C++ BUILDER

Chapter 1

Introduction

This Quick Start provides an overview of the C++Builder development
environment to get you started using the product right away. It also tells you

where to look for details about the tools and features available in C++Builder.
What is C++Builder?

C++Builder is an object-oriented, visual programming environment for rapid
application development (RAD). Using C++Builder, you can create highly
efficient 32-bit Windows applications with a minimum of manual coding.
C++Builder provides all the tools you need to develop, test, debug, and deploy
applications, including a large library of reusable components, a suite of design
tools, application and form templates, and programming wizards. These tools

simplify prototyping and shorten development time.
Where to find information

Information on C++Builder is available in a variety of forms:

Online Help

Printed documentation

Inprise developer support services
Inprise and borland.com Web sites

For information about new features in this release, refer to What's New in the

online Help and to the borland.com Web site.

Online Help

The online Help system provides detailed information about user-interface
features, language implementation, programming tasks, and the components in
the Visual Component Library (VCL). It includes the core Help files listed in
Table 1.1



Table 1.1 Online Help files

Help file Contents

Introduces new features and

enhancements to C++Builder for the
What's New

(BCBS5new.hlip)

current release and includes links to
detailed information. Includes details on

upgrading from a previous release.

Introduces the development
environment and explains how to work

. . with forms, projects, and packages.
Using C++Builder

Discusses basic concepts of
(Bcb5.hlp)

component-based object-oriented
programming. Includes two step-by-step

tutorials to help you learn C++Builder.

Presents a detailed reference on VCL

classes, global routines, types, and
Visual Component |variables. Entries show the unit where
Library Reference | each class is declared; its position in the
(Bcb5vcl.hip) hierarchy; a list of available properties,

methods, and events; and code

examples.

Standard C++
Library Reference
(Bcb5scl.hlp)

Presents a detailed reference on the
Standard C++ Library.

C Runtime Library
Presents a detailed reference on the C
Reference

Runtime Library.
(Bcbrtl.hlp)

Programming with | Provides details about using the VCL
C++Builder components and illustrates common

(BcbSprog.hlp) programming tasks such as handling

Audience

Developers who
upgraded to this

release

New C++Builder
developers,
people with
questions about
the IDE

All C++Builder

developers

All C++Builder

developers

All C++Builder

developers

All C++Builder

developers



exceptions, creating toolbars and drag-

and-drop controls, and using graphics.

Developing Explains design of single- and multi-
Database tiered database applications, including |Database
Applications database architecture, datasets, fields, | developers
(Bcb5dbd.hlp) tables, queries, and decision support.
Developing Explains how to create distributed Developers
Distributed applications. Includes information on writing
Applications CORBA, DCOM, MTS, HTTP, and client/server
(BcbSdap.hlp) sockets. applications
. Provides information on writing custom | Developers

Creating Custom . . N

C++Builder components. Explains how | writing
Components . _ _ _

to design, build, test, and install a C++Builder
(Bcb5cw.hlp)

component. components

Explains how to build distributed

applications using COM. Topics include
Developing COM- | COM objects, MTS components, Developers
based Automation servers and controllers, writing
Applications ActiveX controls, and type libraries. client/server
(Bcb5com.hlp) Explains how to modify generated type | applications

libraries using C++Builder's Type Library

Editor.

Describes the C++ programming

language including lexical elements,
C++Builder . .

. language structure, preprocessing All C++Builder

Language Guide o .

directives, keywords, and C++ topics developers

(BcbSlang.hlp) _
such as namespaces, polymorphism,

and scope.

Command-line Provides information about using many | Developers who

tools tools that are included with C++Builder |want to use



(Bcb5tool.hlp) such as the C++ compiler, the additional tools

incremental linker, the resource linker, from the
MAKE, GREP, and several conversion command line

tools.

Provides a formal definition of the
Developers who

Object Pascal Object Pascal language and includes .
_ . _ _ _ need Object
Reference topics on file 1/0, string manipulation,
Pascal language
(Del50p.hlp) program control, data types, and .
. details
language extensions.
. _ Developers
Explains how to configure the .
Borland wanting to
C++Builder Help system. The OpenHelp _
OpenHelp customize the

(OpenHelp.hip)

utility lets you add or remove any

. . C++Builder Help
Windows Help (.HLP) file.

system

You will also find Help on additional products that are supplied with some

versions of C++Builder, such as:

Integrated Translation Environment (ITE) Help

InterBase Express Reference Help

Borland Database Engine (BDE) Help

BDE Administrator Help

Database Explorer Help

Local SQL, SQL Builder, and SQL Monitor Help

TeamSource Help

CodeGuard Help

TurboAssembler Help

Package Collection Editor Help

Help Author's Guide (Help Workshop)

QuickReport Help

TeeChart Help

InterBase and InterBase Express Help

CORBA Component Library Reference Help

Help for miscellaneous components (FastNet Time, DayTime, Echo, Finger,
HTTP, NNTP, POP3, Powersock, SMTP, UDP, URL Encode/Decode,
UUprocessor, Stream and Msg components)

All Help files are located in the Help directory under the main C++Builder

directory.



Developer support services

Inprise also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support offerings, refer to
http://www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where C++Builder
developers exchange information, tips, and techniques. The site also includes a

list of books about C++Builder.
Typographic conventions
This manual uses the typefaces described below to indicate special text.

Table 1.2 Typographic conventions

Typeface Meaning

Monospace | Monospaced type represents text as it appears on screen or in

type code. It also represents anything you must type.

Boldfaced words in text or code listings represent reserved words

Boldface , ,

or compiler options.

Italicized words in text represent C++Builder identifiers, such as
ltalics variable or type names. Italics are also used to emphasize certain

words, such as new terms.

This typeface indicates a key on your keyboard. For example,
Keycaps

"Press Esc to exit a menu."



Chapfter 2
A tour of the environment

Starting C++Builder

You can start C++Builder in several ways:

Double-click the C++Builder icon (if you've created a shortcut).
Choose Programs|Borland C++Builder from the Windows Start menu.
Choose Run from the Windows Start menu, then enter Bcb.
Double-click Bcb.exe in the CBuilder\Bin directory.

Right away, you'll see some of the major tools in C++Builder's integrated

development environment (IDE).



q,f' C++Builder 5 - Project]

EX:AS

File Edt 5Search “iew Project Bun Compohent Database Toole Help |“ <M OrE:
NDE -l | G o | 2 (T “ @y | || =tandard I.ﬁ.dditiunall Win3Z | Sustem | Dataficcess | Data Controls | 400 | InterBase | Mid 41 *

Falette of ready-

BB 0y -0ags BFRANE= R ¢ Bl = E[]H

made camponents
to use in your
applications,

Dbject Inspectar
JFomi: TFomi =]
Properties | Ewents I 1.2 ritl.cpp | = . = -
_ [#-[@#]) Project] - Clazzes
Action 1= S =]
ActiveContral
Align alone )
[ Anchors [akLeft,akT op] #include <vel.hs
AutaS croll kg Apracma hirstop
AutoSize falze
Bill ik ode bdl eftT aRight

Borderlcons | [BiSystembd enu =
BorderStule | bzSizeable

Borderafidth (0

Caption Farml

ClentHeight | 267

Clientw/idth | 406

Calar []cBtnFace
Congtraints [T SizeConstraint

Curzor ciDefault

Defaulttdonitor | dmdctivel orm

DockSite falze

Dragkind dkDrag |
2 hidden | A1 1101 [Modified
The Ohject Inspector The ClassExplorer shows you the classes, variables,
is used to change objects’ and routines in your unit and lets you navigate quickly.

properties and select
event handlers,

Code editor for viewing
and editing code,

The Form Designer
containg a blank form

on which to start designing
the Ul for your application.
An application can include
many forms.



C++Builder's development model is based on fwo-way tools. This means that
you can move back and forth between visual design tools and text-based
editing. For example, after using the Form Designer to arrange buttons and
other elements in a graphical interface, you can immediately view the form
(.DFM) file that contains the textual description of your form. You can also
manually edit any code generated by C++Builder without losing access to the
visual programming environment.

From the IDE, all your programming tools are within easy reach. You can
manage projects, design graphical interfaces, write code, search databases,
compile, test, debug, and browse through class libraries without leaving the
IDE.

To learn about organizing and configuring the IDE, see Chapter 5, "Customizing

the environment".

Using toolbars, menus, and keyboard shortcuts

C++Builder's toolbars, located in the main window, provide quick access to
frequently used operations and commands. All toolbar operations are duplicated

in the drop-down menus.



Standard toolbar

Open  Remove file
Mew Save  project from project

||'a¢-t||;ﬂvlf|m= H@%

View toolbar Desktop toolbar

Open Save  Add file
all to project

Debug toolbar

List of projects  Trace

View Toggle MName of saved Save current
units  form/unit desktop desktop
[ ] ‘ “lDesk’EDp setting j | J’;‘. 5’,‘
Wiew N:|aw Save debug
forms  form deskiop

Tao find out what a button does, point to it for a moment
and a hint is displayed. The button’s keyboard shortcut,
if it has one, is displayed as well.

you can run into You can use the right-click menu to hide any toolbar.
| | To display a toolbar if it's not showing, choose View|Toolbars
“ 5 . n| EII i and check the one you want.
I | |

Run Pause Step
over

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the
drop-down menu.

You can right-click on many tools and icons to display a menu of commands

appropriate to the object you are working with. These are called context menus.

The toolbar is also customizable. You can add commands you want to it or
move the parts of the toolbar to different locations. For more information, see
"Arranging menus and toolbars".

You can name and save desktop arrangements using the Desktop toolbar.
Placing components on a form

To build an application interface, you place components on a form, set their

properties, and code their event handlers.



Many components are provided on the Component palette, grouped by function.

I,';I,'rTr C++Builder 5 - Projectl

File Edit 5Search “iew Project Bun Compohent Database Tool: Help |<NDHE> j 51‘,
Standard l.ﬁ.dditiunall Win32 | Sustem | Data Ageessz | Data Contralz | ADO | InterBase | Mid 2] *

N CNE S AR 5 wr|e =" E] | H

NE-E 8% 228
950 0] -0 a @

Yiew Project Bun Component De

Project Manager  Cirl+Alt+F11
Chject Inspector F11
Alignment Falette

ClassExplorer

Ll,/

Click a companent on the Component palette.

Then click where you want to place it an the form.

Or choose a
component fram
an alphabetical
list.

Cormponent List
“Window List... Aft+0
erug WindDWS |::|:|r|'||:||:|r'|Er'|t:E:

73 Toggle Form/Unit  Search by name:

_‘ﬁl Units... |

= Forms... j Frames

New EditWindaw | TActionlis

Toolhars

508

¥ | TAD0Command
A0l
% TADOConnection

2Bl 14p0D ataSet

=

L e e L L T T T e L T e L T e
ol CheckBonl o e R e e
s
.




Changing component appearance and behavior

You can change the way a component appears and behaves in your application by using the Object Inspector. When a component

is selected on a form, its properties and events are displayed in the Object Inspector.



Ohject Inspector You can select an object on the form by clicking on it.

BU“DHE TButtan |_| orl.lﬁ'e miﬁdl’ﬂp—dm‘l Iiﬁt

to select an object.
Here, Button2 is selected,
4] and its properties
are displayed.

Select a property
and change its
value in the right
column.

(TFont) Click an ellipsis
to open a dialog
where you can
change the
properties of a
helper object.

‘You can also double-click
a plus sign fo open a detail list.




Many properties have simple values--such as names of colors, frue or false, and integers. For Boolean properties, you can double-
click the word to toggle between frue and fal/se. Some properties have associated property editors to set more complex values.

When you click on such a property value, you'll see an ellipsis.

F'u:u:siti;:un polezigned

Print5cale poPropaortional

Scaled Double-click here

ShaowHint Falze to change the value

Tan n from true to false. Font 7]

Famt zhyle: Size:
: Reqular 8 ]

Laptian FHanel | T | | |_|
Calor clTeal x Click any ellipsis M eri - ltalic 0 Cancel
+Cionztrg clBlack = to display a M ewCentunyS chibk, Eald 12

CigD | chdaroon _ property editor T Mews Gothic MT -y |Bold Italic 14

clareen for that property. T OCR A Estended 18
Ezfsgl cliive Palating u u 24 g Help
clM awy T Playhil =

CiragCuy clPurpte Enabled I Tuie Y

Dragki — +Faont (TFokt) =] Ffacts S ample

Drag FullR enairt True = ;

LA [ Strikeout

' AaBbyyEz
[ Underl
Click on the down arrow h=tine
to select from a list of valid values. Color:
|- Black j Script:

|Western j




Working with events

Ohject Inspector E

Button?: TButton i_l Click the Events tab in the Object Inspector to see

; — the events that each component can handle. Here,
Button2 is selected and its type is displayed: TButton.

[ Select an existing
event handler from
the drop-down list.

Or double-click in the
value column, and
DelphiC++Builder
generates skeleton
code for a new
event handler.




Viewing and editing code

As you design the user interface for your application, C++Builder generates the underlying code. When you select and modify the
properties of forms and components, your changes are automatically reflected in the source files.

You can also add code to your source files directly using the built-in Code editor. The Code editor is a full-featured ASCII editor.
Choose Tools|Editor Options to customize your editing environment. You can set options such as tabbing, key mapping, color, and

automatic features.



E C:ATest\Unit1.h

Unitl.cpp Unitl_h

#ifndef
#define

Hinclude
H#include
Hinclude
Hinclude
H#include

Generated — A

code. class TF
i

TnitlH
TnitlH

<Classes.hpps>
<Controls.hpp>
<3tdCtrls.hpp>
<Forms.hpp>
<ExtCtrls.hpp>

orml : public TForm

__published: A4 IDE-managed

TLakbel *Labell:
TCheckbBox *CheckBoxl:
TCheckBox *CheckBoxd:
TCheckBox *CheckBox3:
TEuttfdon *Buttonl:
TEutton *Buttond:
TPangl *Panell:

|Insert

Click an any language keyword
or WCL elerment, and press F1
to get Help.

Components added
to the form are
reflected in the code.




Viewing form files

Forms are a very visible part of most C++Builder projects--they are where you
design the user interface of an application. Normally, you design forms using
C++Builder's visual tools, and C++Builder stores the forms in form files. Form
files (extension .DFM) describe each component in your form, including the
values of all persistent properties.

To view a form (.DFM) file in the editor, right-click on the form and select View
as Text. Form files can be edited. To return to the pictorial view of your form,
right-click and choose View as Form.

You can save form files in either text (the default) or binary format. The
Environment Options dialog lets you indicate which format to use for newly

created forms.
For more information...

Search for "form files" in the Help index.



Browsing with the editor

The Code editor has Forward and Back buttons like the ones you've seen on Web browsers. You can use them to navigate through

source code. Click the left arrow to return to the last place you were working in your code. Then click the right arrow to move

forward again.



E C:ATest\Unitl_h

Use the editor

Unitl.cpp  Unitl.h —Iil-:e a Web browser.

#ifndef TUnitilH
#define UnitlH

#include <Classes.hppr
#include <Controls.hpp:
#include <3tdCtrls.hpps
#include <Forms.hphs

H#include <ExtCtrls.hpp>

Fress Ctrl and point
to any identifier.

The cursar turns into
5 a hand, and the
class TForml : public TForm — | identifier turns hlue

{ and is undetlined.

___published: A4 IDE-managed Components
TPaintBox *Quick3ortBox: Click to jump to the
TPaintEBox EctionSortBox: definition of the identifier.
TLakel *Lakbell:

TCheckBox *CheckBoxl:
TCheckBox *CheckBoxzZ:
TCheckEBox *CheckBox3;

After navigating, click the
Back arrow to return to
your previous location.

TEutton *Buttonl:

TEutton *Buttond:

TPanel *Panell:

rvoid _ fasteall ZelectiondortBoxClick(TCObject *Zender):

mwiwataor A § PR, [, [P R Jj
g *

26: 46 |Modihed Inzert

For more information...



Search for "Code editor" in the Help index.

Exploring code

When a source file is open in the Code editor, you can use the ClassExplorer to see a structured table of contents for the code. The
ClassExplorer contains a tree diagram showing the types, classes, properties, methods, global variables, and routines defined in

your unit.



E ThSorth Mi=] E3

]

= o8 TOuckoor = ThSart. cpp ThSDthlsurtthd.cppl su:urtthd.hl L -
g woid QuickSortint * A, const in class TThread3ortForm : public TForm j
g woid Sortfint ® A, conzt inkA_Si i
@ TOuickSort[TFPaintBow * Bow, it __published:

-8 TSelectionSort TButton *StartBtn:
g void Sortfint * A, congt int A_Si TPaintEox *EubbleSortBox:
du TSelectionSort[TPaintBox * Bo TPaintBox *SelectionSortBox:

* "i TS ortThread —————— TPaintEox *OuickSortBox;

-5 TThreadSortForm TLabel *Labell;
# TBewel ® Bewvell TBewel *Bevell:
jig:::::g::::; TEewvel *EBevel::
) TPaintBiox * EubbleSa TBevel "heveld:
» TLabel * Labell TLabel "lLahelz; |
» TLabel * Label TLabel 7labels;
J TlLabel "L 3 void Tfastcall BubblelortBoxPaint (Tobject
) TPaintBox = QuickSartBax rvoid Fastecall ZelectiondortBoxPaint (Tob]
# TPaintBox = Selections onBox rvoid  Ffastecall QuickSortBoxPaint (TChject
# TButton * StartBtn roid  Ffastecall FormCreate (TObject *3Sender
# int ThreadsRunning rvoid fasteall StartBrnClick(Tobject *3er
i void BubbleSortB oxP aint[T 0 bj
d woid FormCreate(T Object * Ser private:
i woid Paintdmrap[TPaintBaox * Be int ThreadsFunning;
& void QuickSortboxPaint TObje void fastcall Randomizelrrays (void):
* '*"':'?'j Handqmize.-’-‘-.rrays[vqid] . void  fastcall ThreadDone (TChject *Sender

| b mid Qﬁrﬁilnncnrfnnupalnﬂ-r’ . Ll_f

45 26 Inzert




Managing projects

Use the Project Manager to organize the form and unit files that make up an

application. To display the Project Manager, choose View|Project Manager.

Project kanager
Ilmagwew.e:-ce J Mew Remove | Achivate
Files | Path
I@ ProjectGroup C:MProgram FilezhBorland Thunder\Projects
El-- iImagyiew_exe C:MProgram Filez\Borland' ThunderEsampleshdpps®
El =i imagewn C:MProgram Filez\Borland' ThunderEsampleshdpps®
El imagewn.cpp C:%Program FileshBorlandh T hundersE 2amplestApps*
: .2 ImageFom C:MProgram Filez\Borland' ThunderEsampleshdpps®
El imagyiew. cpp C:MProgram Filez\Borland' ThunderEsampleshdpps®
El readme. bt C:MProgram Filez'\Borland' ThunderE xampleshdpps®
E- =] YiewFm C:MProgram Filez'\Borland' ThunderE xampleshdpps®
C:MProgram Filez'\Borland' ThunderE xampleshdpps®
C:MProgram Filez'\Borland' ThunderE xampleshdpps®

The Project Manager shows you the form, unit, resource, object, library, and
other files contained in a project. You can use the Project Manager to add and
remove files, and you can open any file by double-clicking it.

You can combine related projects into a single project group. For example, you
might use project groups to organize a multi-tiered application or to keep DLLs

with executables that use them.

For more information...

Search for "Project Manager" in the Help index.
Creating to-do lists

To-do lists record items that need to be completed for a project. You can add
project-wide items to a list by adding them directly to the list, or you can add
specific items directly in the source code. Choose View|To-Do list to add or view

information associated with a project.



To-Do List- Froject]
Action ltem
.. =arah
O] & Fix bug #4230 3 Jerry  Beta
?; Tellwriters about new option on F... | 1 Jerry | Alpha
Click here when you're Aol Cirl+A
done with an item. Edit Fz
Delete Del
Action [tem
3 items (0 hidden) 3 items pendin = o EETS
. ¥ Show Completed tems Twpe
v Show ToolTips when Clipped Ericrity
Right-click on a to-do list c A . kodule
to display commands that = [l Chner
let you sort and filter the list. Takle Froperties.. =
_ Category
¥ Dockahle |

For more information...
Search for "To-Do Lists" in the Help index.

Designing data modules

A data module is a special form that contains nonvisual components. All the
components in a data module coul/d be placed on ordinary forms alongside
visual controls. But if you plan on reusing groups of database and system
objects, or if you want to isolate the parts of your application that handle
database connectivity and business rules, data modules provide a convenient
organizational tool.

The Data Module Designer makes it easy to create data modules. To create a

data module, choose File|New and double-click on Data Module.



DataModulel [_ |O] _
W2 Datatoduls] C t : This tab shows
‘%é% Itjsue ] HLELE T l Data [f'ag’am] graphic representation
2 e ' of relationships among
S 4 %fau“[sesmn] components, such as
= < [Blias] . !
+ = master-detail and
- & <P [Tabiel] ?\" <= lookup fields
& Constraints ] g F '
DataSourcel  Tablel
r_&, FieldDefs
# Fields The Companents tab
& IndesDefs (dizplayed here) shows

carmponents as they
would appear on a farm.

This pane shows a
hierarchical tree view

of the components
in the maodule.

C++Builder opens an empty data module in the Data Module Designer, displays
the unit file for the new module in the Code editor, and adds the module to the
current project. When you reopen an existing data module, C++Builder displays

its components in the Data Module Designer.

For more information...

Search for "Data Module Designer" or "data module" in the Help index.

Setting project and environment options

The Project Options dialog, accessed by choosing Project|Options, controls
compiler and linker switches, some search paths and output directories, project
version information, and other settings that are maintained separately for each
application. When you make changes in the Project Options dialog, your
changes affect only the current project; but if the Default check box is selected,
your selections are also saved as the default settings for new projects. (See
"Setting default project options".)

The Environment Options dialog, accessed by choosing Tools|Environment
Options, controls global IDE settings for all projects. These include many
settings that affect the appearance and behavior of the IDE, as well as some
search paths and output directories. You'll find more information about some of

these options in "Setting tool preferences".



For more information...

For details about the options on any page of the Project Options or Environment
Options dialogs, click the Help button on that page. Or search for "Project

Options dialog box" or "Environment Options dialog box" in the Help index.
Getting help

The online Help system provides extensive documentation on the VCL and

other parts of C++Builder. Here are some of the ways you can display Help:



Chject Inspector

=] E3

& C++Builder Help

Buttan?: TEuttan ;I File Edit Bookmark Option: Help
Propetties |E'-u'EI"|tS| Helplnpicsl Back | Errirk | Optionz | £ | Er | Hiztamy I
: TControl::Font
baxHeigh 0 =
Mesdididth |0 TControl See also Example
MinHaight 0 Press Flona | —ontrols the attributes of text written on or inthe control.
Fintidth |0 property or __property Graphics::TFont* Font = {read=FFont,
Cursar crDiefault fnfglbr-]:g:e in g‘rite=SetFont; stored=I=zFontStored!};
Default Falze ] ..
Inspector to D t
. esCripton
CragCursar | crDrag display WVCL _ . .
Dragkind | dkDrag Help. To change to a new font, specify a new TRont object. To modify a
Draghode |dmbanust” font, change the value of the Charset, Color, Height, Mame, Fitch,
Enabled  True Size, or Style of the TRont object.
Height 25
HelpCaontexd 0
Hint
264 Press F1 on
- a language
= Unitl.h | =10[x] keyword or
Uritt.cpp Uritt b | 4=+ =+ | VCLelement
; | in the Code
editor.
__published: P ERE=mEnagen COmpUITEIT S |
TLiztBox *ListBoxl . C++Builder Help m
TLahel *Labell; File Edt Bookmark Options Help
TLabel *FontLabel; - - - -
void fastcall Fo Helplnplcsl Back | Frirt | Optianz | £4 | Er I Hisory I
S . =H .
vu%d ___Ffastcall Li TLIStBDX
roid fastcall Dr : :
TRect &Rect. Tow | HErachy Properties Methods Events
void  fastecall Li| [ListBoxis awrapperfor a Windows list box control. il
int Index, int & .
private: A User de Unit
public: A7 User de| stdctrls
___FTastcall TForml |
r: Description




You can get Help on any part of the development environment, including menu

items, dialog boxes, windows, toolbars, and components.

q,*?’ C++Builder 5 - Projectl

File Edit Search “iew | Project Bun Component Database Tool: Help |<NDHE> j 5_“,

O - e (e Add to Project...

Shift+F11

(e Bemove from Project..

jﬂ ::Iﬂ g ] ~ % Irpart Type Librarny....
= &dd bo Repositom...
|Z] Yiew Source
Langquages
e Edit Option Source
Expart Makefile...
\Ié Add Mew Project...
Press F1 on any El_‘, Add Egzisting Project. .
renu command,
dialog box, or window =% Compile Uit Alt+F3
to display Help 3 M ake Project] Ctrl+F3
on that item. W Build Project]

(CAL]
-

b ake All Projects

T £yild All Projects

[CdL]

Optionz...

rmation Far Praject]

Shift+Ctrl+F11

tiu:unal] 'W'in32] Sustem] Data .ﬁ.ccess] Drata I:::untru:-ls] abo ] InterB

© AR Hwx 6 HEew [

©

File Edit Bookmark DOptions Help

Help Iu:upiu:s| | Print |

Project|Build project

See also

Choose Project|Build project to rebuild all the comp
of a project regardless of whether they have change
cormmand is useful when you've changed global cor
directives or compiler options, to ensure that all coc
compiles in the proper state.

This option is identical to Project|Make project exes
it rebuilds everything, whereas Project|Make rebuild
those files that have changed since the last build. ¥

;ynu choose Build project, precompiled headers and
generated by the incrermental linker are deleted and
regenerated.

You can also invake this command from the Prajec

Manager. Right click and choose Build.

| I PR PSSR ¥ N PRS- NP ) PRS- p [P N s, TP

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

Error messages from the compiler and linker appear in a special window below

the Code editor. To get Help with compilation errors, select a message from the

list and press F1.

Help with coding

C++Builder provides various aids to help you write code. The Code Insight tools

display context-sensitive pop-up windows in the Code editor.



Table 2.1 Code Insight tools

Tool

Code

Completion

Code

Parameters

Code

Templates

Tooltip
Expression

Evaluation

Tooltip

How it works

Type the name of a variable that represents a pointer to an
object followed by an arrow (->) or that represents a non-VCL
object followed by a dot. Type the beginning of an assignment
statement and press Ctri+space to display a list of valid values
for the variable. Type a procedure, function, or method name to

bring up a list of arguments.

Type a method name and an open parenthesis to display the

syntax for the method's arguments.

Press Ctrl+J to see a list of common programming statements
that you can insert into your code. You can create your own

templates in addition to the ones supplied with C++Builder.

While your program has paused during debugging, point to any

variable to display its current value.

While editing code, point to any identifier to display its

Symbol Insight | declaration.



To configure these tools, choose Tools|Editor Options and click the Code Insight tab.

[|'|["[§r C++Builder 4 - Project]

File Edt Search “iew Pmoject Bun Component Database Tool: Workoroups Help |
O~ | i | T “ @y | | =tandard I.-’-'-.dditiu:unall win3Z | Sustem | Intemet | Data Access | Data Controls | Midas | Decision Eube il

D00 -l a |k FRAMEwr ¢ g8 = g

Obect Inspector
IF:::rm'I: TFarm1 ;I e Unit].cpp | = = -
: =L Classes
Properties I Eventsl -8 TFoml void _ fastecall TForml::ButtonlClick(TObject *Sendera|| “When youtype Buttonl->
Action - ----- 3 TEutton * Butto { C++Builder displays
ActiveContol s void Button Cli Euttonl-> a list of properties,
Align aNone - dbe TFam1(TCamp } funchion— Chok B methods, and
+Anchaors [akLeft.akTop [ Routines function UseRightT oLeftAlignment events for the class.
AutoS croll brue property  Action _

AutoSize falze property  Anchors =elect an item on the
BiDiMode bdLeftTaRight property  BiDiMode list and press Enter
+Borderlcons [biSystemtden property  Cancel - to add it to your code.

BorderShyle bzSizeable

B order/idth 1]

Caption Form1

ClientHeight 303

Clieritsidth 535

Color clBthFace

+Constraints [TSizeConstra —

CH3D brue

Curzar il efault | -
KN I I3 N | _*I_I
| 1% 12 |Maodified | Inzert 4




Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in
your code. The debugger lets you control program execution, watch variables,
and modify data values while your application is running. You can step through

your code line by line, examining the state of the program at each breakpoint.

“ - -l |Ifl o Eun Fq |

o2 Attach to Process...

f;{ Heqgizter Actives Semer
ﬁ( [mreqisten Actives Server

Run button

EIT Step Ower Fg
|j Trace Into Fr
'Eg Trace to Mest Source Line  Shift+F 7
+ Fur to Cursor F4
& Fiun Untl Fetumn Shift+F&

v Show Execution Point

Choose any of the M Fiogam Pause

debugging commands

from the Run menu. Frogram Beset [Ctrl#F2

Some commands are

also available on R, Inspect...

the toolbar. Evaluate/Madify... Ctil+F7
oo Add Watch. . Chl+F5

Add Breakpaint r




To use the debugger, you must compile your program with debug information. Choose Project|Options, select the Compiler page,
and check Debug Information. Then you can begin a debugging session by running the program from the IDE. To set debugger
options, choose Tools|Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View|Debug Windows. To learn how to combine debugging windows for more convenient use,

see "Docking tool windows".

Thread Status, Breakpaint List, Call Stack, Watch List, Modules, Event Log
Thread Status Breakpoint List ICaII Stack | Watch List] Mudules] Event Lng]

Filename/Address | LinefLength | Condition | Action Fass Count | Group
You can attach or overlay B CheckBoximpll ... 4 Break 0
several debugging windows CheckBoxmpll ... I
for easier use. B CheckBoximpll.... 24 Break 0
B Project!.dpr 13 Break 0
o | ol

Once you set up your desktop as you like it for debugging, you can save the settings as the debugging or runtime desktop. This
desktop layout will be used whenever you are debugging any application. For details, see "Customizing desktop settings".
Some versions of C++Builder support multiprocess and remote debugging of distributed applications from either the client or the
server. To turn on remote debugging, choose Run|Parameters, click the Remote tab, and check "Debug Project on remote

machine".

For more information...



See "Using C++Builder" in the Help contents or search for "debugging" in the Help index.
Exploring databases

The SQL Explorer (or Database Explorer in some editions of C++Builder) lets you work directly with a remote database server
during application development. For example, you can create, delete, or restructure tables, and you can import constraints while

you are developing a database application.



Chject Dictionary Edit  iew Cpgtions  Help Choose Database|Explore
_ to display the Explorer.
@ - B A = e You can see and change
All Database Aliases Contents of biolife.db the data in a table.
L L 1 And you can query
Databases an:tn:lnar'_\;] Definition  Data ]EnterSGL| a database directly.
-6 Datahases e Species ND|Categ|:ury Common_MName -
-8 DEDEMOS » 30020 Triggerfish Clown Triggerfish
= able.s le.dlbf n 90030 | Snapper Fed Emperor
i ' 90050 ‘Wrasse Giant Maor Wrasse
+ hiolife.dk - . -
5 clients dbf n 90070 Angelfish Blue Angelfish
Al country.dhb =1 L 0080 Cod Lunarail Rockcod
f] custaly.db n 30040 Scorpianfish Firefish
1l custormer.db | 90100 Butterfhish Ormate Butterflyfish
1 E’mp'tﬂh’c‘;’;-db 90110 Shark Swell Shark
envents ]
B holdings. dbf n 30120 Ray Bat Ray
M incustee dibf hd hd
1] |» H 4] | LH

6 items in bhiolife.db.

For more information...

Choose Database|Explore to open the Explorer; then press F1. Or search for "Database Explorer" in the main Help index.



Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs, sample applications, and other items that can

simplify development. Choose File|New to display the New Items dialog when you begin a project. Check the Repository to see if it
contains an object that resembles one you want to create.

¥ New ltems

The Ohject Repositary Projects ] Data Modules ] Buziness
containg many tabbed Mew l Achives ] P uilkitier ] Froject] ] Forrns ] Dialogs ]
pages, which include objects = "
like forms, frames, units, and % I
batch files, and wizards to . —
create specialized items Batch File - File Component Console

' Wizard

Control Panel  Control Panel Cpp File Data Module  DLL ‘Wizard

Application M odule —
O BB &8 ©
Form Frame Header File Library Package
fou can copy, inherit, ar =
reference an existing ohject. ~ ~ e

k. Cancel Help




You can add your own objects to the Repository to facilitate reusing them and sharing them with other developers. Reusing objects
lets you build families of applications with common user interfaces and functionality; building on an existing foundation also reduces
development time and improves quality. The Object Repository provides a central location for tools that members of a development
team can access over a network.

To add objects to the Repository, right-click in the New Items dialog and choose Properties, or choose Tools|Repository from the

main menu.



Object Repository H

Fages: Objects:

Dialogs ] About box

Projects CTabbed pages

Data Modules Add Page... EdDual list hox

Business El QuickFeport List

su: mo—— Delets Page El QuickFeport tMaster/Detail

L] QuickRepor Labels

Bename Fage...

ﬂ ﬂ r r

0] Cancel Help

For more information...



See "Using C++Builder" in the Help contents or search for "Object Repository"
in the Help index. Also choose File|New and browse in the Object Repository to
see the types of templates and wizards you can use as starting points for your
applications. The objects available to you will depend on the version of

C++Builder you purchased.

Chapter 3
Creating a text editor--a tutorial

This tutorial takes you through the creation of a text editor complete with
menus, a toolbar, and a status bar. It includes a simple help file accessible from
the application.

Note: This tutorial is for all versions of C++Builder.
Starting a new application

Before beginning a new application, create a folder to hold the source files:

1. Create a folder called TextEditor in the Projects directory off the main
C++Builder directory.
2. Create a new project.

Each application is represented by a project. When you start C++Builder,
it creates a blank project by default. If another project is already open,

choose File|[New Application to create a new project.

When you open a new project, C++Builder automatically creates the

following files:

Projectl.cpp: a source-code file associated with the project.
Unitl.cpp: a source-code file associated with the main project form. This
is called a unit file.

o Unitl.h: a header file associated with the main project form. This is
called a unit header file.

o Unitl.dfm: a resource file that stores information about the main project
form. This is called a form file.



Each form has its own unit (Unit1.cpp), header (Unit1.h), and form
(Unit1.dfm) files. If you create a second form, a second unit (Unit2.cpp),

header (Unit2.h), and form (Unit2.dfm) file are automatically created.

3. Choose File|Save All to save your files to disk. When the Save dialog appears:
o Navigate to your TextEditor folder.
o Save Unitl using the default name Unitl.cpp.
o Save the project using the name TextEditor.bpr. (The executable will be
named the same as the project name with an exe extension.)

Later, you can resave your work by choosing File|Save All.

When you save your project, C++Builder creates additional files in your
project directory. These files include TextEditor.bpr, which is the project
options or makefile, and TextEditor.res, which is the Windows resource

file. You don't need to worry about these files but don't delete them.

When you open a new project, C++Builder displays the project's main form,
named Form1 by default. You'll create the user interface and other parts of your

application by placing components on this form.

£#Form1

---------------------------------------------------------------------- The default form h:

---------------------------------------------------------------------- and Minimize butto

N button, and a Cont
ittt il | i you run the form

...................................................................... pressing F9, you'll
...................................................................... these buttons all w

...................................................................... TG r-eturn t‘:l deslgn

o dickithe X to close




Next to the form, you'll see the Object Inspector, which you can use to set

property values for the form and components you place on it.

—

Chject Inspector

IFDrm1 - TFarm1

The drop-down list at the top
—— of the Object Inspector shows

Froperties |Euent5 |

BorderStyle

bsSizeahles]

Bord et

0

Captian

Farm1

ClientHeight

Clienticth

Colar
Constraints

(TSizelons

Cursar

ctDefault

Defaulttdoni

dimactieFr

DockSite

False

Dragkind

dkDrag

Draghdode

dmbdanual

Enabled

True

Font

I TFont)

the currently selected object.
In this case, the object is Form
and its type is TForm1.

When an object is selected,
the Object Inspector shows
its properties.

FormStyle |[fsMormal

2 hiclden

=
v

Setting property values

When you use the Object Inspector to set properties, C++Builder maintains your
source code for you. The values you set in the Object Inspector are called
design-time settings.

You can change the caption of Form7 right away:

Find the form's Caption property in the Object Inspector and type "Text Editor
Tutorial" replacing the default caption "Form1." Notice that the caption in the
heading of the form changes as you type.

Adding objects to the form

Before you start adding objects to the form, you need to think about the best
way to create the user interface (Ul) for your application. The Ul is what allows
the user of your application to interact with it and should be designed for ease of
use. The text editor application requires an editing area, a status bar for

displaying information such as the name of the file being edited, menus, and



perhaps a toolbar with icons for easy access to commands. The beauty of designing the interface using C++Builder is that you can
experiment with different components and see the results right away. This way, you can quickly prototype an application interface.
C++Builder includes many objects that represent parts of an application. For example, there are objects (also called components)
that make it easy to program menus, toolbars, dialog boxes, and hundreds of other visual (and nonvisual) program elements.

The Component palette represents VCL components using icons grouped onto tabbed pages. Add a component to a form by
selecting the component on the palette, then clicking on the form where you want to place it. You can also double-click a
component to place it in the middle of the form. To get help on the components, select the component (either in the Component

palette or on the form) and press F1.

&7 C++Builder 5 - TextEditor

File Edit Search “iew Project Fun Component Databaze Teolz Help |DESk~tDD setting j =)
OE- - LR s Sl Standard l.ﬁ.dditiunall Wwin32 | Svstem | Datasccess | Data Controls | D0 | InterBase | Midas | L

panio), -nag s O S AamEor bjEg= 5[]
| I

Component palette tabs Components

To start designing the text editor, add a RichEdit and a StatusBar component to the form:

1. To create a text area, drop a RichEdit component onto the form.

Click the Win32 page on the Component palette. To find the RichEdif component, point to an icon on the palette for a

moment; C++Builder displays a Help hint showing the name of the component.



£ C++Builder 5 - TextEditor

File Edit Search %iew Project Bun Componest Database Tools Help |“||:'E!3kt':'liI zetting j | ah ﬂ%,|
N = - E | . ﬁ | ﬁ g “ @ Standardl Additional iR I Susteml Data .-’-\.ccessl Data I:::-ntrculsl ADO | InterBasel Midasz | Ir_I_‘ -

Sen o)y -Nlaa s =gEE= & ma BEEE

When you find the RichEdift component, double-click it to place it on the form.



Text Editor Tutorial

RichEdit1




Each C++Builder component is a c/ass; placing a component on a form creates an /instance of that class. Once the

component is on the form, C++Builder generates the code necessary to construct an instance object when your application is

running.
. Set the Align property of RichEditl to alClient.

To do this, click on RichEdit1 to select it on the form, then choose the Align property in the Object Inspector. Select a/Client

from the drop-down list.



Object Inspectar Seltiu:t ;he RichEdit1 component
on the form.
| RichE dit1: TRichE dit -]
Properties ] Everts | Look for Align in the
. - , Object Inspectar. Click the

| M!g” alllient down armrow to display the

Aligrment property drop-down list.
HAnchars

EDiMode  |dlLeft ™ Select alClient

BorderStyle  |3MNone

Borderwidth  [2IMiaht

Calar allap
Conztraints [TSizeConsztrain

Curzar oD efault

DragCurzor ciDrag k|
2 hidden

The RichEdit component now fills the form so you have a large text editing area. By choosing the a/Client value for the Align

property, the size of the RichEdit control will vary to fill whatever size window is displayed even if the form is resized.

3. Double-click the StatusBar component on the Win32 page of the Component palette. This adds a status bar to the bottom of the form.

§# C++Builder 5 - TextEditor

File Edit Search “iew Project Bun Component Database Tooks Help |DESH'I'F' setting j &
: = - E ﬁ E H LJ @ Standard] Additional  *in32 l Sustem] Data .ﬁ.ccess] Drata I:::untru:-ls] abo ] InterEase] Midaz ] InternetE:-:Dress] ll_'
eEaEia]le -ns gt =S E = 2 Wl B - [ = @1y e
St&sBarl




Next we want to create a place to display the name of the file being edited. You can do this in two ways. The easiest way is
to set the SimplePanel property of the StatusBar17 object to true and assign any text that you want to display to the

SimpleText property. This provides only one panel in the status bar. You can assign its value as follows:

StatusBar1->SimpleText = "untitled.txt";

However, many times you will want to include more than one panel in the status bar so you can include more than one piece
of information. You can specify more than one panel by using the Panels property of the 7StatusBar component as explained

in the next few steps.

4. Double-click the status bar to display the Editing StatusBarl->Panels dialog box.



¥ Text Editor Tutorial
RichEdit1

## Editing StatusBar 1->Panels

s ¥

@m|
@ elete [ie]

* [ove g [t E
¥ Hovelown  GilHDown
Selenhall
|T Toolbar
Right-click on here to display a /

context menu. Choose Add to
create a panel on the status bar
that can hold persistent text.

Sl

5. Right-click on the dialog box and choose Add to add the panel to the status bar.



£# Editing StatusBar 1->Panels

e M 2

- T5tatuzPanel

This shows the panel
you created. It has an
index number of 0.

The Panels property is a zero-based array that allows you to access
each Panel that you create based on its unique index value (by default, it
is O for this panel). Use the default property values for the panel. Click
the X in the upper right corner to close the dialog box. Now the main

editing area of the user interface for the text editor is set up.

Adding support for a menu and a toolbar

For the application to do anything, it needs a menu, commands, and, for
convenience, a toolbar. Because some of the same commands will appear on
the menu and the toolbar, you can centralize the code by creating an action /ist.
Action lists help to centralize the code for the commands.

Following are the kinds of actions our sample text editor application needs:

Table 3.1 Planning Text Editor commands

Command Menu on Description
Toolbar?
New File Yes Creates a new file.
Open File |Yes Opens an existing file for editing.
Save File Yes Stores the current file to disk.

_ Stores a file using a new name (also lets you
Save As | File |No _ . -
store a new file using a specified name).



Exit File |Yes
Cut Edit |Yes
Copy Edit |Yes

Paste Edit |Yes

Contents |Help Yes

Index Help 'No

About Help 'No

Quits the editor program.

Deletes text and stores it in the clipboard.
Copies text and stores it in the clipboard.
Inserts text from the clipboard.

Displays the Help contents screen from which

you can access Help topics.
Displays the Help index screen.

Displays information about the application in a

box.

You can also centralize images to use for your toolbar and menus in an

ImagelList.

To add an ActionListand an /mageListto your form:

1. From the Standard page of the Component palette, drop an ActionList

component onto the form. .The ActionList component is nonvisual, so it
doesn't matter where you put it on the form. It won't appear at runtime.

2. From the Win32 page, choose the ImageList component and drop it onto
your form. It's also nonvisual so you can put it anywhere.

Your form should now resemble the following figure.



€# Text Editor Tutorial

FichE dit1 ) .
The ActionList and

- iy . .
ﬂ —1 ImagelList objects
don’t show when the

application is running.

Editing area

| — Status bar

Adding actions to the action list

Next we'll add the actions to the action list.
Tip: By convention, we'll name actions that are connected to menu items the name of the top-level menu and the item name. For

example, the FileEXxit action refers to the Exit command on the File menu.



1. Double-click the ActionList icon.
The Editing Form1->ActionList1 dialog box is displayed. This is also called the Action List editor.

2. Right-click on the Action List editor and choose New Action.



3.

o

£# Editing Form1->ActionList1

a-r ¥ | Right-click on the Action List editor
- - and choose Mew Action to create
Categories:  Actions: an action for the action list.
(None] WAction ]
M e Action
Mew Standard Action... - Chil+lns
* fove g Eil @
¥ bove lown [ 2 B
Cut Chrl+
Copy Chrl+C
Pazte Chrl+
@ [Elete el
Select Al
|7 Parel Dezcriptions
|7 T oalbar

In the Object Inspector, set the following properties for the action:

O

(o]

After Caption, type &New. Note that typing an ampersand before one of
the letters makes that letter a shortcut to accessing the command.

After Category, type File. This organizes the File commands in one
place.

After Hint, type Create file (this will be the Help hint).

After Imagelndex, type 0 (this will associate image number O in your
ImageL.ist with this action).
After Name, type FileNew (for the File|]New command).

Right-click on the Action List editor and choose New Action.
In the Object Inspector, set the following properties:

O

O

(0]

o

(0]

After Caption, type &Open.

Make sure the Category says File.

After Hint, type Open file.

After Imagelndex, type 1.

After Name, type FileOpen (for the File|Open command).

Right-click on the Action List editor and choose New Action.
In the Object Inspector, set the following properties:

After Caption, type &Save.
Make sure the Category says File.
After Hint, type Save file.

After Imagelndex, type 2.
After Name, type FileSave (for the File|Save command).

Right-click on the Action List editor and choose New Action.
In the Object Inspector, set the following properties:

(o]

(e]

After Caption, type Save &As.
Make sure the Category says File.



o After Hint, type Save file as.

o No Imagelndex is needed. Leave the default value.

o After Name, type FileSaveAs (for the File|Save As command).
10. Right-click on the Action List editor and choose New Action.
11. In the Object Inspector, set the following properties:

o After Caption, type E&xit.

o Make sure the Category says File.
o After Hint, type Exit application.

o After Imagelndex, type 3.

o After Name, type FileEXxit (for the File|Exit command).
12. Right-click on the Action List editor and choose New Action to create a
customized Help|Contents command.
13. In the Object Inspector, set the following properties:

o After Caption, type &Contents.
o After Category, type Help.

o After Hint, type Display Help.
o After Imagelndex, type 7.

o After Name, type HelpContents (for the Help|Contents command).

14. Right-click on the Action List editor and choose New Action.
15. In the Object Inspector, set the following properties:

o After Caption, type &index.
o Make sure the Category says Help.
o After Name, type Helpindex (for the Help|Index command).

16. Right-click on the Action List editor and choose New Action.
17. In the Object Inspector, set the following properties:

o After Caption, type &About.
o Make sure the Category says Help.
o After Name, type HelpAbout (for the Help|About command).

Keep the Action List editor on the screen.

Note: When you were adding actions to the action list, you might have noticed a
standard Help|Contents command is provided. We added a custom
Help|Contents command that will display the Help Contents tab at all times. The
standard Help|Contents command brings up the last tabbed page that was

displayed, either the Contents or the Index.

Adding standard actions to the action list

C++Builder provides several standard actions that are often used when
developing applications. Next we'll add the standard actions (cut, copy, and

paste) to the action list.



Note: The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.

To add standard actions to the action list:

1. Right-click on the Action List editor and choose New Standard Action.

The Standard Actions dialog is displayed.



2. Double-click TEditCut. The action is created along with a new category called Edit. EditCutl should be selected.
3.

Right-click on the Action List editor
and choose New Standard Action.

The available standard actions are
then displayed. To pick one,
double-click an action.

£# Standard Actions

; Editing Form1-=ActionList1

Categaries:

d -

Action

HelpContents
Helplndex
Helpdbout

- d Mew Action

Mew Standard Action. ..

Actian | Eategn:nrl};l
TEditCopy Edit
TEditCut

TEditDelete Edit
TEditPaste Edit

TEditS electall Edit
TEditUnda Edit
THelpContents Help
THelpOnHelp Help
THelpT opicSearch Help
Twindowarrange Wi
TwindowCazcade o
TwindowCloze Wi
Twindowkinirnizel W indo
TwindowT ileHaorizontal Wi
TwindowT ilevertical Window 5
4| o

(1] 4
Cancel Cut
Help LCopy
Pazte
Select Al

v Panel Dezcnptionsz

v Toolbar

Chl+nz

Ctrl+
Chrl+C
Chl+

In the Object Inspector, set the following property for EditCutl:
o After Imagelndex, type 4.



ok

~

The other properties are set automatically.

Right-click on the Action List editor and choose New Standard Action.
Double-click TEditCopy.
In the Object Inspector, set the following properties:

o After Imagelndex, type 5.

Right-click on the Action List editor and choose New Standard Action.
Double-click TEditPaste.






9. In the Object Inspector, set the following properties:
o After Imagelndex, type 6.
10. Now you've got all the actions that you'll need for the menus and toolbar. If you click on the category All Actions, you can see all the
actions in the list:
11. Click on the X to close the Action List editor.
12. With the Action List still selected on the form, set its Images property to ImageList1.

Object Inspector QIA;TEHI Editor Tutorial
I.-'i'-.cti-:unList'I: TiactionList 7 I RichE dit1
Propertiez | Events 1 =L
| I EH B
Images -
Mame Imagelist]
Tag 1]
Al shown Ll | i

Click on the Images property, then on the down arrow next to Images.
ImageList1 is listed for you. Select it. This associates the images
that we'll add to the image list with the actions in the action list.

Adding images to the image list

Previously, you added an ImagelList object to your form. In this section, you'll add images to that list for use on the toolbar and on

menus. Following are the images to use for each command:






Command Icon image name Imagelndex property

File]|Open Fileopen.omp 0

File|New Filenew.bmp 1
File|Save Filesave.bmp 2
File|Exit Doorshut.bomp 3
Edit|Cut Cut.bmp 4
Edit|Copy Copy.bmp 5
Edit|Paste Paste.bomp 6
Help|Contents Help.bmp 7

To add the images to the image li



How

Double-click on the ImageL.ist object on the form to display the Image List
editor.
Click on the Add button and navigate to the Buttons directory provided with the
product. The default location is C:\Program Files\Common Files\Borland
Shared\Images\Buttons.
Select fileopen.bmp.
When a message asks if you want to separate the bitmap into two separate ones,
click Yes each time. Each of the icons includes an active and a grayed out
version of the image. You'll see both images. Delete the grayed out (second)
image.
Click Add and select filenew.bmp. Delete the grayed out image.
Click Add and select filesave.bmp. Delete the grayed out image.
Click Add and select doorshut.bomp. Delete the grayed out image.
Click Add and select cut.bomp. Delete the grayed out image.
Click Add and select copy.bmp. Delete the grayed out image.
Click Add and select paste.omp. Delete the grayed out image.

o Click Add and select help.bmp. Delete the grayed out image.
Click OK to close the Image List editor.

o O O O O O

You've added 8 images to the image list and they're numbered 0-7

consistent with the Imagelndex numbers on each of the actions.

Note: If you get them out of order, you can drag and drop them into their

correct positions in the image list editor.

To see the associated icons on the action list, double-click the ActionL.ist object
then select the All Actions category.

£# Editing Form1->ActionList1

A-r
Cateqores: Actions:
[Hone) FileMew When you display the
Edit [ FileOpen Action List editor now,
File FioS ave you'll see the icons
5.-:. . S aveds associated with the
A PEDAVEAS actions.
E FileE it
7 HelpContents We didn't select icons
Helplndex for three of the commands
Helpsbaut because they will not be
E ditCut on the toolbar.

EditCopul
CR EditPaste




When you're done close the Action List editor. Now you're ready to add the

menu and toolbar.
Adding a menu

In this section, you'll add a main menu bar with three drop-down menus--File,
Edit, and Help--and you'll add menu items to each one using the actions in the

action list.

1. From the Standard page of the Component palette, drop a MainMenu component

Eonto the form. It doesn't matter where you place it.

2. Set the main menu's Images property to ImageList1. This will allow you to add
the images to the menu items.

3. Double-click the menu component to display the Menu Designer.

7l Form1-=MainMenu1 H[=]

4. In the Object Inspector, type &File to set the Caption property of the first top-
level menu item and press Enter.



Object Ingpectar

rrl Form1->MainMenu1

File1: Thenultem j

Froperties l Events] When you type &File

Achian ~|| and focus on the

AutoHatkeys | maParent Menu Designer, the

AutolineR edud maParent top-level File

Eitmap [N DHE] t:c:r‘gm?nd appears
rea ar you

ek fubd e to add the first

Caption menu item

Checked Falze [ ‘

Default Falze

Enabled True

Grouplndex |0

HelpContext (0 R

Al zhown

5. Inthe Menu Designer, select the File item you just created. You'll notice an empty item under it: select the empty item. In the Object
Inspector, choose the Action property. The Actions from the action list are all listed there. Select FileNew.



Object Ingpectar

|New'|: T enultem j When you select
FileMew from the

PiegEite l Evvents | Action property list,

| Action FieNew |w|4|| the New command
SutaHotkeys ([EditCopyl 2 appears Wltl‘l_ the
AutoLineRed(E ditCutl correct Caption
Bitmap EditPastel and Imagelndex.
Break FileE =it
Caption EFIET‘-JE:I.-'-.I |
Checked | ieHpen —
Drefault F!IeSave
Ensbled  (1E03veds =
Grouplndex |0
HelpContext (0 R

All shown

Focus on the item under New and choose FileOpen from its Action property.
Focus on the item under Open and choose FileSave from its Action property.
Focus on the item under Save and choose FileSaveAs from its Action property.

o Focus on the item under Save As and type a hyphen as the Caption of the next item under the File menu and press Enter to create a
separator bar on the menu.
o Focus on the item under the separator bar and choose FileExit from its Action property.
6. Next create the Edit menu:
Point to the item to the right of the File command and set its Caption property to &Edit and press Enter.
Focus is now on the item under Edit; choose EditCutl from its Action property.
Select the item under Cut and choose EditCopyl from its Action property.
Select the item under Copy and choose EditPastel from its Action property.

o O O O



Object Inspectar ~71 Form1-=MainMenu1

Pastel: Thenultem LI File  Edit i

Froperties I Events I Cut Chrl+
Action EditPaste] Lopy  ChikC

AutoHotkeys | maParent
AutoLineReduc maParent 1 f f
Bitrap [Mone]
Break mbtone
Caption &Pazte
Checked falze
Default falze |
Al showr =

7. Next create the Help menu:
o Point to the item to the right of the Edit command and type &Help as its caption.
o Focus on the Menu Designer to select the item under Help and choose HelpContents from its Action property.
o Select the item under Contents and choose Helplndex from its Action property.
o Select the item under Index and type a hyphen its Caption and press Enter to create a separator bar on the Help menu.

o Select the item under the separator bar and choose HelpAbout from its Action property.
8. Click on the X to close the Menu Designer.
9. Choose File|Save to save your project.

10. Press F9 to compile and run the project. (You can also run the project by clicking the Run button on the Debug toolbar, or by choosing
Run from the Run menu.)



Jli; Text Editor Tutorial

File Edit

Help

I [=] EX

|FIiu:hE dit1

A

When you run your project, C++Builder opens the program in a window like the one you designed on the form. The program
is a full-fledged Windows application, complete with Minimize, Maximize, and Close buttons and a Control menu. The menus
all work although most of the commands are grayed out. The images are displayed next to menu items with which we

associated icons.

Though your program already has a great deal of functionality, there's still more to do to activate the commands. And we

When you press F9 to run
your project, the application
interface is displayed.

The menus, text area, and
status bar all appear

on the form.

To return to design mode,
click the X to close the form.

want to add a toolbar to provide easy access to the commands.

11. Click the X in the upper right corner to close the application and return to the design-time view of the form.



Clearing the text area (optional)

When you ran your program, the name of the RichEdit control appeared in the text area. You can remove that text using the Strings
editor. This is optional because in a later step, the text will be removed when initializing the main form.

To clear the text area:

On the main form, click on the RichEdit component.

In the Object Inspector, double-click on the value (TStrings) next to the Lines property to display the String List editor.

Select the text you want to remove in the String List editor, press the Delete key, and click OK.
Save your changes and trying running the program again.

NS

The text editing area is now cleared when the main form is displayed.
Adding a toolbar

Since we've set up actions in an action list, we can add some of the same actions that were used on the menus onto a toolbar.
1. On the Win32 page of the Component palette QI_Ef, double-click the ToolBar to add it to the form.

A blank toolbar is added under the main menu. With the toolbar still selected, change the following properties in the Object
Inspector:
o Set the toolbar's Indent property to 4. (This indents the icons 4 pixels from the left of the toolbar.)

Set its Images property to ImageList1.
Set ShowHint to true. (Tip: Double-click on false to change it to true.)



2. Add buttons and separators to the toolbar:

With the toolbar selected, right-click and choose New Button four times.
Right-click and choose New Separator.

Right-click and choose New Button three more times.

Right-click and choose New Separator.

Right-click and choose New Button once again.

o O O O O

Note: Don't worry if the icons aren't correct yet. The correct icons will be selected when you assign actions to the buttons.

£# Text Editor Tutorial

Fil= Edit Help

e E TR e S

The toolbar object is added
under the menus by default.

M e E:Htt an

Mew Separator To add buttons or separators,

. . select the toolbar, right-click,
Align to Grid . and choose New Button or
<2 Bring to Frant Mew Separator. Then assign
@"' Send to Back actions from the action list.

B ewert ta [ nhented

[ Tab Order...

éE Creation Order....
Flip Children k
A&dd to Bepoziton...

Wiew az Text
v TextDFM




3. Assign actions from the action list to the first set of buttons.

o Select the first button and set its Action to FileExit.

o Select the second button and set its Action to FileNew.

o Select the third button and set its Action to FileOpen.

o Select the fourth button and set its Action to FileSave.
4. Assign actions to the second set of buttons.

o Select the first button and set its Action to EditCut1.

o Select the second button and set its Action to EditCopy1.

o Select the third button and set its Action to EditPastel.
5. Assign an action to the last button.

o Select the last button and set its Action to HelpContents.

6. Press F9 to compile and run the project.

Your text editor already has lots of functionality. You can type in the text area. Check out the toolbar. If you select text in the

text area, the Cut, Copy, and Paste buttons work.
7. Click the X in the upper right corner to close the application and return to the design-time view.

Writing event handlers

Up to this point, you've developed your application without writing a single line of code. By using the Object Inspector to set property
values at design time, you've taken full advantage of C++Builder's RAD environment. In this section, you'll write functions called
event handlers that respond to user input while the application is running. You'll connect the event handlers to the items on the
menus and toolbar, so that when an item is selected your application executes the code in the handler.

Because all the menu items and toolbar actions are consolidated in the action list, you can create the event handlers from there.



For more information about events and event handlers, see "Developing the application user interface" in the Developer's Guide or

online Help.
Creating an event handler for the New command

To create an event handler for the New command:

1. Choose View|Units and select Unitl to display the code associated with Form1.
2. You need to declare a FileName that will be used in the event handler. Add a custom property for the file name to make it globally
accessible. Open the Unitl.h file by right-clicking in the Unitl.cpp file in the code editor and choosing Open Source/Header File. In the

header file, locate the public declarations section for the class TForm1 and on the line after public:  // User declarations, type:
3.  AnsiString FileName;

Your screen should look like this:



2 Unitl.h M= E
*

Uritl.cpp  Unitl.h l - -

TToolButton *ToolButtonS: _ﬂ
TToolButton *ToolButtonb:
TToolButton *ToolButton?:
TToolButton *ToolButtonsS:
TToolButton *ToolButtonS:
TToolButton *ToolButtonlO:
private: A Uaer declarations
public: S5 Taser declarations

+- ] Classes

This line defines
FileMame as a
string which is
globally accessible
from other methods.

fendif

o o

65: 30 |Modified Inzert

Press F12 to go back to the main form.

Tip: F12 is a toggle which takes you back and forth from a form to the associated code.

Double-click the ActionList icon on the form to display the Action List editor.
In the Action List editor, select the File category and then double-click the FileNew action.

The Code editor opens with the cursor inside the event handler.



9.

10.

First, double-click the Action List object

to display the Action List editor,

| <= Editing Form1->ActionLi... 3

3-8+ ¥
Categories: Actions .
(None] FileMew — ©
[ FileOpen
Help FileS ave
[&ll Actions) FileSavy...
B FileEit

Then, double-click the action
to create an empty event handler
where you can specify what
will happen when users execute

the command.

th-ext Editor Tutonal

File Edit Help

Ble|oeal soExck 2|

oE

= Unitl.cpp O] x|

2

[+-[aF] Claszes

& Uritt cpp | unitt b |

R

]

=l
rvoid  Ffastecall TFormwl::FileNewExecute (]
i

7l
b

A |

|

20: 2 |Modified

|Insert

B

Right where the cursor is positioned in the text editor (between { and }), type the following lines:
RichEdit1->Clear();




11.
12.
13.
14.

FileName = "Untitled.txt";

StatusBar1->Panels->ltems[0]->Text = FileName;

Your event handler should look like this when you're done:

E Unit1.cpp [_ O] <]
Unit1.cpp|LInit1.h| - -
T =l

——~—This line clears the text area

when you create a new file.
REichEditl->Clear () :
FileMame = "Untitled.txt'™: This line calls the new file
StatusBarl->Panels->Items[0] ->Text = FilelMame: m_____‘_\__—\_! “Untitled.txt™.

' [~ This line puts the file name

ettt J into the status bar.

3 _>l_I
| 44 3 |Modified |Ingert o

Save your work and that's it for the File|New command.

Tip: You can resize the code portion of the window to reduce horizontal scrolling.



Creating an event handler for the Open command

When you open a file, a File Open dialog is automatically displayed. To attach it to the Open command, drop a 7OpenDialog object
on the main editor form. Then you can write the event handler for the command.

To create an Open dialog and an event handler for the Open command:

1. Locate the main form (select View|Forms and choose Form1 to quickly find it).

2. From the Dialogs page of the Component palette , drop an OpenDialog component onto the form. (You may need to scroll to find the
Dialogs page.) This is a nonvisual component, so it doesn't matter where you place it. C++Builder names it OpenDialogl by default.
(When OpenDialogl's Execute method is called, it invokes a standard Windows dialog for opening files.)

3. Inthe Object Inspector, set the following properties of OpenDialogl.:

o Set DefaultExt to txt.
o Double-click the text area next to Filter to display the Filter editor. Specify filters for file types: Type "Text files" as the Filter
Name and *.txt as the filter and "All files" as a second Filter Name and *.* as its filter). Then click OK.




Fitter Editor
Filter W arme | Filtes i|
Text files " bt
&l files |

il
ak. Cancel Help

o Set Title to Open File.
The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.
5. Inthe Action List editor, double-click the FileOpen action.

B

The Code editor opens with the cursor inside the event handler.

Right where the cursor is positioned in the text editor (between { and }), type the following lines:
if (OpenDialog1->Execute())

© ® N o

11.  RichEdit1->Lines->LoadFromFile(OpenDialog1->FileName);
12.
13. FileName = OpenDialog1->FileName;



14.
15.
16.
17.
18.

StatusBar1->Panels->ltems[0]->Text = FileName;

Your FileOpen event handler should look like this when you're done:

B Uniti.cpp M= E3
Unit1.cpp|unit1.h| - -
P I~

void fasteall TForml::FileOpenExecute (TChject *3ender
{

if (OpenlDizslogl->Execute(]l)
RichEdit1—}Lines—}LDadFrDmFilE(OpenDiangl—}FilENamE];’fﬁ#ﬁ
FilelMamwe = OpenDialogl->Filelame:

|__This line defines what happens
when the Open command is executed.

This line inserts the text from the
" specified file.

This line sets the filename to the one

StatuzBarl->Panelzs->Item=[0] —>Text = FileMName:

in the Open dialog.

——— This line puts the file name into
the status bar.

B4 3 Modified Inget o

That's it for the File|Open command and the Open dialog.

Creating an event handler for the Save command



To create an event handler for the Save command:

1. The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.
2. On the Action List editor, double-click the FileSave action.

The Code editor opens with the cursor inside the event handler.

3. Right where the cursor is positioned in the text editor (between { and }), type the following lines:
if (FileName == "Untitled.txt")

4
5.
6. FileSaveAsExecute(NULL);
7
8. else

9

10. RichEdit1->Lines->SaveToFile(FileName);

This code tells the editor to display the SaveAs dialog if the file isn't named yet so the user can assign a name to it.
Otherwise, save the file using its name. The SaveAs dialog is defined in the event handler for the Save As command(see list
item 4, in the section "Creating an event handler for the Save As command"). FileSaveAsExecute is the automatically

generated name for the Save As command.

Your event handler should look like this when you're done:



B Unit1.cpp [_ O]
Urit1.cpp ] Unit1 h | - -
e -l

rvoid fasteall TForwl::FileZaveExecute (TChject *3ender)

{
If the file is untitled, display

if (FilelMamwe == "Untitled.txt™) ) :
FileSavelsExecute (NULL) ; the File Save As dialog.
1 )
e=e ) ) ) ) Otherwise, save to the
RichEditl-»Lines->3aveToFile (Filelame) ; named file
H
A ————————————————————————————————————————————— -

1 of

3% 44 | Modified |nzert

That's it for the File|Save command.
Creating an event handler for the Save As command
To create an event handler for the Save As command:

1. From the Dialogs page of the Component palette , drop a SaveDialog component onto the form. This is a nonvisual component, so it
doesn't matter where you place it. C++Builder names it SaveDialogl by default. (When SaveDialog's Execute method is called, it invokes
a standard Windows dialog for saving files.)

2. In the Object Inspector, set the following properties of SaveDialogl:



17.
18.

Set DefaultExt to txt.
Double-click the text area next to Filter to display the Filter Editor. In the editor, specify filters for file types as in the Open dialog
(set Text files to *.txt and All files to *.*) then click OK.

o Set Title to Save As.

Note: The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.

In the Action List editor, double-click the FileSaveAs action.

The Code editor opens with the cursor inside the event handler.

Right where the cursor is positioned in the text editor, type the following lines:
SaveDialog1->FileName = FileName;

SaveDialog1->InitialDir = ExtractFilePath(FileName);

if (SaveDialog1->Execute())

RichEdit1->Lines->SaveToFile(SaveDialog1->FileName);
FileName = SaveDialog1->FileName;

StatusBar1->Panels->ltems[0]->Text = FileName;



19. )
20.

Your FileSaveAs event handler should look like this when you're done:

E Unit1.cpp Hi=] E3
i eee | Und1 | R |~ This sets the SaveAs dialog's
F e FileName property to the
roid fastcall TForml::File3avelsExecute (TOhject * main form's FileName
o property value.

Savelialogl->FilelMamwme = FilelMame:
Savelialogl->Initiallir = ExtractFilePath(FileName) ;—— |
if [(Savelialogl->Executel)]
i

—— The default directory is set to
the last one accessed.

| ——This line saves the text to
RichEditl->Lines->3aveToFile (3avelialogl->FilelName) ;”_—d_; the specified file.

FileMamwe = Zavelialogl->FileName:

StatusBarl->Panels—>Items[0] —}Tex1;=1rilemme;\_t—— This sets the main form's
4 FileName to the name

specified in the Savehs

. dialog.
lﬂ—l | | [ This puts the file name in the
G2 3 | Modified |nzert

text panel of the status bar.

That's it for the File|SaveAs command.
Creating an event handler for the Exit command

To create an event handler for the Exit command:



1. The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.
2. On the Action List editor, double-click the FileExit action.

The Code editor opens with the cursor inside the event handler.

3. Right where the cursor is positioned in the text editor, type the following line:
Close();

This calls the close method of the main form. That's all you need to do for the File|Exit command.

6. Choose File|Save All to save your project.

To see what it looks like so far, run the application by pressing F9 or by clicking on the green Run button ¥ on the toolbar.



IEText Editor Tutorial = The running application looks
Fie Edt Hel a lot like the main form in
e design mode. Notice that the
E | | 0 || alulml .l nonvisual objects aren’t there.
You can close the application
in three ways:
Click the X.

Choose File|Exit.

Click the Exit application
button on the toolbar.

| 4
Most of the buttons and toolbar buttons work but we're not finished yet.
To return to design mode, close the Text Editor application by choosing File|Exit, by clicking the Exit application button on the

toolbar of your application, or by clicking the X in the upper right corner.
If you receive any error messages, click on them to locate the error. Make sure you've followed the steps as described in the

tutorial.

Creating a Help file



It's a good idea to create a Help file that explains how to use your application. C++Builder provides Microsoft Help Workshop in the
Help\Tools directory which includes information on designing and compiling a Windows Help file. In the sample editor application,
users can choose Help|Contents or Help|Index to access a Help file with either the contents or index displayed.

Earlier, we created HelpContents and Helplndex actions in the action list for displaying the Contents tab or Index tab of a compiled
Help file. We need to assign constant values to the Help parameters and create event handlers that display what we want.

To use the Help commands, you'll have to create and compile a Windows Help file. Creating Help files is beyond the scope of this
tutorial. A sample rtf file (TextEditor.rtf), Help file (TextEditor.hlp) and contents file (TextEditor.cnt) are downloadable from the
http://www.borland.com/techpubs/bcppbuilder/ Web site. Or, to test the Help, you can use any HLP or CNT file (such as one of the

C++Builder Help files and its associated CNT file) in your project. You will have to rename them for the application to find them.
Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:

1. The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.
2. On the Action List editor, select the Help category, then double-click the HelpContents action.

The Code editor opens with the cursor inside the event handler.

3. Right after where the cursor is positioned in the text editor, type the following lines:
4. const static int HELP_TAB = 15;

6. const staticint CONTENTS_ACTIVE = -3;



7.
8.
9.

10. Application->HelpCommand(HELP_TAB, CONTENTS_ACTIVE);
11.

This code assigns constant values to the HelpCommand parameters. Setting HELP_TAB to 15 displays the Help dialog and
setting CONTENTS_ACTIVE to -3 displays the Contents tab.

Your event handler should look like this when you're done:



E Unitl_cpp Mi=] E3

2 Unit1.cpp ]Llniﬂ.h] oY o

+

) _ =l These lines defing the

roid  Ffastecall TFormwl::HelpContentsExecute (TObject *3ender command and data
g parameters of the
const static int HELP_TILB = 15: _| He|pc|:|mman|j method
const static int CONTENTS ACTIVE = -3; | of TApplication.
Application->HelpCommand (HELP TAE, CONTENTS ACTIVE): This says to display the
1 Help dialog with the
A contents tab displayed.

K — LH

31: 53 |Modified Inzert

Tip: To get Help on the HelpCommand method, put the cursor next to HelpCommand in the editor and press F1.

That's it for the Help|Contents command.



Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1. The Action List editor should still be displayed. If it's not, double-click the ActionList icon on the form.
2. On the Action List editor, select the Help category and then double-click the HelpIndex action.

The Code editor opens with the cursor inside the event handler.

Right after where the cursor is positioned in the text editor, type the following lines:
const static int HELP_TAB = 15;

3
4
5.
6. const static int INDEX_ACTIVE = -2;
7
8
9

10. Application->HelpCommand(HELP_TAB, INDEX_ACTIVE);
11.

This code assigns constant values to the HelpCommand parameters. Setting HELP_TAB to 15 again displays the Help
dialog and setting INDEX_ACTIVE to -2 displays the Index tab.

Your event handler should look like this when you're done:



2 Unitl.cpp =] E3

2 Unitt cpp | Uritt b
*

-

R -
roid  fastcall TrForml: :HelplndexExecute (TChject *3ender)
i

These lines define the

command and data
arameters of the
elpGommand method

const static int HELP_TAB = 15; j/— of TApplication
const static int IMDEX ACTIVE = -Z: ] i
This says to display the
ipplication->HelpCommand {HELP TAE, TNDEX ACTIVE) ; Help dla|0§_WITh the
) index tab displayed.
e
RE R - _>IJ

| 39: 50 |Modified

|Insert o

That's it for the Help|Index command.



Creating an About box

Many applications include an About box which displays information on the product such as the name, version, logos, and may
include other legal information including copyright information.
We've already set up a Help About command on the action list.

To create an About box:

1. Choose File|New to display the New Items dialog box and select the Forms tab.



7 Hew ltems

Businesz ]

l Dialogs ]

Projects ] [ ata Modules ]
M e ] kvl ] b uilitier ] Project] Farms
BT = .
Dual izt box  Cluick Feport QuickReport QuickReport
M azter/Detail Labels

Tabbed pages

o Copy i |nherit

i Lsze

Lizt

1]

Caricel

Help

2. On the Forms tab, choose About Box.

A new form is created that simplifies creation of an About box.

The New ltems dialog box is also called the
Objact Repository.

When you're creating an item based on
one from the Object Repository, you can
copy, inherit, or use the item:

Copy (the default) creates a copy of the
item in your project. Inherit means changes
to the object in the repository are inherited
by the one in your project. Use means
changes to the object in your project are
inherited by the object in the repository.



Copyright

Comments

Praduct Mame

Wersion

A standard About box is
created when you choose
FilelNew and click About Box
on the Forms tab, You can

_ modify it as you like to

.- describe your application.

Fanell: TFanel

3. Select the following TLabel items in the About box and change them in the Object Inspector:

o Change Product Name to Text Editor.

o Make it Version 1.0.
o Enter the year next to Copyright.
4. Select the form itself and change its Caption in the Object Inspector to About Text Editor.

Tip: The easiest way to select the form is to click on the grid portion.



o o

Save the About box form by choosing File|Save As and saving it as About.cpp.
In the C++Builder editor, you should have three files displayed: Unitl.cpp, Unitl.h, and About.cpp. Click on the Unitl.cpp tab.
Add an include statement for the About unit to Unitl. Choose File|Include Unit Hdr and then select About and click OK.

Notice that #include About.h has been added to the top of the .cpp file.



Click on the tab to display a file associated with a unit. If you open
other files while working on a project, additional tabs appear on the

editor.
B Unit1.cpp _ I:Il x
0
Unitl.cpp WUHRTH] ﬁhuutcppl v
fr—a— el

ginclude «vel. h>
#pragma hdrstop

Hinclude "Unitl.h™
#include "ibout.h™

A e e e e e e e e
~_fastcall TForml::TForml iTComponent® Owner) -

0 I _IJ
2 8 Modfied Irsert

When you create a new form for your application, you need to add it to the
main form. Choose Filslinclude Unit Hdr and select the header to add,




8. On the action list, double-click the HelpAbout action to create an event handler.
9. Right where the cursor is positioned in the text editor, type the following line:
10. AboutBox->ShowModal();

11.

This code opens the About box when the user clicks Help|About. ShowModal opens the form in a modal state. That means
the user can't do anything until the form is closed.

Completing your application

The application is almost complete. However, we still have to specify some items on the main form. To complete the application:

1. Locate the main form (press F12 to quickly find it).

2. Check that focus is on the form itself, not any of its components. The top list box on the Object Inspector should say Form1: TForm1. (If
it doesn't, select Form1 from the drop down list.)



Object Inspector | Check here to make sure focus is on the

Foml: TPomle——— = main form. If it's not, select Form1 from the
: — drop down list.
Properties Events 1

Oréctreate =
UnCanFHesize

OnClick

OnCloze

OnClosed ey -
O mCorstrained!

OnContextFop Double-click here to create an event handler

OnCreate FormCreate @| <4———  for the form's OnCreate event.
UrDBICTek.

OnD eactivate

OnDestroy
OnDockDmop |

Al zhawh

3. Inthe Events tab, double-click OnCreate to create an event handler that describes what happens when the form is created (that is, when
you open the application).
4. Right where the cursor is positioned in the text editor, type the following lines:

5. Application->HelpFile = ExtractFilePath(Application->ExeName) + "TextEditor.hlp";
6. FileName = "Untitled.txt";

7.  StatusBar1->Panels->ltems[0]->Text = FileName;






8. RichEdit1->Clear();

This code initializes the application by associating a Help file, setting the
value of FileName to untitled.txt, putting the filename into the status bar,

and clearing out the text editing area.

9. Put the .HLP file and the CNT file into the project application directory (called
projects\TextEditor).

Note: If you decided not to investigate how to create a Help file or use
the sample one provided on the web, the application still works but you'll
receive an error message when you choose either of the Help

commands or click Help on the toolbar.

10. Press F9 to run the application.

You can test the Text Editor now to make sure it works. If errors occur, click on
the error message and you'll go right to the place in the code where the error
occurred.

Congratulations! You're done.



Chapfter 4
Programming with C++Builder

The following sections provide an overview of software development with
C++Builder and describe features that are not covered earlier in this Quick
Start.

Development tools and features

The integrated development environment (IDE) includes the Form Designer,
Object Inspector, Component palette, Project Manager, ClassExplorer, Code
editor, Data Module Designer, software localization tools, debugger, and many
other tools. The particular features and components available to you will depend
on which version of C++Builder you've purchased.

All versions of C++Builder support general-purpose 32-bit Windows
programming, multithreading, COM (Component Object Model) and Automation
controllers, and multiprocess debugging. Some versions add support for server
applications such as COM servers and Web applications, database
development with report and chart generation for a variety of DBMS back ends,
support for SQL database servers (such as Oracle 8 and InterBase), Microsoft
Transaction Server (MTS), multi-tiered database applications, CORBA, and
decision-support systems. For up-to-date product information, refer to

www.borland.com or contact your Inprise distributor.
Using the VCL

C++Builder comes with components that are part of a class hierarchy called the
Visual Component Library (VCL). The VCL includes objects that are visible at
runtime--such as edit controls, buttons, and other user-interface elements--as
well as nonvisual controls like datasets and timers.

The diagram below shows some of the principal classes that make up the VCL.



TObject

Eme!:aticun TStre'am TPersistent TCclranbject Tl nter&ac}e

TGraphitlﬁsObject TGraplhic TComponent TGoIIelctian TStrilngs

TﬂppliJ}atian TDat!aSet TMe|nu TControl TCommanDialag TFi:LId

I I
TGraphicControl TWinCTntroI

TSc rollingWilLControl TCustonLControl

TCustomForm Most visual controls
mheit from TWmControl

Objects descended from 7Component have properties and methods that allow

them to be installed on the Component palette and added to C++Builder forms.
Because VCL components are hooked into the IDE, you can use tools like the
Form Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are
preprogrammed to respond to mouse clicks by firing OnClick events. If you use
a VCL button control, you don't have to write code to handle Windows
messages when the button is clicked; you are responsible only for the
application logic that executes in response to the event.

Most versions of C++Builder come with complete source code for the VCL.
For more information...

See "Visual Component Library Reference" and "Creating Custom

Components" in the online Help.
Exception handling

C++Builder's error-handling is based on exceptions, which are special objects
generated in response to unanticipated input or faulty program execution.
Exceptions can be thrown at both design time and runtime, and the VCL

contains many exception classes that are associated with specific error



conditions. In your applications, you'll want to write exception handlers to deal
gracefully with runtime errors. Exceptions can also be a valuable debugging
tool, since the class of an exception often provides a clue about what caused it

to be thrown.
For more information...

See the entries for "Exception" and its specialized descendant classes in the

online VCL reference. Look up "exception handling" in the Help index.
Database connectivity and utilities

C++Builder and the VCL offer a variety of connectivity tools to simplify the
development of database applications. The Borland Database Engine (BDE) is
a collection of drivers that support many popular database formats, including
dBASE, Paradox, FoxPro, Access, and any ODBC data source. SQL Links
drivers, available with some versions of C++Builder, support servers such as
Oracle, Sybase, Informix, DB2, SQL Server, and InterBase.

C++Builder includes components that you can use to access data through
InterBase Express (IBX). IBX applications provide access to advanced
InterBase features and offer the highest performance component interface for
InterBase 5.5 and later.

IBX is based on the custom data access C++Builder component architecture,
and is integrated with the Data Module Designer. IBX is compatible with
C++Builder's library of data-aware components, and does not require the BDE.
You can create database tables at design time in the Form Designer. First,
create field definitions using the Object Inspector, then right-click on the table
component and choose Create Table.

Some versions of C++Builder include components to connect to databases
using ActiveX Data Objects (ADO). ADO is Microsoft's high-level interface to
any data source, including relational and non-relational databases, email and

file systems, text and graphics, and custom business objects.

For more information...



See "Developing Database Applications" in the Developer's Guide or online

Help.
BDE Administrator

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set

up the aliases used by data-aware VCL controls to connect to databases.
For more information...

Start the BDE Administrator from the C++Builder program group under the

Windows Start menu. Then choose Help|Contents.
SQL Explorer (Database Explorer)

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can
use it to create database aliases, view schema information, execute SQL

queries, and maintain data dictionaries and attribute sets.
For more information...

From the C++Builder main menu, choose Database|Explore to open the
Explorer; then press F1. Or search for "Database Explorer" in the main Help

index.
Database Desktop

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox

and dBase database tables in a variety of formats.
For more information...

Start the Database Desktop from the C++Builder program group under the

Windows Start menu. Then press F1.

Data Dictionary



The Data Dictionary provides a customizable storage area, independent of your
applications, where you can create extended field attribute sets that describe
the content and appearance of data. The Data Dictionary can reside on a

remote server for additional sharing of information.

For more information...

Search for "Data Dictionary" in the Help index.

Types of development projects

You can use C++Builder to write Windows GUI applications, console
applications, service applications, dynamic-link libraries (DLLs), packages (a

special type of DLL used by C++Builder), and other programs.

Applications and servers

C++Builder has features that make it easy to write distributed applications,
including client/server, multi-tiered, and Web-based systems. In addition to
support for standards like COM and a suite of Internet components, some

versions of C++Builder provide extensive tools for CORBA development.

For more information...

See "Building applications, components, and libraries" and "Developing

distributed applications" in the Developer's Guide or online Help.

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can
be called by applications and by other DLLs. Since a DLL contains sharable

code or resources, it is typically used by more than one application.

For more information...

Search for "DLLs" in the Help index.



Custom components and packages

A packageis a special dynamic-link library used by C++Builder applications, the
IDE, or both. While packages can be used in a variety of ways, their most
common purpose is the encapsulation of C++Builder components. In fact, all
components installed in the IDE must be compiled as packages.

The components that come with C++Builder are preinstalled in the IDE and
offer a range of functionality that should be sufficient for most of your
development needs. You could program with C++Builder for years without
installing a new component, but you may sometimes want to solve special
problems or encapsulate particular kinds of behavior that require custom
components.

Custom components supplement the VCL while promoting code reuse and
consistency across applications. Many C++Builder components are available
through third-party developers, and C++Builder provides a New Component

wizard that makes it easy to create and install components on your own.
For more information...

See "Creating Custom Components" in the Developer's Guide or online Help.

Search for "packages" in the Help index.
Frames

A frame (7Frame), like a form, is a container for other components. In some
ways, a frame is more like a customized component than a form. Frames can
be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created
and saved, it continues to function as a unit and to inherit changes from the
components (including other frames) it contains. When a frame is embedded in
another frame or form, it continues to inherit changes made to the frame from

which it derives.

For more information...



Search for "frames" and "TFrame" in the Help index.
COM and ActiveX

C++Builder supports Microsoft's COM standard and provides wizards for
creation of ActiveX controls. Sample ActiveX controls are installed on the
ActiveX page of the Component palette. Numerous COM server components
are provided on the Servers tab of the Component palette. You can use these
components as if they were VCL components. For example, you can place one
of the Microsoft Word components onto a form to bring up an instance of

Microsoft Word within an application interface.
For more information...

Search for "COM" and "ActiveX" in the Help index.
Type libraries

Type libraries are files that include information about data types, interfaces,
member functions, and object classes exposed by an ActiveX control or server.
By including a type library with your COM application or ActiveX library, you
make information about these entities available to other applications and
programming tools. C++Builder provides a Type Library editor for creating and

maintaining type libraries.

For more information...

Search for "type libraries" in the Help index.
Deploying applications

When you deploy an application, be sure to supply all the required files--
including executables, DLLs, packages, and BDE drivers--to your users. To
make this process easier, C++Builder includes a special version of InstallShield

Express, a popular tool for developing installation utilities.



For more information...
Search for "deploying applications" in the Help index.
Internationalizing applications

C++Builder offers many features for internationalizing and localizing
applications. Support for input method editors (IMEs) and extended character
sets is provided throughout the VCL, and tools like the Resource DLL wizard
make it easy to prepare a project for localization. To get the maximum benefit
from these features, you need to start thinking about internationalization
requirements as early as possible in the development process.
The Integrated Translation Environment (ITE), available in some versions of
C++Builder, is a suite of tools for software localization and simultaneous
development for different locales. It is integrated with the IDE to let you manage
multiple localized versions of an application as part of a single project.
The ITE includes three tools:

« Translation Manager, a grid for viewing and editing translated resources

« Translation Repository, a sharable database for translations
o Resource DLL wizard, a DLL wizard that generates and manage resource DLLS



