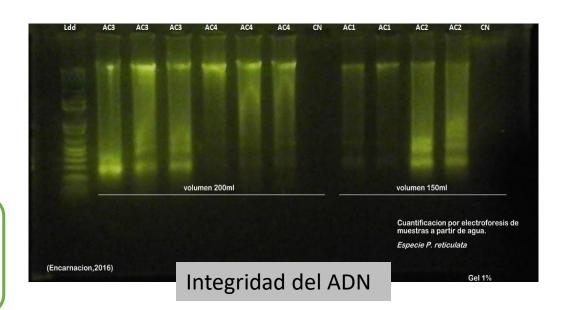
Gel de agarosa al 1%



Resultados y discusión

ADN de tejido

Tipo de tejido	Pureza de ADN	Concentración de
	Relación A260/280	ADN (ng/µl)
Aleta1	1.896	302.35
Aleta 2	1.918	299.65
Aleta 3	1.962	303.85
Cola1	1.986	236.70
Cola2	1.975	197.00
Cola3	1.977	190.55



eDNA de agua

Volumen	Pureza de	Concentrac	Volumen	Pureza de	Concentrac
150ml	ADN	ión de	200ml	ADN	ión de
	Relación	ADN		Relación	ADN
	A260/280	$(ng/\mu l)$		A260/280	(ng/µl)
AC1	1.819	72.1	AC3	1.927	110.35
AC2	1.886	86.3	AC4	1.991	146.15

Resultados y discusión

eDNA de sedimento

	Pureza	Concentración de
	ruieza	Concentración de
Protocolo	Relación A260/280	$eDNA (ng/\mu l)$
Marka Dan TM	1.010	250.00
MasterPure TM	1.918	350.00

Elaboración y análisis in silico de primers

Alineación de secuencias

Análisis in sílico:
OligoAnalyzer y NCBI BLAST

Diseño a partir del Gen citocromo b de :

ADN mitocondrial usando el

software Primer3

Especificidad de primer: porcentaje de identidad, E-value, la cobertura de la secuencia diana

Resultados y discusión

Elaboración y análisis in silico de primers

Características de primers específicos para P. reticulata

Nombre	Secuencia Primer 5′-3′	Longitud	Tm(°C)	GC(%)	Tamaño
Primer		(bp)			amplicon
PoRet Fwd	AGGATTATGCCTAGTTGCCC	20	59.8	50	149
PoRet Rev	CTCCATTAGCGTGTATGTTG	22	60.8	50	
	CG				

ANÁLISIS IN SÍLICO:

porcentaje de identidad y de cobertura de la secuencia diana del 100%

E-value de 0.027 para más de 10 secuencias parciales

	Descripción	Maximo puntaje	Puntaje total	Cubierta de consulta	Valor E	Por. Ident	Adhesión
~	Bono de Poecilia reticulata gen Pret cytochrome b (cytb), cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 836599591 KP700413.1
	Bono de Poecilia reticulata 4290 gen del citocromo b (cytb), cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 836598441 KP699838.1
✓	Bono de Poecilia reticulata 4289 gen del citocromo b (cytb), cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 836598439 KP699837.1
~	Poecilia reticulata haplotipo 52 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788233 KJ415729.1
~	Poecilia reticulata haplotipo 51 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788231 KJ415728.1
~	Poecilia reticulata haplotipo 50 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788229 KJ415727.1
~	Poecilia reticulata haplotipo 49 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788227 KJ415726.1
~	Poecilia reticulata haplotipo 48 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788225 KJ415725.1
~	Poecilia reticulata haplotipo 47 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788223 KJ415724.1
13)	Poecilia reticulata haplotipo 46 gen citocromo b, cds parciales; mitocondrial	44,1	44,1	100%	0,027	100.00%	gi 661788221 KJ415723.1

(Tsuji et al., 2019) (Pilliod, Goldberg, Laramie et al., 2013)

Amplificación por PCR

Temperatura de hibridación de primers por gradiente

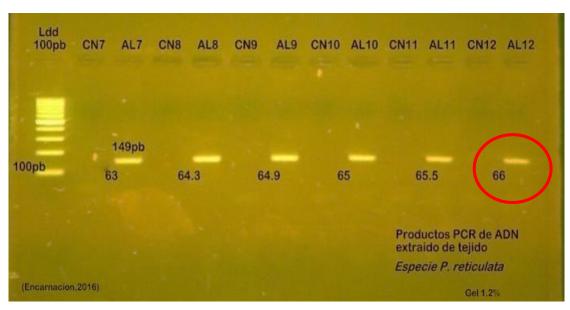
Reacción maestra

Componentes	Volumen
	final/R
Green GoTaq® 5X	5µl
Forward Primer10µM	0.4μ1
Reverse Primer 10µM	0.4μ1
ADN 10ng/ul	0.5μ1
Agua	3.8µ1
Volumen final	10μ1

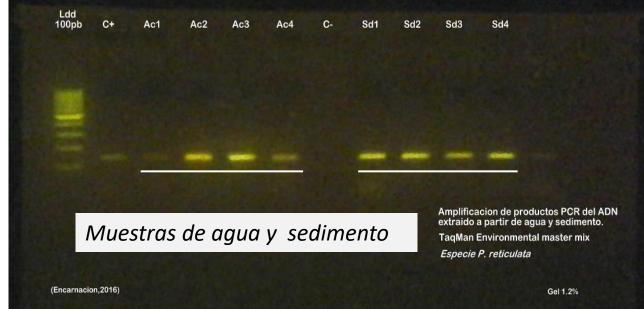
Amplificación de ADN de muestras ambientales

• ADN polimerasa

- TaqMan[®] Environmental
 Master Mix
- Green GoTaq® 5X

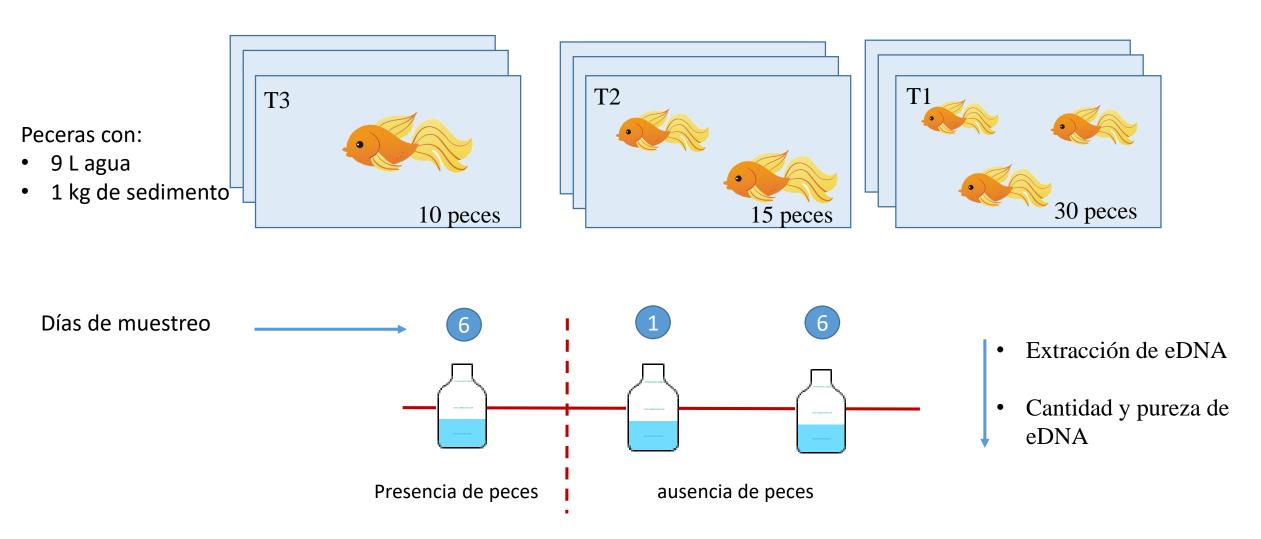


Resultados y discusión



Amplificación por PCR

Temperatura de hibridación de primers por gradiente



bjetivo E. 2 Concentración del eDNA de *P. reticulata* mediante qPCR

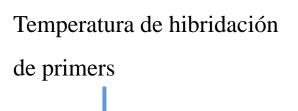
Metodología 2:

Experimento in vitro

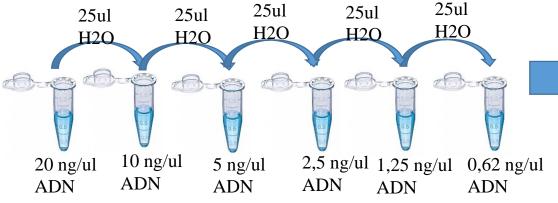
(Turner et al., 2015) (Takahara et al., 2012)

Resultados:

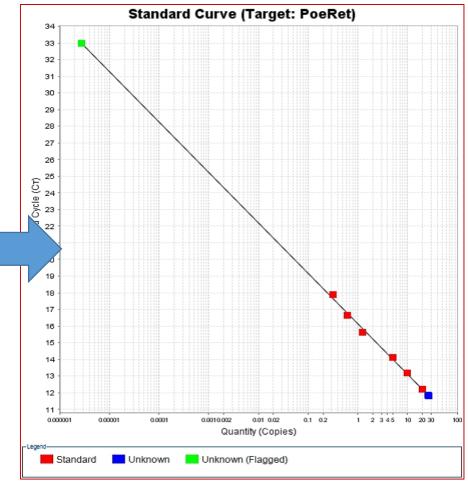
Experimento in vitro


Se procesó un total de 72 muestras: 36 muestras de agua y 36 de sedimento

		Muest	ras de agua	Muestra	as sedimento
Trt	Código	Pureza A260/280	Concentración del eDNA ng/ul	Pureza A260/280	Concentración del eDNA ng/ul
	1A.6	1.8935	246.9	1.4935	267.9
T1	1B.6	1.8785	654.4	1.4405	778.85
	1C.6	1.966	219.6	1.485	338.85
	2A.6	1.892	203.3	1.4375	388.45
T2	2B.6	1.918	88.9	1.53	110.95
	2C.6	1.871	139.5	1.501	209.8
	3A.6	1.8775	45.15	1.471	219.4
T3	3B.6	1.962	109.8	1.4595	344.65
	3C.6	1.993	99.95	1.463	370.95
	T1	1A.6 T1 1B.6 1C.6 2A.6 T2 2B.6 2C.6 3A.6 T3 3B.6	Trt Código Pureza A260/280 1A.6 1.8935 T1 1B.6 1.8785 1C.6 1.966 2A.6 1.892 T2 2B.6 1.918 2C.6 1.871 3A.6 1.8775 T3 3B.6 1.962	Trt Código Pureza A260/280 del eDNA 1A.6 1.8935 246.9 T1 1B.6 1.8785 654.4 1C.6 1.966 219.6 2A.6 1.892 203.3 T2 2B.6 1.918 88.9 2C.6 1.871 139.5 3A.6 1.8775 45.15 T3 3B.6 1.962 109.8	Trt Código Pureza A260/280 Concentración del eDNA (all eDNA) application (all eDNA) ap


Estandarización de la PCR en tiempo real

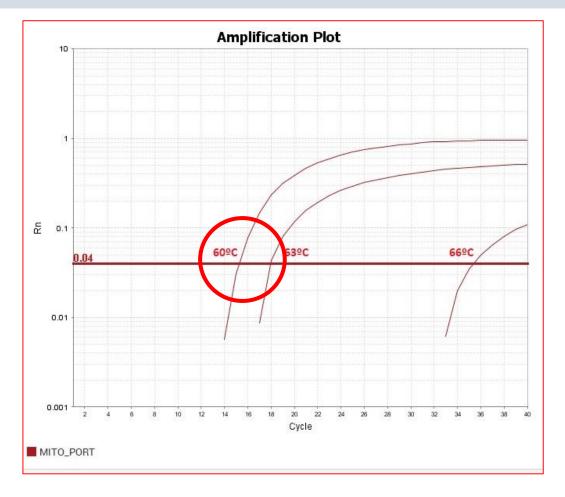
Tm: 60°C, 63°C y 66°C


Volumen final de reacción

25 ul y 10 ul

Equipo QuantStudio 3 Real-Time PCR System

Construcción de la curva estándar

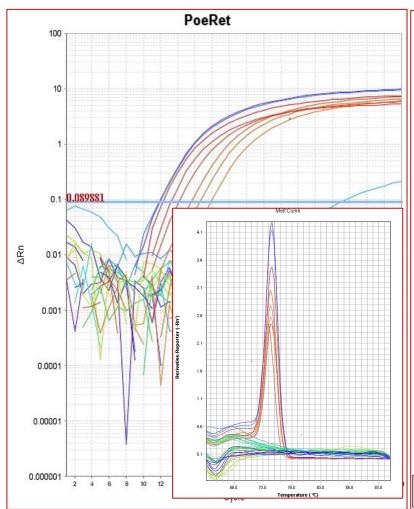


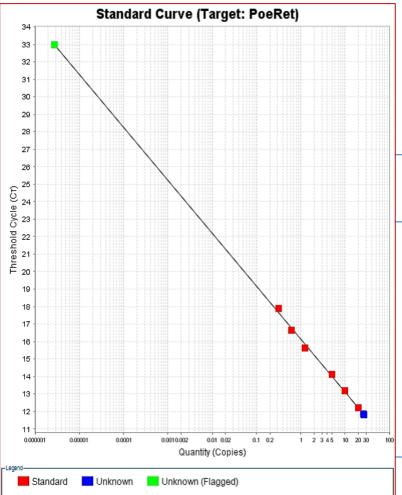
Resultados y discusión :

Estandarización de la PCR en tiempo real

Amplificación de la temperatura de hibridación de los primers.

Valores de amplificación con un volumen final de 25μl y 10 μl en la reacción maestra


Códig		Primer		Ct	Tm
О	Muestra				
A1	Blanco	Poe_Ret	NTC	30.2543	74.5615
A2	Blanco	Poe_Ret	NTC	27.6149	74.4124
A3	A.25µl	Poe_Ret	MUESTRA	13.0459	74.4124
A4	A.25µ1	Poe Ret	MUESTRA	13.8969	74.4124
A5	Α2. 10μ1	Poe_Ret	MUESTRA	13.6792	74.4124
A6	Α2. 10μ1	Poe_Ret	MUESTRA	13.91	74.4124



Resultados y discusión :

Estandarización de la PCR en tiempo real

Cantidad	Ciclo	Tm
ng/ul	Ct	ōС
20	12.1977	74.4292
10	14.1656	74.4292
5	14.1208	73.8333
2.5		
1.25	15.6481	74.2808
0.625	16.6296	74.2802
0.3125	17.8876	74.4292

(Lawson Handley, 2015) (Tsuji et al., 2019)

Diseño experimental

Se evaluaron tres factores en estudio i) tratamiento, ii) día de muestreo y iii) medio

Variable	Descripción	Código
Tratamiento	30 peces	T1
	15 peces	T2
	10 peces	T3
Día de	6 días con	C1
muestreo	peces	
	1 día sin	C2
	peces	
	6 días sin	C3
	peces	
Medio	Agua	M 1
	Sedimento	M2

La variable evaluada fue concentración de eDNA (ng/µl).

análisis de la varianza (ANOVA)

Resultados y discusión :

Análisis de la concentración de eDNA

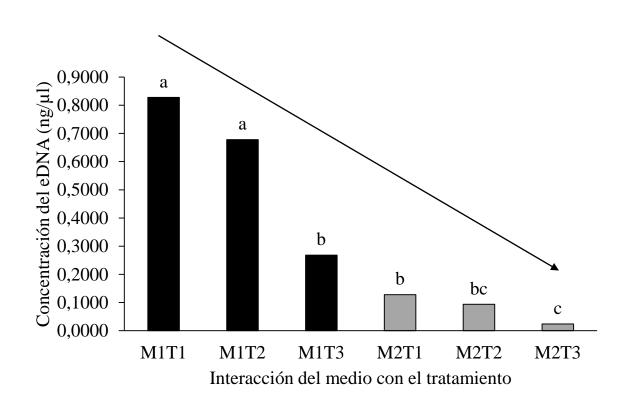
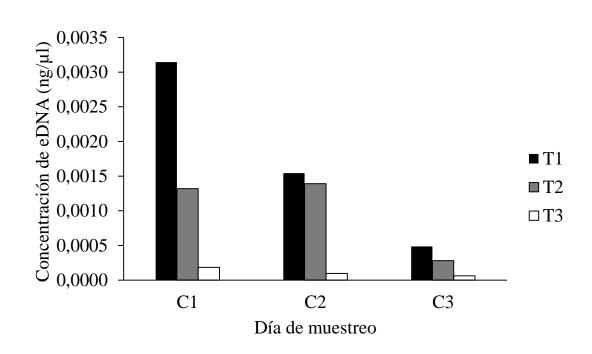
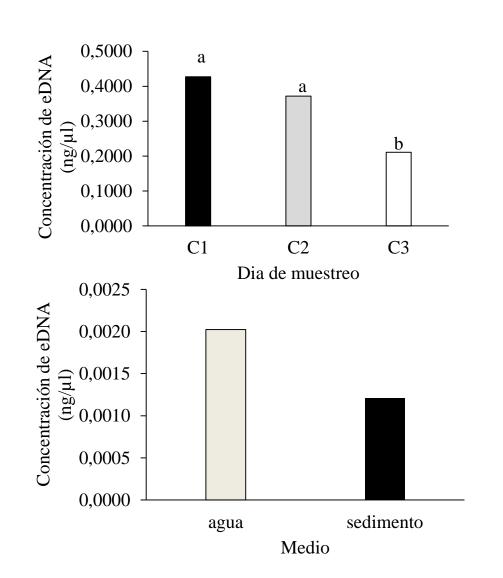
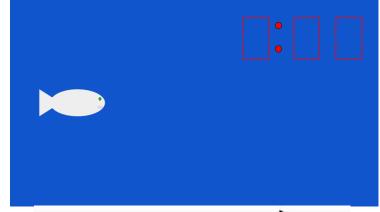
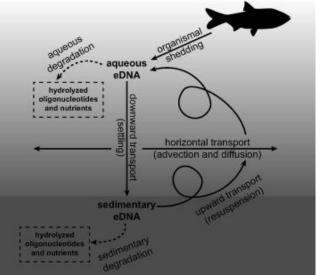


Figura 1. Rangos de significancia estadística de la interacción: medio con tratamiento




Figura 2. Concentración de eDNA de la interacción: tratamiento y día muestreo.




Resultados y discusión :

Análisis de la concentración de eDNA

(Turner et al., 2015)

(Buxton et al., 2017, 2018),

(Levy-Booth et al. 2007)

- Mediante la aplicación del protocolo modificado de MasterPure se logró estandarizar el método de extracción y purificación del eDNA de *P. reticulata* para muestra de tejido, agua y sedimentos, indicando de esta manera su efectividad. Además, se demostró la eficiencia de del par de primers diseñados a partir del gen citocromo b del ADN mitocondrial amplificando únicamente el producto esperado de la especie objetivo *P. reticulata* en muestras de tejido, agua y en sedimento.
- La técnica qPCR conjuntamente con los primers específico de la especie *P. reticulata* estimó la concentración del eDNA de las muestras ambientales.

- Según los resultados obtenidos basados en la evaluación de la concentración del eDNA de *P. reticulta*, con respecto a la densidad de individuos, el tiempo de permanencia del ADN y el medio, se logró demostrar que el eDNA de la especie *P. reticulata* se encuentra más concentrado en el agua. La concentración del eDNA en los tratamientos con mayor número peces fue mayor, es decir que la concentración del eDNA estuvo influenciada por el número de peces.
- Además, se demostró que el eDNA a partir de muestras de agua fue más sensible y confiable para la detección de eDNA de la especie después del sexto día de que la especie ya no estuvo presente, sin considerar la densidad de individuos. Asimismo, se demostró que el método del eDNA fue capaz de detectar la presencia de *P. reticulata* en muestras de agua aun cuando la especie se encontraba a bajas densidades (10 peces) sin la necesidad de capturar el individuo.

- También se evidenció que el eDNA sedimentario no es una fuente confiable para monitorear especies transitorias
 o que han permanecido temporadas cortas en el lugar de estudio ya que presentó una concentración mínima
 (0.00018167 ng/ μl), debido a que estos permanecieron únicamente 6 días en el lugar de estudio haciendo casi
 imperceptible la concentración del eDNA (3.3x 10⁻⁶ ng/ μl) al sexto día después de haber eliminado la especie.
- El desarrollo del método del eDNA en muestras de agua abre la posibilidad de que puede usarse en la detección de especies invasoras en ambientes naturales de una manera rápida y sencilla a diferencia de los métodos tradicionales basados en claves taxonómicas o por conteo directo.

Recomendaciones

 Ampliar investigaciones acerca de protocolos de muestreo, extracción de ADN a partir de muestras sedimentarias, que permitan eliminar inhibidores PCR, con la finalidad de robustecer los datos de ausencia y presencia de especies en lagos.

• La aplicación de eDNA a entornos acuáticos sigue siendo una tecnología nueva que requiere perfeccionamiento y desarrollo de métodos. Esta investigación resalta la necesidad de un estudio adicional con respecto al tipo sedimento, estos estudios pueden generar mayor información acerca de la concentración de eDNA en sedimento lo cual permitan afianzar la información obtenida en esta investigación, que permita analizar nuevos enfoques y comprender mejor el proceso de degradación del ADN en este medio Además de un análisis físico-químico con el fin de conocer la interacciones que tiene el eDNA con los compuestos presentes en los sedimentos.

• Extender la investigación del método de eDNA a pruebas in *situ* (pruebas en campo), considerando que la información obtenida podría proporcionar datos sólidos, comparables y ecológicamente significativos que permitan biomonitorear no solamente la especie *P. reticulata*, si no también otras especies presentes en el lago Yahuarcocha, con el fin de que se efectúe gestiones pertinentes en su eliminación o conservación de dichas especies.

Bibliografía

- Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2017b). Is the detection of aquatic environmental DNA influenced by substrate type? *PLOS ONE*, *12*(8), e0183371. https://doi.org/10.1371/journal.pone.0183371
- Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2018a). Seasonal variation in environmental DNA detection in sediment and water samples. *PLOS ONE*, *13*(1), e0191737. https://doi.org/10.1371/journal.pone.0191737
- Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P. (2013a). Environmental DNA as a new method for early detection of New Zealand mudsnails (*Potamopyrgus antipodarum*). *Freshwater Science*, *32*(3), 792-801. https://doi.org/10.1899/13-046.1
- Jaramillo Hoyos, C. L., Villa García, C. M., Armenteras Pascual, D., Casas Castañeda, F., Gast Harders, F., Cavelier Franco, I., Bello Silva, J. C., Díaz Merlano, J. M., Fandiño Orozco, M. C., Pardo Fajardo, M. del P., Chaves, M. E., Gaitán Uribe, M. M., Palacios Lozano, M. T., Mendieta Galindo, M., Álvarez Rebolledo, M., Rodríguez Eraso, N., García Galindo, O. L., & Franco Villegas, X. (2005). Biodiversidad para el desarrollo. El manejo sostenible de ecosistemas como aporte al bienestar humano. http://repository.humboldt.org.co/handle/20.500.11761/34607

Bibliografía

- Jiménez, C., Torres, R., & Corcuera, P. (2010). Biodiversidad una alérta.

 http://www.uam.mx/difusion/casadeltiempo/36_iv_oct_2010/casa_del_tiempo_eIV_num36_09_16.

 pdf.
- Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J. N., Pauls, K. P., Swanton, C. J., Trevors, J. T., & Dunfield, K. E. (2007c). Cycling of extracellular DNA in the soil environment. *Soil Biology and Biochemistry*, *39*(12), 2977-2991. https://doi.org/10.1016/j.soilbio.2007.06.020
- Nam, Y. K., Park, J. E., Kim, K. K., & Kim, D. S. (2003). A rapid and simple PCR-based method for analysis of transgenic fish using a restricted amount of fin tissue. *Transgenic Research*, *12*(4), 523-525. https://doi.org/10.1023/a:1024274508052.
- Pilliod, D. S., Goldberg, C. S., Laramie, M. B., & Waits, L. P. (2013). *Application of environmental DNA for I nventory and monitoring of aquatic species* (USGS Numbered Series N.º 2012-3146; Fact Sheet). U.S. Geological Survey. http://pubs.er.usgs.gov/publication/fs20123146.
- Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. *E nvironmental DNA*, 1(2), 99-108. https://doi.org/10.1002/edn3.21

Bibliografía

Takahara, T., Minamoto, T., & Doi, H. (2013). Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds. PLOS ONE, 8(2), e56584. https://doi.org/10.1371/journal.pone.0056584

Turner, C. R., Uy, K. L., & Everhart, R. C. (2015a). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93-102. https://doi.org/10.1016/j.biocon.2014.11.017.

Wasko, A. P., Martins, C., Oliveira, C., & Foresti, F. (2003). Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas, 138(3), 161-165. https://doi.org/10.1034/j.1601-5223.2003.01503.

EQUIPO LABINAM

GRACIAS!!

