1. INTRODUCCIÓN

En la industria avícola el desafío actual es desarrollar sistemas de producción ético – económico sustentables. Los factores de producción que se estudia en avicultura como son los del medio ambiente que relaciona a la temperatura, ventilación, humedad, iluminación, ruido y otros factores como la alimentación y sanidad; hacen que manejados adecuadamente, sean los indicadores del bienestar animal y lo que al final de la producción puedan garantizar altos o bajos rendimientos debido a la ganancia de proteína durante su desempeño productivo.

La iluminación como factor ambiental importante, influye sobre el rendimiento productivo, el manejo o sobre el comportamiento de las aves criadas en sistemas intensivos dando como resultado que al final de la producción se obtenga altos o bajos pesos.

El programa de iluminación utilizada en esta investigación, comprende proveer al ave un tipo de luz, una potencia especifica y la cantidad de horas luz proporcionadas por la noche, para estimular al sistema nervioso del ave y a partir de este estimulo permitir a los animales realizar las actividades nocturnas como la capacidad de distinguir objetos muy próximos entre sí como es encontrar el alimento, agua y moverse dentro del galpón.

La creciente preocupación del consumidor como del productor avícola por obtener pollos sanos, hace que cada día se mejoren los parámetros de producción en las granjas avícolas, tendiendo a bajar la conversión alimenticia, aumentar el peso final de la camada, y reducir considerablemente los costos de producción.

La existencia de una adecuada luminosidad en el manejo de estos animales es el objetivo de esta investigación para encontrar sus relaciones con la alimentación, ganancia de peso, conversión alimenticia y si es posible minimizar costos de energía eléctrica y obtener máximas producciones.

Con la realización de este tema de investigación, pretendemos contribuir a los avicultores un conocimiento claro de que tipo de luz y que intensidad luminosa, es la mejor para el bienestar de las aves criadas en sistemas intensivos.

1.1. OBJETIVOS

1.1.1. OBJETIVO GENERAL

Determinar que tipo de luz y que potencia mejora la producción de pollos de engorde de la línea Ross.

1.1.2. OBJETIVOS ESPECIFICOS

- Evaluar cual de los dos tipos de luz es óptimo para la crianza de pollos de engorde de la línea Ross.
- Establecer cual de las cuatro potencias de luz utilizadas es la mejor para la crianza del pollo de engorde de la línea Ross.
- Comparar los resultados obtenidos con los índices de eficiencia europeo y americano.
- Analizar los costos de producción para cada tratamiento con los costos de producción en planteles avícolas con tecnología tradicional.

1.2. HIPÓTESIS PLANTEADA

Los tipos de luz y sus potencias, aplicados en programa de iluminación nocturna, provocan igual rendimiento productivo en pollos de engorde de la línea Ross.

2. REVISIÓN DE LITERATURA

2.1. ANATOMÍA OCULAR DE LAS AVES

2.1.1 Ojo

Ocupa casi por completo la órbita. Tiene forma ovalada por la tensión que genera el anillo escleral. Posee varios accesorios encargados de diversas tareas como protección, transmisión de información nerviosa, alimentación, mantenimiento de la forma, etc (Quiles, 2005).

2.1.2. Córnea

Esta en la parte anterior y es el segmento pequeño de la esfera (de menor radio) delgada e incurvada, es la porción transparente del ojo. El pecten, que es un pliegue lleno de vasos sanguíneos que se localiza en la córnea y que ayuda a que tengan una visión a larga distancia sumamente nítida (Quiles, 2005).

2.1.3. Esclerótica

Llamado también "blanco del ojo", es el segmento mayor (también de radio mayor), esta en la parte posterior, reforzada por una capa de cartílago transformada en un anillo de huesecillos junto al perímetro de la córnea. No existe tapetum lucidum (responsable del brillo) en los animales cuando se les dirige una luz en la oscuridad (Quiles, 2005).

2.1.4. Túnica vascular

Es la parte donde se dispone la coroides, el cuerpo ciliar y el iris (Quiles, 2005).

2.1.4. Retina

Llamada "túnica nerviosa" no posee vasos sanguíneos y presenta como característica una elevada cresta o pecten sobre el disco óptico proyectada al cuerpo vítreo. Esta cresta tiene muchos vasos sanguíneos y se cree nutren la retina. De los músculos extraoculares falta el retractor del globo ocular (Quiles, 2005).

La capa mas externa de la retina es el *epitelio pigmentado*, que se encuentra entre la membrana elástica de las coroides y las *partes nerviosas* (bastones y conos) de la retina. Es el origen del nervio óptico y contiene los *conos y bastones* receptores de los *estímulos nerviosos* (Quiles, 2005).

Estos estímulos recibidos en la retina llegan por el nervio óptico hasta el cerebro, donde se interpretan como imágenes visuales. La situación lateral de los ojos en las aves les permite un campo de visión de 300°, pero su cobertura es mucho más pequeña en la zona binocular que los predadores carnívoros que tienen los ojos situados frontalmente. Por otra parte, la visión en color de las aves es particularmente buena (las especies diurnas, como la gallina, posee más conos que bastones) (Quiles, 2005).

2.1.5. Humor vítreo

Se encuentra en el interior de la porción posterior del ojo, posee una materia gelatinosa, también llamado como cuerpo vítreo (Quiles, 2005).

2.1.6. Cristalino

Es un órgano con forma de lente biconvexa, se encuentra delante del humor vítreo (Quiles, 2005).

2.1.8. Cuerpo Ciliar

Se extiende en la porción periférica del cristalino, el cual contiene los procesos filiares por los que la coroides se une con el cristalino y al músculo ciliar el cual se extiende desde las coroides hasta la aserción del iris en la unión corneoescleral (Quiles, 2005).

2.1.9. Iris

Tiene musculatura estriada al igual que los músculos ciliares y el dilatador de la pupila; por tanto, el ave ante un estímulo de luz directa puede controlar la contracción o diámetro de la pupila. Este, además es una estructura pigmentada del ojo que forma una cortina para regular la cantidad de luz que ha de entrar en el ojo (Quiles, 2005).

2.1.10. Pupila

Es el orificio situado aproximadamente en el centro del iris, cuyo tamaño varía dependiendo de dos clases músculos lisos, uno esta formado por fibras circulares que circunscriben la pupila a la manera de un esfínter, mecanismo inervado por la porción parasimpático del nervio motor ocular común (Quiles, 2005).

2.1.11. Cámara anterior

La porción de ojo entre la pupila y el cristalino queda incompletamente divida en dos partes por el iris. La porción comprendida entre éste y la córnea se conoce como cámara anterior.

2.1.12. Cámara posterior

Es el espacio comprendido entre el iris y el cristalino

(Quiles, 2005).

2.1.13. Fóvea o mancha amarilla

Es una pequeña depresión, poco profunda, situada en la retina donde solo hay un tipo de células nerviosas: los conos. Es el área de mayor agudeza visual ya que aquí se concentran las imágenes procedentes del centro del campo visual (Quiles, 2005).

2.1.14. Punto ciego

Es el punto de unión entre la retina y el nervio óptico. Se llama así porque esta zona no es sensible a la luz (Quiles, 2005).

2.1.14. Humor acuoso

Es el líquido contenido entre las dos cámaras anteriores y comunica libremente de una cámara a otra por el orificio pupilar. Además drena desde la cámara anterior del ojo hacia la circulación venosa por medio de los *plexos vasculares* localizados en la unión corneoescleral cerca del punto de unión del cuerpo ciliar en la base del iris (Quiles, 2005).

2.2. FISIOLOGÍA OCULAR

Para que un animal pueda "ver" cualquier cosa que se halle en su campo visual, es necesario que entre luz a los ojos y se forme una imagen en la retina. Esto estimula los bastoncitos y conos (receptores sensoriales) lo que da como resultado la transmisión de impulso hacia la corteza del cerebro. Al pasar del aire a los ojos, los rayos de luz son *refractados* (desviados) y desacelerados en caso de que entren *oblicuos*. Los rayos de luz que entran perpendicularmente al ojo como lo que ocurre con los que llegan a su centro, no sufren refracción pero si son desacelerados (Smith, 1992).

El grado de desviación de los rayos no perpendiculares depende del ángulo de incidencia de las ondas luminosas en el ojo y "del índice de refracción" de cada parte del ojo. Es decir, cada uno de los medios por los que pasan las ondas de luz provoca un grado distinto de desviación. La mayor parte de la refracción ocurre al pasar la luz por la córnea, debido a que hay una diferencia mayor entre el índice de refracción del aire y el de la interfase de la córnea que la que hay entre otros medios refractores del ojo (Smith, 1992).

Por otro lado, cuanto mas convexa sea una superficie, mayor será la desviación. También hay refracción al pasar los rayos de luz desde el humor acuoso hacia la superficie anterior del cristalino, y de nuevo en la superficie posterior de éste al pasar los rayos hacia el menos denso humor vítreo (Smith, 1992).

De este, modo la córnea, el humor acuoso, el cristalino y el humor vítreo desvían conjuntamente los rayos luminosos que entran, en grado y dirección que dependen de su respectiva densidad y curvatura (Smith, 1992).

Se dice que el ojo normal *relajado es emétrope*. Es decir, la refracción normal desvía la luz lo suficiente para dirigirla a un foco limitado en la retina cuando la luz proviene de un objeto localizado a seis metros o mas de distancia; así, los rayos de luz son casi paralelos. Cuando el objeto está a menos de seis metros, los rayos de luz que entran al ojo son divergentes y, por lo tanto, ocurre acomodación o cambio de forma en el cristalino, para llevar la imagen foco en la retina (Smith, 1992).

La capacidad de acomodación disminuye con la edad, ya que el cristalino se vuelve menos elástico y, por lo tanto, no puede aumentar su curvatura lo suficiente para su visión de cerca, trastorno que se conoce como *presviopia* o vista cansada (Smith, 1992).

La luz debe pasar por diversas capas de la retina para llegar hasta los bastoncitos y conos, que están cerca de la coroides y la esclerotina. Este epitelio pigmentado no tiene melanosomas en la zona del tapetum lucidum, de tal manera que la luz que llega al tapetum se refleja y regresa a través de los fotorreceptores lo cual puede mejorar la capacidad visual en condiciones e baja intensidad luminosa. Una vez que los fotorreceptores son estimulados, los impulsos que se generan viajan de regreso por las capas de células retinianas hacia el humor vítreo), y finalmente hacia el interior del nervio óptico por sinapsis adecuadas (Smith, 1992).

El proceso de transmisión retiniana, por lo menos cinco tipos de células funcionales de las diversas capas en la retina pueden influir en la recepción y transmisión de impulsos nerviosos: células receptoras (bastoncitos y conos), células bipolares, células ganglionares, células horizontales y células amacrinas. Los bastoncitos son más sensibles a la luz que los conos, y se encuentran por toda la retina. Son funcionalmente más importantes para la percepción visual cuando la luz es de baja intensidad, como en el crepúsculo y al amanecer. Los conos no son tan sensibles a la luz como los bastoncitos, y son funcionalmente, mas importantes cuando la intensidad luminosa es alta, como sucede en el día (Smith, 1992).

Los conos también son responsables de la visión del color en los animales que poseen ese poder de discriminación Las reacciones fotoquímicas que ocurren en los segmentos externos de los bastoncitos y conos son importantes para explicar la forma en que la energía luminosa se traduce en impulsos nerviosos debido a cambios en el potencial de la membrana de estas células receptoras. Los bastoncitos y conos contienen pigmentos que sufren cambios químicas en presencia de la luz, dichas reacciones se denominan fotoquímicas, la única diferencia entre las propiedades fotoquímicas de los bastoncitos y la de los conos son las *opsinas* (fracción proteinita de los pigmentos) del pigmento (Smith, 1992).

En los pigmentos esta la *rodopsina*, y en los conos hay tres tipos de *fotopsinas*, que difieren de la *rodopsina* solo en su reacción o su sensibilidad a diversas longitudes de onda de la luz, en todo lo demás son idénticas a la *rodopsina* (Smith, 1992).

La rodopsina (también llamada *púrpura visual*) es una combinación de *escotopsina* (una proteína) y el pigmento carotenoide denominado *cisretineno*. En presencia de la luz, l rodopsina absorbe esta y comienza a descomponerse, cambia todo el cis-retineno a la forma *trans*. Esto ocurre mediante pasos intermedios de formación de *lumirrodopsina* y *metarrodopsina*, de las cuales se separan escotopsina y transretineno. Este proceso ocurre como estimulo para la generación de cambios de potencial de las membranas de los bastoncitos, lo que da por resultado la transmisión de impulsos al cerebro (Smith, 1992).

Todo el trans-retineno es transformado en cis-retineno por una enzima isomeraza. Entonces el cis-retineno se recombina con la escotopsina para formar nuevamente rodopsina, lo que reconstruye esta sustancia. El retineno se sintetiza a partir de la vitamina A, y la rodopsina se sintetiza en ausencia relativa de luz. Los ojos son capaces de adaptarse a niveles altos y bajos de intensidad luminosa (Smith, 1992).

2.3. MANEJO DE LA LUMINOSIDAD

2.3.1. ALGUNOS HECHOS DE LA LUZ

La luz natural es proporcionada por el sol. La potencia de los rayos solares varía día con día como resultado de su posición, el nublado, polvo, humedad del aire y algunos otros factores. Sin embargo, la duración de la luz del día también varía (Lewis 1998).

El alto grado de agudeza y sensibilidad visual que poseen las aves cobra especial importancia en aquellas que son explotadas en sistemas intensivos, ya que se trata de ambientes controlados donde la luz, entre otros factores, puede ser manejada por el hombre (Lewis 1998).

La iluminación puede influir sobre la salud, el bienestar animal, el rendimiento productivo, el manejo o sobre el comportamiento, provocando a lo largo de la producción, cambios hormonales (Lewis 1998).

Se sabe que el núcleo supra-quiasmático del hipotálamo, dirige y ajusta, directa o indirectamente, todos los ritmos diarios, a partir del estímulo luminoso de la retina, y la hipófisis produce una hormona, melatonina, en respuesta a la oscuridad, que se considera esencial para la salud celular y la respuesta inmunitaria (Lewis 1998).

2.3.2 INFLUENCIA DE LA POTENCIA DE LA LUZ EN LA CRIANZA DE AVES

Las aves tienen una mayor proporción de conos que bastones en la retina, por lo que tienen una mejor visión diurna que nocturna. Generalmente al pollo de carne se le a criado a bajas potencias de luminosidad con el fin de disminuir su actividad y de esta manera aumentar sus rendimientos y ganancia de peso medio diario (Lewis 1998).

2.3.3 TIPOS DE LUZ UTILIZADAS EN LA INVESTIGACIÓN

2.3.3.1. INCANDESCENTE.- Se produce mediante el calentamiento de un dispositivo metálico, hasta ponerlo a rojo blanco mediante el paso de la corriente eléctrica produciendo una luz de color amarillo y cálido.

Se genera dentro de una bombilla de vidrio relleno de gas noble que evita el calentamiento del filamento de tungsteno y se volatilice por las altas temperaturas que alcanza. Su eficiencia es baja, ya que solo convierte en trabajo (luz visible) alrededor del 15% de la energía consumida. Otro 25% es transformado en energía calorífica y el 60% restante en ondas no perceptibles (Luz U.V. e infrarroja) que acaban convirtiéndose en calor. (Lewis 1998).

Características:

- ♦ Es más barata en su instalación.
- ♦ Eficacia de luz baja.
- ♦ Vida corta de 750 a 1 000 horas.

2.3.4.2. FLUORESCENTE.- Se produce cuando al pasar corriente eléctrica a través de ciertos gases (Neón, Argón y Mercurio), emiten radiación en forma de luz visible casi sin desprender calor. La luz fluorescente es suave y difunde bien sobre un área más grande que la incandescente, produciendo virtualmente luz sin sombra. Está formada por un tubo o bulbo fino de vidrio que en su interior posee una sustancia que contiene fósforo, una pequeña cantidad de vapor de Mercurio, un gas inerte que habitualmente es Argón o Neón, produciendo una luz fría. (Lewis 1998)

Características:

- Aportan más luminosidad con menos watt de consumo.
- Tienen bajo consumo de corriente eléctrica.
- Poseen una vida útil de 5 000 9 000 horas.
- Tienen poca pérdida de energía en forma de calor.

(Lewis 1998)

2.3.5. DISTRIBUCIÓN DE LUMINOSIDAD

2.3.5.1. Ubicación de los focos.- Los focos deben situarse lo más cerca posible del área de desarrollo del ave y sin que incomode al galponero en las actividades diarias. Estos deben estar colocados generalmente entre 1,80 m a 2,40 m de altura desde el suelo. Se debe evitar la suspensión de los focos mediante un cordón ya que el viento moverá a los focos causando sombras sobre las aves que a la final esto las asusta (Avícola Metrenco - Chile 2000).

- **2.3.5.2. Distribución de los focos.-** La distancia entre focos debe ser uniforme diseñando de una o dos hileras de luces en el galpón para distribuir mejor la luz a nivel del piso (Avícola Metrenco Chile 2000).
- **2.3.5.3. Potencia de los focos.-** El uso de potencias no apropiadas puede generar falta o exceso de estímulo al lote afectando a su rendimiento productivo (Avícola Metrenco Chile 2000).

Datos encontrados en la literatura científica recomiendan que se utilice focos de entre 25 a 60 watts por cada 15 - 20 metros cuadrados de superficie ocupada; potencias que en esta investigación junto a otras, se procedieron a investigar en el desarrollo productivo del ave (Avícola Metrenco - Chile 2000).

3. MATERIALES Y MÉTODOS

3.1. CARACTERÍSTICAS DEL ÁREA DE ESTUDIO

Provincia: Imbabura

Cantón: Urcuquí

Parroquia: Tumbabiro

Lugar: Cuatro Esquinas

Latitud: 0°22' Norte

Longitud: 78°33' Oeste

Altitud: 1 800 m.s.n.m

Temperatura Mínima: 9,8 °C.

Temperatura Media: 17 °C.

Temperatura Máxima: 22,2 °C.

Precipitación: 582,2 mm.

Humedad relativa: 68,9 %

3.2. MATERIALES, EQUIPOS E INSUMOS

3.2.1. Material Experimental

- (1) Pollos de un día de edad
- (2) Focos Incandescentes de 25, 40, 60, 100 watts
- (3) Focos Fluorescentes de 5, 7, 11, 20 watts

3.2.1. Materiales

Bebederos de galón y automáticos.

Comederos de tolva

Bandejas de cartón.

Cortinas

Aserrín.

Malla

3.2.2. Equipos

Criadoras.

Termómetro

Balanza.

Bomba de mochila

3.2.3. Insumos

Balanceado Comercial.

Desinfectantes y vitaminas.

Vacunas para Bronquitis, New-Castle, y Gumboro.

3.3. MÉTODOS

3.3.1 FACTORES EN ESTUDIO

FACTOR A: TIPO DE LUZ $(\mbox{$\ell$})$

 ℓ 1: Incandescente (amarilla).

12: Fluorescente (blanca).

FACTOR B: POTENCIA (p)

p 1: 25 watts incandescente = 5 watts fluorescente

p 2: 40 watts incandescente = 7 watts fluorescente

p 3: 60 watts incandescente = 11 watts fluorescente

p 4: 100 watts incandescente = 20 watts fluorescente

TESTIGO: Luz Natural

3.3.2. TRATAMIENTOS

Tratamientos de los factores: Dos tipos de luz, por cuatro diferentes potencias y un testigo absoluto resultando un total de nueve tratamientos.

Cuadro 1. Descripción de los tratamientos

TRATAMIENTOS	CÓDIGO	DESCRIPCIÓN
T1	ℓ1 p1	Luz incandescente de 25 watts
T2	ℓ1 p2	Luz incandescente de 40 watts
Т3	ℓ1 p3	Luz incandescente de 60 watts
T4	ℓ1 p4	Luz incandescente de 100 watts
T5	ℓ2 p1	Luz Fluorescente de 5 watts
T6	ℓ2 p2	Luz Fluorescente de 7 watts
T7	ℓ2 p3	Luz Fluorescente de 11 watts
Т8	ℓ2 p4	Luz Fluorescente de 20 watts
T9	Testigo	Luz Natural o Solar

3.4. DISEÑO EXPERIMENTAL

Se utilizó un Diseño Completamente al Azar (DCA) con 9 tratamientos y 3 repeticiones, en arreglo factorial A x B +1; donde el factor A corresponde al tipo de luz, el factor B corresponde a la potencia de luz y +1 fue el testigo, sin iluminación artificial.

3.4.1. CARACTERÍSTICAS DEL ENSAYO

Tratamientos: 9
Repeticiones: 3
Total de unidades experimentales: 27
Área Total del Ensayo: 105 m².

3.4.2. CARACTERÍSTICAS DE LA UNIDAD EXPERIMENTAL

Largo: 3 mAncho: 1 mÁrea total de la unidad: 3 m^2

Numero de aves por unidad: 30 pollos (15 machos, 15 hembras)

3.4.2. ANÁLISIS ESTADÍSTICO

Cuadro 2. Esquema del análisis de varianza (ADEVA)

Fuente de Variación	GL
TOTAL	26
TRATAMIENTOS	8
TIPO DE LUZ (1)	1
POTENCIA (p)	3
ℓ x p	3
Testigo vs resto	1
Error Experimental.	18
CT LOV	

CV %

3.4.4. ANÁLISIS FUNCIONAL

Se calculó el coeficiente de variación (C.V.) y al detectar diferencias significativas se realizo la prueba de Tukey al 5% para Tratamientos y Potencia (FB) y la prueba de DMS al 5% para tipo de luz (FA).

3.5. VARIABLES EVALUADAS

3.5.1. PESO FINAL.- Esta variable se evaluó a los 49 días de edad, para lo que se utilizó una balanza digital con la que se realizó la toma del peso de todos los pollos que se encontraron en cada unidad experimental para luego tener el peso promedio final por tratamientos y sus respectivas repeticiones.

3.5.2. Conversión Alimenticia Acumulada (C.A.Ac.).- Esta variable se evaluó a los 49 días de edad, considerando para su cálculo los kilogramos de alimento consumido durante los 49 días, el peso promedio producido a los 49 días de edad y la cantidad final de aves que se encontraron en cada unidad experimental; los cuales se detallan en la siguiente formula.

C.A.Ac.= $\frac{\text{Consumo Acumulado de Alimento (kg)}}{\text{Peso Final (kg)} \quad \mathbf{x} \quad \text{N}^{\circ} \text{ de aves vivas}}$

3.5.3. Índice de Eficiencia Europeo (I.E.E.).- Esta variable se evaluó a los 49 días de edad, para lo que se utilizó datos como el peso promedio producido a los 49 días de edad, la conversión alimenticia acumulada (C.A.Ac.) y el % de supervivencia; los cuales se detallan en la siguiente formula.

% SUPEVIVIENCIA=
$$\frac{N^{\circ} \text{ aves final}}{N^{\circ} \text{ aves inicial}} \times 100$$

3.5.4. Índice de Eficiencia Americano (I.E.A.).- Esta variable se evaluó a los 49 días de edad, utilizando para este cálculo el peso promedio a los 49 días y la conversión alimenticia acumulada.

I. E. A. =
$$\frac{\text{Peso Promedio (kg)}}{\text{Conversion alimenticia}} \times 100$$

3.5.5. Análisis Económico.- Se evaluó después de haber vendido todos los pollos y obtener la cantidad de kilos totales por cada tratamiento, mediante un listado de ingresos-egresos de cada tratamiento y así obtener el costo de un kilo de pollo vivo producido.

3.6. MANEJO ESPECÍFCO DEL EXPERIMENTO

3.6.1. Diseño de las Unidades Experimentales

En el interior del galpón se diseñaron 27 unidades experimentales, cada unidad tuvo un área de 3 m² (3 m de largo por 1 m de ancho); se ocupó un área total de ensayo de 105 m² (gráfico 2 del anexo2).

Cada unidad se dividió con malla lateralmente y cortinas de color negro de 3 m de largo por 1,50 m de alto, para evitar el paso de luz de una unidad hacia otra, (gráfico 3 del anexo 2).

3.6.2. Instalaciones Eléctricas

En cada unidad experimental se distribuyó la red eléctrica, que constó de un foco fluorescente o incandescente con sus respectivas potencias de luz, distribuidas al azar y protegidos con una pantalla que fue hecha de cartón, con el fin de evitar el paso de luz a las otras unidades experimentales (gráfico 3 del anexo 2). Se instaló una caja térmica para tener una central de encendido y apagado de toda la instalación eléctrica.

3.6.3. Adquisición e instalación de materiales y equipos

Se procedió a la adquisición de equipos tales como criadoras, comederos, bebederos, entre otros, para luego proceder a la instalación de cada uno de ellos de la siguiente manera:

- Una criadora por cada seis unidades experimentales, ubicada a una altura de 2 metros desde el suelo.
- Un termómetro por cada criadora, ubicado a la altura de las aves, es decir, desde 10 cm. hasta 30 cm. del suelo.

- Por cada unidad experimental se ubicó un bebedero manual, un bebedero automático, un comedero de tolva, una bandeja de cartón, que fueron utilizados a su momento.
- Cuatro sacos de viruta por unidad experimental, donde previamente se desinfectó el suelo con cal viva (8 lb. por unidad).
- Se ubicó cortinas por fuera del galpón cubriendo bien para evitar el ingreso de aire frío al interior del galpón.

3.6.4. Adquisición de materia prima e insumos

Se procedió a la adquisición de insumos tales como balanceados, vitaminas, vacunas, entre otros, y se reservo con anticipación pollos broiler de la línea Ross con un día de nacimiento, provenientes de la empresa avícola "Vargas Velásquez" ubicada en la parroquia de Salinas, Cantón Ibarra.

3.6.5. Desinfección del galpón y equipos

Una vez que se terminó de instalar todos los equipos en cada unidad experimental, se procedió a la desinfección total del galpón, con la finalidad de prevenir el riesgo de contaminación por virus o bacterias para lo que se utilizó una bomba de mochila y formol en una dosis de 30 cc por litro de agua. Además se realizó el lavado de la tubería del sistema de bebederos automáticos con una solución de vinagre en una dosis de 12,50 cc por litro de agua, dejando en reposo durante un día para luego, al siguiente día evacuar el agua de la tubería.

3.6.6. Recepción de animales

Antes de recibir a los pollos se realizó en el interior del galpón una cámara de recepción utilizando cortinas, con el fin de acumular calor y evitar el ingreso de aire frío de la parte exterior del galpón producida por el viento.

Con 24 horas de anterioridad a la llegada de los pollos, se debe tener el galpón caliente, para lo que se utilizaron las criadoras a gas a una temperatura media de 28 ° C.

Una vez recibido a los pollos y sin sacarles de sus cajas se les colocó en hileras para aplicarles la vacuna contra Bronquitis utilizando una pequeña bomba de aspersión, con el fin de que al rociar la vacuna ingrese al cuerpo del pollo por medio de los ojos.

Después de vacunar se procedió a pesarlos para saber cual fue el peso de llegada al galpón y para luego ubicarlos en cada unidad experimental en un número máximo de 30 animales (15 hembras y 15 machos).

En cada unidad experimental se colocó bebederos manuales con agua azucarada para permitir recuperar la energía perdida de los pollos a causa del trayecto desde la incubadora hasta el lugar del galpón, además se colocó alimento inicial en las bandejas de cartón en cantidades según especifica el Anexo 3.

3.6.7. Programa de luz.

La importancia de mantener un ambiente óptimo para el pollo compromete utilizar un buen programa de luz, ya que si durante las primeras semanas de crianza, se realiza un mal manejo, es probable que al finalizar la producción, se obtenga como resultado un peso bajo y una conversión alimenticia alta. Por esta razón se estableció un programa de luz que empezó a partir de las 17:30 p.m.; ocupando un total de 245 horas de luz, como se muestra en el siguiente cuadro:

Cuadro 3. Programa de luz.

EDAD	DURACIÓ	ON (horas)	TOTAL	TOTAL	
(Días)	NATURAL	ESTIMULO	Horas LUZ por DÍA	Horas LUZ artificial UTILIZADAS	
0 - 7	12	+10	22	70	
8 - 14	12	0	12	0	
15 - 49	12	+5	17	175	
				245	

Durante la primera semana de edad, se estableció estimular a los pollos con <u>diez horas</u> de luz artificial, debido a que el pollo en sus primeros días de edad es cuando más luz necesita para desarrollar su sistema digestivo, sistema óseo, sistema inmune, la regulación de su temperatura, etc.

Durante la segunda semana de edad, se estableció de <u>no</u> <u>estimular</u> con luz artificial debido a que en esta semana presentan un desarrollo de plumaje y más no de otros sistemas fisiológicos de su cuerpo.

Desde la tercera semana hasta la séptima semana de edad, se estableció estimular con cinco horas de luz artificial debido a que en estas semanas producen proteína, pero se debe permitir a los pollos relajarse con la oscuridad para permitirle procesar su alimento y evitar problemas producidos por el exceso de actividad como la enfermedad conocida como ascitis.

3.6.8. Actividades diarias en el manejo de broiler

Las actividades diarias fueron supervisadas por medio de una registro de programación establecido (Anexo 3), donde se puede observar todas las labores como dar todos los días el tipo y la cantidad exacta de alimento, así también como proporcionar vitaminas o vacunas combinadas con agua, según el programa.

Todos los días se controló que la temperatura en el interior del galpón producida por las criadoras sea la óptima (Anexo 3), para que no exista exceso de calor y acumulación de amoniaco dentro del galpón, producido por los rayos solares, para lo que se realizó el manejo de cortinas que se detalla así:

Todas las mañanas las cortinas del exterior del galpón fueron bajadas y por la tarde fueron subidas para evitar que el interior del galpón se enfríe al extremo lo que podría ocasionar que los pollos se amontonen y dejen de comer.

Además, todos los días se controló que se cumpla el programa de iluminación (Cuadro 3) y se realicen el manejo de cortinas negras establecido de la siguiente manera:

Todas las mañanas se suban las cortinas negras de cada unidad experimental para permitir el ingreso de los rayos solares existiendo un 100% de claridad para cada unidad experimental y la salida de amoniaco. Por la tarde las cortinas negras fueron bajadas con el fin de iniciar el programa de luz artificial, que empezó a las 17:30 p.m., tal como indica el cuadro 3.

La cama fue removida cada siete días, con el fin de evitar la compactación y la presencia de enfermedades ocasionadas por la humedad de la cama como la coccidiosis.

Luego se desinfectó todo el galpón con Cid 20 en dosis de 2,5 cc por litro de agua, como se explica en la guía de manejo de broiler del Anexo 3.

Al final de cada semana se tomó el peso del 100% de las aves de cada unidad experimental, cuidando siempre de que las aves no sufran estrés producido por golpes.

4. RESULTADOS Y DISCUSIÓN

Luego de realizar las investigaciones en campo, se efectuó el análisis estadístico para cada unas de las variables propuestas, que se expresan a continuación:

4.1. PESO FINAL

Esta variable se evaluó a los 49 días de edad, tomando el peso de cada tratamiento y sus respectivas repeticiones expresadas en gramos, que se detallan en el siguiente cuadro.

CUADRO 4. Resultados de los pesos finales a la séptima semana

	REI	PETICION	CTIMA	MEDIA (gr)		
TRATAMIENTOS	R1	R2	R3	SUMA	WIEDIA (gi)	
T1	2441,333	2431,000	2419,417	7291,750	2430,583	
T2	2566,000	2567,833	2562,333	7696,167	2565,389	
Т3	2598,667	2599,333	2596,250	7794,250	2598,083	
T4	2395,000	2389,167	2409,250	7193,417	2397,806	
T5	2376,556	2368,667	2360,333	7105,556	2368,519	
T6	2548,667	2539,833	2551,917	7640,417	2546,806	
T7	2617,000	2613,333	2615,667	7846,000	<u>2615,333</u>	
T8	2529,333	2544,250	2528,417	7602,000	2534,000	
Т9	2331,889	2335,133	2329,000	6996,022	2332,007	
				67165,578	2487,614	

CUADRO 5. Análisis de varianza del peso final

FV	SC	GL	CM	F.cal.	Ftab.	
r v	SC	GL	CIVI	r.cai.	5%	1%
TOTAL	270673,81	26				
TRATAMIENTOS	269805,41	8	33725,68	699,06 **	2,51	3,71
Tipo de luz (£)	1987,24	1	1987,24	41,19 **	4,41	8,29
I. luminosa (p)	153519,34	3	51173,12	1060,70 **	3,16	5,09
£хр	32578,57	3	10859,52	225,09 **	3,16	5,09
TESTIGO vs RESTO	81720,26	1	81720,26	1693,88 **	4,41	8,29
E Exp.	868,40	18	48,25			

^{* =} significativo ** = altamente significativo

Coeficiente de Variación: C.V.= 0.28 % Media General \overline{Xx} = 2487.61

CONCLUSIÓN:

El análisis de varianza del peso final (cuadro 5), determina que existen diferencias significativas al 1% para tratamientos, Tipo de luz, Potencia y la interacción. Así mismo, entre la comparación del testigo vs el resto. El coeficiente de variación fue de 0,28 % y la media general del peso final fue de 2487, 61 gramos por animal a la séptima semana.

CUADRO 6. Prueba de tukey al 5% para tratamientos del peso final

TRATAMIENTOS	MEDIAS	RANGOS DE SIGNIFICANCIA
T7	2615,33	A
Т3	2598,08	A B
T2	2565,39	С
T6	2546,81	C D
Т8	2534,00	D E
T1	2430,58	E
T4	2397,81	E
Т5	2368,52	E
Т9	2332,01	E

En la prueba de Tukey al 5% para tratamientos (cuadro 6), se observa cinco rangos definidos, ocupando el primer rango el tratamiento T7 con el mayor peso obtenido a la séptima semana.

CUADRO 7. Prueba de tukey al 5% para potencia (FB) del peso final

POTENCIAS	MEDIAS (gr)	RANGOS DE SIGNIFICANCIA
P3 = 60 Inc / 11 Flu	2606,71	A
P2 = 40 Inc / 7 Flu	2556,10	В
P4 = 100 Inc / 20 Flu	2465,90	С
P1 = 25 Inc / 5 Flu	2399,55	D

En la prueba de Tukey al 5% para potencia (cuadro 7), se observa cuatro rangos bien definidos, ocupando el primer rango la potencia P3 que significa que focos de 60 watts de luz incandescente igual a 11 watts en luz fluorescente, fueron la mejor potencia para alcanzar mayores pesos a la séptima semana.

CUADRO 8. Prueba de DMS al 5% para tipo de luz (FA) del peso final

TIPO DE LUZ	MEDIAS (gr)	RANGOS DE SIGNIFICANCIA
FLUORESCENTE	2516,164	A
INCANDESCENTE	2497,965	В

En la prueba de DMS al 5% para tipo de luz (cuadro 8), se observa que ocupó el primer rango la luz fluorescente, con la que se alcanzó el mayor peso a la séptima semana.

4.2. CONVERSIÓN ALIMENTICIA ACUMULADA (C.A.Ac.)

Esta variable se evaluó a los 49 días de edad, donde arrojó los siguientes resultados:

CUADRO 9. Resultados de C.A.Ac. a la séptima semana

	REP	ETICIO	CTIMA	MEDIA	
TRATAMIENTOS	Ι	II	III	SUMA	MEDIA
T1	1,98	1,99	2,00	5,97	1,99
T2	1,89	1,89	1,90	5,68	1,89
Т3	1,86	1,86	1,87	5,59	1,86
T4	2,02	2,03	2,01	6,06	2,02
T5	2,05	2,04	2,05	6,14	2,05
T6	1,90	1,90	1,90	5,70	1,90
T7	1,85	1,85	1,85	5,55	<u>1,85</u>
Т8	1,91	1,95	1,93	5,79	1,93
Т9	2,07	2,07	2,08	6,23	<u>2,08</u>
				52,69	1,95

CUADRO 10.- Análisis de varianza de la C.A.Ac.

FV	SC	GL	СМ		Ftab.	
				F.cal.	5%	1%
TOTAL	0,1673	26				
TRATAMIENTOS	0,1662	8	0,0208	346,582 **	2,51	3,71
Tipo de luz (🌡)	0,0005	1	0,0005	8,723 **	4,41	8,29
Potencia luminosa (p)	0,0972	3	0,0324	540,296 **	3,16	5,09
lхр	0,0170	3	0,0057	94,413 **	3,16	5,09
TESTIGO vs RESTO	0,0515	1	0,0515	859,803 **	4,41	8,29
E Exp.	0,0011	18	0,0001			

^{* =} significativo ** =altamente significativo

Coeficiente de Variación: C.V.= 0,40 % Media General \overline{Xx} = 1,95

CONCLUSIÓN:

El análisis de varianza del la C.A.Ac. (Cuadro 10), determina que existen diferencias significativas al 1% para tratamientos, tipo de luz, Potencia y la interacción. Así mismo, entre la comparación del testigo vs el resto. El coeficiente de variación fue de 0,40 % y la media general de la C.A.Ac. fue de 1,95 kg de alimento para producir un kg de carne.

CUADRO 11. Prueba de tukey al 5 % para tratamientos de la C.A.Ac.

TRATAMIENTOS	MEDIAS	RANGOS DE SIGNIFICANCIA
T7	1,85	A
Т3	1,86	A
T2	1,89	ВС
Т6	1,90	С
Т8	1,93	D
T1	1,99	D
T4	2,02	D
Т5	2,05	D
Т9	2,08	D

La prueba de Tukey al 5% para tratamientos de la C.A.Ac.(cuadro11), permite observar cuatro rangos definidos, ocupando el primero el tratamiento T7 que presentó la menor cantidad de alimento para producir un kilogramo de carne en el animal, alcanzado a la séptima semana.

CUADRO 12. Prueba de tukey al 5% para potencia (FB) de la C.A.Ac.

POTENCIAS	MEDIAS	RANGOS DE SIGNIFICANCIA
P3 = 60 Inc / 11 Flu	1,86	A
P2 = 40 Inc / 7 Flu	1,90	В
P4 = 100 Inc / 20 Flu	1,97	С
P1 = 25 Inc / 5 Flu	2,02	D

En la prueba de Tukey al 5% para potencia (cuadro 12), se observa cuatro rangos bien definidos, ocupando el primer rango la potencia P3 que significa que focos de 60 watts de luz incandescente igual a 11 watts en luz fluorescente, fueron la mejor potencia para alcanzar un kilogramo de carne con menores cantidades de alimento alcanzados a la séptima semana.

CUADRO 13. Prueba de DMS al 5% para tipo de luz (FA) de la C.A.Ac.

TIPO DE LUZ	MEDIAS	RANGOS DE SIGNIFICANCIA
Fluorescente	1,93	A
Incandescente	1,94	В

En la prueba de DMS al 5% para tipo de luz (cuadro 13), se observa que el primer rango es para la Luz Fluorescente, que fue la mejor para alcanzar un kilogramo de carne con menores cantidades de alimento a la séptima semana.

4.3. ÍNDICE DE EFICIENCIA EUROPEO (I.E.E.)

Esta variable se evaluó a los 49 días de de edad, donde se produjeron los siguientes resultados.

CUADRO 14. Resultados de I.E.E. a la séptima semana

	REI	PETICION	ES	SUMA	MEDIA
TRATAMIENTOS	I	II	III	SUMA	MEDIA
T1	251,57	249,45	238,82	739,84	246,61
T2	268,15	268,02	266,30	802,47	267,49
Т3	285,04	285,19	274,11	844,34	<u>281,45</u>
T4	242,11	232,53	236,46	711,10	237,03
T5	238,40	236,82	235,15	710,37	236,79
T6	274,18	263,19	264,82	802,19	267,40
T7	278,99	288,27	259,14	826,41	275,47
Т8	270,03	258,01	258,43	786,47	262,16
Т9	214,12	199,15	213,59	626,85	<u>208,95</u>
				6850,04	253,71

CUADRO 15. Análisis de varianza del I.E.E.

FV	SC GL		CM	E col	Easl		ab.
r v	SC	GL	CIVI	r.cai.	F.cal.		1%
TOTAL	13906,76	26					
TRATAMIENTOS	12928,36	8	1616,05	29,73	**	2,51	3,71
Tipo de luz (🌡)	31,96	1	31,96	0,59	ns	4,41	8,29
Potencia luminosa (p)	5023,02	3	1674,34	30,84	**	3,16	5,09
lхр	1113,19	3	371,07	6,83	**	3,16	5,09
TESTIGO vs RESTO	6760,18	1	6760,18	124,37	**	4,41	8,29
EExp	978,40	18	54,36				

^{* =} significativo ** =altamente significativo **ns** =no significativo

Coeficiente de Variación: C.V.= 2,91 % Media General \overline{Xx} = 253,71

CONCLUSIÓN:

El análisis de de varianza del I.E.E. (cuadro 15), determina que existen diferencias significativas al 1% para tratamientos, Potencia, la interacción y entre la comparación del testigo vs el resto. Pero no se presentó significancia para el Tipo de Luz. El coeficiente de variación fue de 2,91 % y la media general del I.E.E. fue de 253,71.

CUADRO 16. Prueba de tukey al 5 % para tratamientos del I.E.E.

TRATAMIENTOS	MEDIAS		RANGOS DE SIGNIFICANCIA						
Т3	281,45	A							
T7	275,47	A	В						
T2	267,49	A	В	C					
T6	267,40	A	В	С	D				
Т8	262,16	A	В	С	D	Е			
T1	246,61				D	Е	F		
T4	237,03						F	G	
T5	236,79						F	G	Н
Т9	208,95								Н

La prueba de Tukey al 5% para tratamientos, (cuadro 16), permite observar ocho rangos bien definidos, ocupando el primero el tratamiento T3, que presentaron los mayores índices de eficiencia alcanzados a la séptima semana.

CUADRO 17. Prueba de tukey al 5% para potencia (FB) del I.E.E.

POTENCIAS	MEDIAS	RANGOS DE SIGNIFICANC		
P3 = 60 Inc / 11 Flu	278,46	A		
P2 = 40 Inc / 7 Flu	267,44	В		
P4 = 100 Inc / 20 Flu	249,60	С		
P1 = 25 Inc / 5 Flu	241.70	D		

En la prueba de Tukey al 5% para Factor B (cuadro 17), se observa cuatro rangos bien definidos, ocupando el primer rango la Potencia P3 que significa que focos de 60 watts de luz incandescente igual a 11 watts en luz fluorescente, fueron la mejor potencia para alcanzar mayores índices de eficiencia a la séptima semana.

4.4. ÍNDICE DE EFICIENCIA AMERICANO (I.E.A)

Esta variable se evaluó a los 49 días de edad, donde se obtiene los siguientes resultados:

CUADRO 18. Resultados del I.E.A. a la séptima semana.

	RE	PETICION	CTIMA	MEDIA		
TRATAMIENTOS	I	II	III	SUMA	MEDIA	
T1	123,270	122,23	121,058	366,56	122,19	
T2	135,925	135,86	134,988	406,77	135,59	
Т3	139,670	139,74	138,943	418,36	139,45	
T4	118,635	117,87	119,859	356,36	118,79	
T5	116,815	116,04	115,226	348,08	116,03	
Т6	134,348	133,41	134,238	401,99	134,00	
T7	141,421	141,25	140,581	423,25	141,08	
Т8	132,317	130,78	130,996	394,10	131,37	
Т9	112,411	112,60	112,132	337,14	<u>112,38</u>	
				3452,61	127,87	

CUADRO 19. Análisis de varianza del I.E.A.

FV	SC	GL	CM	F.cal.	Ftab.	
ΓV	SC	GL	CIVI	r.cai.	5%	1%
TOTAL	2748,50	26				
TRATAMIENTOS	2739,42	8	342,43	679,31 **	2,51	3,71
Tipo de luz (🌡)	15,65	1	15,65	31,05 **	4,41	8,29
Potencia luminosa (p)	1627,10	3	542,37	1075,96 **	3,16	5,09
£хр	286,35	3	95,45	189,35 **	3,16	5,09
TESTIGO vs RESTO	810,32	1	810,32	1607,51 **	4,41	8,29
E Exp.	9,07	18	0,50			

^{* =} significativo ** = altamente significativo

Coeficiente de Variación: C.V.= 0.56% Media General \overline{Xx} = 127,87

CONCLUSIÓN:

El análisis de de varianza del I.E.A. (cuadro 19), determina que existen diferencias significativas al 1% para tratamientos, tipo de luz, potencia luminosa y la interacción. Así mismo entre la comparación del testigo vs el resto. El coeficiente de variación fue de 0,56 % y la media general del I.E.A. fue de 127,87

CUADRO 20. Prueba de tukey al 5% para tratamientos del I.E.A.

TRATAMIENTOS	MEDIAS	RANGOS DE SIGNIFICANCIA
T7	141,08	A
Т3	139,45	A B
T2	135,59	С
Т6	134,00	C D
Т8	131,37	D
T1	122,19	D
T4	118,79	D
Т5	116,03	D
Т9	112,38	D

La prueba de Tukey al 5% para tratamientos del I.E.A., (cuadro 20), se observa cuatro rangos definidos, ocupando el primero el tratamiento T7, que presentó los mayores índices de eficiencia americano alcanzado a la séptima semana.

CUADRO 21. Prueba de tukey al 5% para potencia (FB) del I.E.A.

POTENCIAS	MEDIAS (gr)	RANGOS DE SIGNIFICANCIA
P3 = 60 Inc / 11 Flu	140,27	A
P2 = 40 Inc / 7 Flu	134,79	В
P4 = 100 Inc / 20 Flu	125,08	С
P1 = 25 Inc / 5 Flu	119,11	D

En la prueba de Tukey al 5% para potencia (cuadro 21), se observa cuatro rangos bien definidos, ocupando el primer rango la Potencia P3 que significa que focos de 60 watts de luz incandescente igual a 11 watts en luz fluorescente, fueron la mejor potencia para alcanzar los mayores índices de eficiencia americano a la séptima semana.

CUADRO 22. Prueba de DMS al 5% para tipo de luz (FA) del I.E.A.

TIPO DE LUZ	MEDIAS	RANGOS DE SIGNIFICANCIA
FLUORESCENTE	130,619	A
INCANDESCENTE	129,004	В

En la prueba de DMS al 5% para tipo de luz (cuadro 22), se observa que el primer rango es para la luz fluorescente, que fue la mejor para alcanzar un mayor índice de eficiencia americana a la séptima semana.

4.5. ANÁLISIS ECONOMICO

Esta variable se evaluó a los 49 días de edad, una vez que se comercializaron 789 pollos vivos (Anexo 5), obteniendo una cantidad total de 1963,877 kilos producto de la suma de de los nueve tratamientos como se explica en el Anexo 6. Este resultado fue utilizado para obtener el precio de un kilo de pollo vivo, que resulta del cálculo de los costos de materiales de experimento, consumo de alimento, mano de obra, entre otros, como se detalla a continuación:

4.5.1. COSTO DE UN KILO DE POLLO VIVO PARA EL ENSAYO

Para conseguir el precio de cada kilo de pollo vivo se realiza la depreciación de cada uno de los gastos realizados como son: Costo de Material experimental para el ensayo, Costo de consumo de alimento, Costo de Mano de Obra, Costo de Medicamentos, Costo de equipo, Costo de consumo de luz y agua. Los resultados fueron:

CUADRO 23. Costo de Material experimental para el ensayo

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO TOTAL
(1) Pollos	Unidad	810	0,50	405,00
(2) Focos incandescentes	25 watts	3	0,09	0,26
	40 watts	3	0,09	0,26
	60 watts	3	0,09	0,26
	100 watts	3	0,09	0,26
	5 watts	3	0,07	0,21
(3) Focos Fluorescentes	7 watts	3	0,07	0,22
(3) Focos Fluorescelles	11 watts	3	0,08	0,24
	20 watts	3	0,09	0,26
SUBTOTAL		·		406,96

Se utilizó dos tipos de luz y cuatro potencias, donde para cada tratamiento se emplearon 3 focos de igual potencia, además, se utilizaron 810 pollos, donde se ubicaron 90 pollos para cada tratamiento, resultando para los nueve tratamientos un valor de depreciación de **406, 96** Dólares. (Anexo 8).

CUADRO 24. Costo de consumo de alimento para el ensayo

	TIPO	DE ALIMEN	Total	COSTO	
	Inicial	Crecimiento	Engorde	kg	TOTAL
T1	81,890	242,703	105,73	430,325	184,44
T2	81,760	238,739	103,356	423,850	181,67
T3	81,958	242,703	105,732	430,393	184,47
T4	81,287	239,976	104,544	425,807	182,51
T5	82,800	245,430	106,920	435,150	186,51
T6	81,442	239,976	104,544	425,962	182,57
T7	82,105	239,976	104,544	426,625	182,86
T8	82,800	242,768	104,544	430,112	184,36
T9	75,912	223,614	97, 416	396,942	170,14
SUB	1639,53				

El costo total se obtiene de acuerdo al precio de cada saco de alimento (Anexo 5) y el cálculo del número de aves vivas por tratamiento y la cantidad de alimento por día (Anexo 3). Como resultado se obtuvo un costo total de **1639**, **53** Dólares para todo el ensayo

CUADRO 25. Costo de Mano de Obra para el ensayo

DETALLE	UNIDAD	CANTIDAD	COSTO DÍA	COSTO TOTAL
Estudiante 1	días	56	2,33	130,67
Estudiante 2	días	56	2,33	130,67
SUBTOTAL				261,34

El número de días trabajados significa siete días usados antes de la producción, donde se prepara el galpón para recibir a los pollos, más la suma de 49 días de trabajo en la producción o realización de la tesis en campo, resultando un total de 56 días, con un costo por día de 2, 33 Dólares y un costo total para dos estudiantes de **261, 24** Dólares. (Anexo 8)

CUADRO 26. Costo de Medicamentos para el ensayo

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO TOTAL
1. Vacunas				
Bronquitis	Dosis	1000	0,0035	3,50
New-Castle	Dosis	2000	0,0035	7,00
Gumboro	Dosis	1000	0,0045	4,50
2. Desinfectantes				
Frasco Cid 20	Litro	1	3,80	3,80
formol	Litro	1	2,15	2,15
Vinagre	Litro	1	2,25	2,25
Cal viva	Libra	245	0,06	14,70
3. Vitaminas				
Estrés Forte	Litro	1	14,80	14,80
Estrés Life plus	Litro	1	14,60	14,60
Enrofloxacina	Litro	1	15,80	15,80
Electro Ce	Litro	1	12,50	12,50
SUBTOTAL				95,60

Se utilizaron vacunas, desinfectantes y vitaminas, resultando un costo total de **95, 60** Dólares para todo el ensayo (Anexo 8)

CUADRO 27. Costo de Equipo para el ensayo

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO TOTAL
Termómetro	Unidad	5	0,33	1,64
Caja Térmica	Unidad	1	0,30	0,30
Boquillas	Unidad	24	0,02	0,37
Criadora (de 1000 pollos)	Unidad	5	2,01	10,07
Centralina	Unidad	1	0,22	0,22
Manguera de gas	Metro	22	0,01	0,13
Bebedero manual de galón	Unidad	27	0,08	2,14
Bebedero Automático	Unidad	27	0,21	5,66
Comederos de Tolva	Unidad	27	0,18	4,99
Balanza	Unidad	1	2,22	2,22
Cortinas	m2	230	0,02	4.96
Bomba de Mochila	unidad	1	1,29	1,29
Malla	m2	112	0,04	4.51
Tanques De Gas	Unidad	18	2,00	36,00
Bandejas De Cartón	Unidad	27	0,35	9,45
Alambre de luz Nº 12	Rollo (100 m)	1,5	30,50	45,75
Pintura negra	Galón	5	3,50	17,50
Alambre de acero inoxidable	Libra	4	0,25	1,00
Viruta	sacos	118	0,34	40,12
Pago de alquiler de galpón	pollos	810	0,08	64,80
Transporte varios	unidad			45,00
SUBTOTAL				288,65

Se utilizaron varios equipos dentro del galpón, resultando un costo total de depreciación de **288, 65** Dólares para todo el ensayo (Anexo 8).

CUADRO 28. Costo de consumo de luz para el ensayo

	POTENCIA Watts / h	1 FOCO Kw/h	USO HORAS	1 FOCO TOTAL USO Kw/h	3 FOCOS TOTAL USO Kw/h	Constante A PAGAR	TOTAL POR TRATAM.
T1	25	0,025	245	6,13	18,375	0,08	1,47
T2	40	0,040	245	9,80	29,4	0,08	2,35
T3	60	0,060	245	14,7	44,1	0,08	3,53
T4	100	0,100	245	24,5	73,5	0,08	5,88
T5	5	0,005	245	1,225	3,675	0,08	0,29
T6	7	0,007	245	1,715	5,145	0,08	0,41
T7	11	0,011	245	2,695	8,085	0,08	0,65
T8	20	0,020	245	4,9	14,7	0,08	1,18
	_	•	•		196,98		15,76

Se utilizaron 245 horas de luz (Cuadro 3), consumiendo un total de **196, 98 Kw/hora** para los nueve tratamientos con un costo total de **15,76 Dólares** por los 49 días de producción. El costo más bajo a pagar fue para el tratamiento T5 con un valor de 0,29 Dólares y el costo más alto a pagar fue para el tratamiento T4 con un valor de 5,88 Dólares, durante los 49 días de producción.

CUADRO 29. Costo de consumo de agua para el ensayo

Consumo m ³	Constante A PAGAR + impuestos	1 0	Total a pagar por TRATAM.
14	0, 35	4, 90	0,54

Se consumió un total de 14 m³ para los nueve tratamientos con un costo total de **4, 90 Dólares**, donde el costo para cada tratamiento fue de **0,54 Dólares**.

CUADRO 30. Sumatoria Costos varios para el ensayo

DETALLE	COSTO
Material experimental	406,96
Mano de Obra	261,34
Medicamentos	95,60
Equipo	288,65
consumo de luz	15,76
consumo de agua	4, 90
TOTAL	1082,69

Los costos varios resultan de la sumatoria de todos los costos anteriormente obtenidos excepto el costo de alimento, que fue sumado a parte, resultando un total de **1082, 69 Dólares** para todo el ensayo.

CUADRO 31. Costo de producción de un kilo de pollo vivo para el ensayo

Costo	Costo	Costo	Producción	Precio	Precio
Alimento	Varios	Total	kilos	kilo	libra
1639,53	1082,69	2722,22	1963, 877	1, 39	0,63

El costo de producción para cada kilo de pollo vivo, indica que fue de **1, 39 Dólares**. Resultado que se obtiene de la división del Costo Total de Producción para la Producción en Kilos.

4.5.2. COSTO DE UN KILO DE POLLO VIVO POR TRATAMIENTO

Para cada tratamiento se realizó el calculo respectivo para obtener el precio de cada kilo de pollo vivo (Anexo 6,); que resulta de la depreciación de cada uno de los gastos realizados como son: Costo de material experimental para el ensayo, Costo de consumo de alimento, Costo de mano de obra, Costo de medicamentos, Costo de equipo, Costo de consumo de luz y agua. Los resultados por tratamiento fueron:

CUADRO 32. Costo de Material experimentales por tratamiento

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	SUBTOTAL
(1) Pollos por Tratamiento	Unidad	90	0,50	45,00
	(T1) 25 watts	3	0,09	0,26
(2) Foods incondescentes	(T2) 40 watts	3	0,09	0,26
(2) Focos incandescentes	(T3) 60 watts	3	0,09	0,26
	(T4) 100 watts	3	0,09	0,26
	(T5) 5 watts	3	0,07	0,21
(3) Focos Fluorescentes	(T6) 7 watts	3	0,07	0,22
	(T7) 11 watts	3	0,08	0,24
	(T8) 20 watts	3	0,09	0,26

En el cálculo de depreciación de costos para cada tratamiento se utilizaron 90 pollos con un gasto de **45 Dólares**, además se utilizo 3 focos de igual potencia y un tipo de luz para cada tratamiento (Cuadro 32). Resultados que se presentan en el Anexo 8.

CUADRO 33. Costo de consumo de alimento por tratamiento

	TIPO	DE ALIMEN	Total	SUBTOTAL		
	Inicial	Crecimiento	Engorde	kg	Dólares	
T1	81,890	242,703	105,730	430,325	184,44	
T2	81,760	238,739	103,356	423,850	181,67	
T3	81,958	242,703	105,732	430,393	184,47	
T4	81,287	239,976	104,544	425,807	182,51	
T5	82,800	245,430	106,920	435,150	186,51	
T6	81,442	239,976	104,544	425,962	182,57	
T7	82,105	239,976	104,544	426,625	182,86	
T8	82,800	242,768	104,544	430,112	184,36	
T9	75,912	223,614	97,416	396,942	170,14	

El costo para cada tratamiento se obtiene según la guía del Anexo 3, de acuerdo al precio de cada saco de alimento y el número de aves vivas. (Anexo 5 y 6).

CUADRO 34. Costo de Mano de Obra por tratamiento

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO Estudiante
Estudiante 1	días	56	0,26	14,52
Estudiante 2	días	56	0,26	14,52
SUBTOTAL				29,04

El número de días trabajados significa siete días antes de la producción, donde se prepara el galpón para recibir a los pollos, más la suma de 49 días de trabajo en la producción o realización de la tesis en campo, resultando un total de 56 días trabajados. El costo por día es de 0, 26 Dólares para cada tratamiento y un costo total para dos estudiantes por tratamiento de **29, 04** Dólares. (Anexo 8)

CUADRO 35. Costo de Medicamentos para el ensayo

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO Medicamento
1. Vacunas				
Bronquitis	Dosis	90	0,0035	0,32
New-Castle	Dosis	180	0,0035	0,63
Gumboro	Dosis	90	0,0045	0,41
2. Desinfectantes				
Frasco Cid 20	Litro	0,111	3,80	0,42
formol	Litro	0,111	2,15	0,24
Vinagre	Litro	0,111	2,25	0,25
Cal viva	Libra	24	0,06	1,44
3. Vitaminas				
Estrés Forte	Litro	0,111	14,80	1,64
Estrés Life plus	Litro	0,111	14,60	1,62
Enrofloxacina	Litro	0,111	15,80	1,76
Electro Ce	Litro	0,111	12,50	1,39
SUBTOTAL				10, 11

Se utilizaron vacunas, desinfectantes y vitaminas, resultando un costo total de **10, 11** Dólares para cada tratamiento (Anexo 8)

CUADRO 36. Costo de Equipo para cada tratamiento

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO TOTAL
Termómetro	Unidad	0,50	0, 33	0,17
Caja Térmica	Unidad	0,111	0, 30	0,03
Boquillas	Unidad	3	0, 02	0,06
Criadora	Unidad	0,50	2, 01	1,01
Centralina	Unidad	0,111	0, 22	0,02
Manguera de gas	Metro	2,44	0, 01	0,02
Bebedero manual de galón	Unidad	3	0, 08	0,24
Bebedero Automático	Unidad	3	0, 21	0,63
Comederos de Tolva	Unidad	3	0, 18	0,54
Balanza	unidad	0,11	2, 22	0,25
Cortinas	m2	4	0, 02	0,08
Bomba Mochila	unidad	0,11	1, 29	0,14
Malla	m2	4	0, 04	0,16
Tanques De Gas	Unidad	2	2, 00	4,00
Bandejas De Cartón	Unidad	3	0, 35	1,05
Alambre de luz Nº 12	Rollo (100 m)	0,17	30, 50	5,19
Pintura Negra	Galón	0,56	3, 50	1,96
Alambre de acero inoxidable	Libra	0,44	0,25	0,11
Viruta	sacos	12	0, 34	4,08
Pago de alquiler de galpón	pollos	90	0, 08	7,20
Transporte varios	unidad		5, 00	5,00
	SUBTOTAL			31, 94

Para cada tratamiento se utilizaron varios equipos dentro del galpón, resultando un costo total de depreciación de **31, 94** Dólares para cada tratamiento (Anexo 8).

CUADRO 37. Costo de consumo de luz

	POTENCIA Watts / h	TOTAL USO Kw/h	Constante A PAGAR	TOTAL POR TRATAM.
T1	25	18,375	0,08	1,47
T2	40	29,4	0,08	2,35
T3	60	44,1	0,08	3,53
T4	100	73,5	0,08	5,88
T5	5	3,675	0,08	0,29
T6	7	5,145	0,08	0,41
T7	11	8,085	0,08	0,65
T8	20	14,7	0,08	1,18
		196,98		15,76

Se utilizaron 245 horas de luz (Cuadro 3), consumiendo un total de 196, 98 Kw/hora para los nueve tratamientos con un costo total de **15,76 Dólares** por los 49 días de producción, donde el costo más bajo a pagar fue para el tratamiento T5 (5 watts - luz fluorescente) con un valor de 0, 29 Dólares y el costo más alto a pagar fue para el tratamiento T4 (100 watts - luz incandescente) con un valor de 5, 88 Dólares, durante los 49 días de producción.

CUADRO 38. Costo de consumo de agua para el ensayo

Consumo	Constante A PAGAR	Total a pagar
m ³	+ impuestos	por TRATAM.
1,56	0, 35	0,54

El consumo de agua para cada tratamiento fue de 1, 56 m³, con un total de 14 m³ para los nueve tratamientos. El resultado del costo de cada tratamiento fue de **0,54 Dólares.**

CUADRO 39. Costo de producción de un kilo de pollo vivo por tratamiento

	Costo	Costo	Costo	Producción	Precio	Precio
	Alimento	Varios	Total	kilos	kilo	Libra
T1	184,44	118,35	302,80	216,33	1,40	0,64
T2	181,67	119,24	300,91	223,19	1,35	0,61
T3	184,47	120,41	304,88	231,23	1,32	0,60
T4	182,51	122,76	305,27	211,00	1,45	0,66
T5	186,51	117,13	303,64	208,41	1,46	0,66
T6	182,57	117,26	299,84	224,12	1,34	0,61
T7	182,86	117,52	300,37	235,38	1,28	0,58
T8	184,36	118,06	302,42	222,99	1,36	0,62
T9	170,14	116,63	286,76	191,22	1,50	0,68

CUADRO 40. Orden de producción de un kilo de pollo vivo por tratamiento

ORDEN					
TRATAMIENTO	VALOR kg	VALOR Lb			
T7	1,28	0,580			
Т3	1,32	0,599			
T6	1,34	0,608			
T2	1,35	0,613			
Т8	1,36	0,616			
T1	1,40	0,636			
T4	1,45	0,658			
T5	1,46	0,662			
Т9	1,50	0,682			

Los costos de producción por kilo de pollos vivo de cada tratamiento (Cuadro 40), indica que el tratamiento **T7** de 11 watts de potencia de luz fluorescente, es el más económico cuyo valor fue de **1, 28** Dólares por kilo, seguido por el tratamiento **T3** de 60 watts de potencia de luz incandescente con un valor de **1, 32** Dólares por kilo.

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Luego de analizar los resultados de esta investigación, se concluye en rechazar la hipótesis nula y aceptar la hipótesis alternativa planteada al inicio de la investigación ya que la utilización de diferentes potencias y tipo de luz si provocaron diferentes rendimientos productivos en pollos de engorde de la línea Ross, por las siguientes razones:

- 1. El mayor peso final producido por cada ave, le corresponde al tratamiento T7 con un valor promedio de 2615, 333 gr, seguido de cerca por el tratamiento T3 con un valor promedio de 2598, 083 gr. Lo que significa que la potencia P3 con un peso promedio de 2606, 708 gr, fue la que mayores rendimientos presentó y que el tipo de luz fluorescente (T7), es el indicado para el desempeño productivo de las aves
- 2. La mejor Conversión Alimenticia Acumulada (C.A.Ac.) producida a la séptima semana fue para el tratamiento T7 presentando una media de 1, 85; lo que significa que se utilizó 1, 85 kilogramos de alimento para producir un kilogramo de carne y seguido de cerca por el tratamiento T3 con una media de 1, 86. Concluyendo así que la potencia P3 con una media de 1,86 y el tipo de luz fluorescente con una media de 1,93 son las que mayores rendimientos alcanzan para producir un kilogramo de carne.
- 3. El mejor Índice de Eficiencia Europeo producido a la séptima semana fue para el tratamiento T3, presentando una media de 281, 45 y seguido de cerca por el tratamiento T7 con una media de 275, 47. Su potencia P3 alcanzó una media de 278, 46 de eficiencia. Concluyendo así que las aves desarrolladas bajo estos tratamientos son las que mejores rendimientos alcanzaron.

- **4.** El mejor Índice de Eficiencia Americano producido a la séptima semana fue para el tratamiento T7, presentando una media de 141, 08; seguido de cerca por el tratamiento T3 con una media de 139, 45; y su potencia P3, alcanzo una eficiencia de 140, 27. Concluyendo así que el tratamiento T7 y T3 presentaron los mayores rendimientos en cuanto al índice de eficiencia europeo como americano.
- **5.** El menor costo por kilogramo de pollo vivo producido fue obtenida por el tratamiento T7 con un valor de 1, 28 Dólares, seguido de cerca por el tratamiento T3 con un valor 1,32 Dólares.
- **6.** El tipo de luz con sus diferentes potencias si influyeron en la mortalidad de las aves con respecto a las unidades experimentales de testigo, que al no tener iluminación nocturna tuvieron altos porcentajes de mortalidad.
- 7. Con los resultados alcanzados en el manejo de pollos broiler de la línea Ross se puede concluir que el mejor tipo de luz es la fluorescente que fue la que mayores rendimientos presentó, con respecto a la luz incandescente.
- **8.** De las cuatro potencias evaluadas se concluye que la mejor fue la potencia P3, de 60 watts en incandescente y 11 watts en fluorescente, la que alcanzo mayores rendimientos con respecto a las otras potencias evaluadas.

3.4. RECOMENDACIONES

Al término de esta investigación se recomienda tomar en consideración las siguientes sugerencias:

- 1. Se recomienda utilizar en la producción de pollos broiler luz fluorescente de 11 watts de potencia, que a más de ser la que mayores resultados obtuvo, es más económica y su vida útil es superior a la luz incandescente.
- 2. Se recomienda no dejar en total oscuridad a los pollos durante los 49 días de camada y utilizar este programa de luminosidad nocturna, ya que a los 30 días de edad es cuando los pollos tienen un mejor aprovechamiento de nutrientes para la producción de carne.
- 3. Se recomienda que se realice este tipo de investigación con otro tipo de luces de colores, para observar el desempeño de las aves dentro de sus parámetros de producción como la alimentación, conversión, alimenticia, la conducta dentro del galpón, índice de eficiencia, y además evaluar el color de patas y piel obtenidos, con respecto al color que en la actualidad es aceptado por el consumidor final.
- 4. Se recomienda realizar investigaciones de la incidencia del tipo de luz y sus potencias en la producción de gallinas ponedoras, para poder evaluar así, las diferencias que puedan existir entre las variables en estudio planteadas en esta tesis.
- **5.** Se recomienda comparar el programa de luz continua utilizado y un programa de luz intermitente, para poder evaluar así, las diferencias que puedan existir entre las variables en estudio planteadas en esta tesis.

- **6.** Para poder evaluar los resultados obtenidos por mortalidad, se recomienda realizar investigaciones con mayor número de aves por unidad experimental.
- 7. Se recomienda utilizar espacios más amplios en este tipo de investigaciones para evitar el estrés a las aves debido a los movimientos de las cortinas negras realizados tanto en la mañana como en la tarde.
- **8.** Se recomienda investigar el efecto de la altura de los focos, y evaluar así los resultados obtenidos con las variables evaluadas en esta tesis.
- 9. Se recomienda utilizar para la desinfección del galpón, productos químicos que no sean perjudiciales para la salud de los animales como la humana, como es Cid 20, un producto que se aplica en la presencia de las aves a diferencia del formol que no se puede aplicar en presencia de los animales.

6. RESUMEN

"INCIDENCIA DE DOS TIPOS DE LUZ Y SU INTENSIDAD LUMINOSA SOBRE EL DESEMPEÑO PRODUCTIVO DEL POLLO DE ENGORDE LÌNEA ROSS, TUMBABIRO – URCUQUÌ."

La presente investigación se realizó en la parroquia de Tumbabiro, a 1 800 m.s.n.m., con una temperatura media de 17 °C, ubicada en el cantón de Urcuquí de la provincia de Imbabura.

El objetivo general fue determinar que tipo de luz y que potencia mejora la producción de pollos de engorde de la línea Ross.

El trabajo de campo se desarrollo en un periodo de 49 días, utilizando un diseño completamente al azar (D.C.A.), con nueve tratamientos y tres repeticiones, ubicando 30 pollos por unidad experimental. Bajo un arreglo factorial A x B +1; donde el factor A correspondió al tipo de luz, el factor B correspondió a la potencia y +1 fue el testigo, sin iluminación artificial,

Mediante un análisis de varianza se evaluó el coeficiente de variación (C.V.) y al detectar diferencias significativas se realizo la prueba de Tukey al 5% para Tratamientos y Potencia (FB) y la prueba de DMS al 5% para tipo de luz (FA).

Los tratamientos fueron:

T1:	Luz incandescente de potencia	25 watts
T2:	Luz incandescente de potencia	40 watts
T3:	Luz incandescente de potencia	60 watts
T4:	Luz incandescente de potencia	100 watts
T5:	Luz Fluorescente de potencia	5 watts
T6:	Luz Fluorescente de potencia	7 watts
T7:	Luz Fluorescente de potencia	11 watts
T8:	Luz Fluorescente de potencia	20 watts
T9:	Testigo, Luz Natural o Solar	

Fueron cinco las variables evaluadas:

- 1.- Peso final.
- 2.- Conversión Alimenticia Acumulada (C.A.Ac.),
- 3.- Índice de Eficiencia Europeo (I.E.E.)
- 4.- Índice de Eficiencia Americano (I.E.A.) y
- 5.- Análisis Económico.

De los resultados obtenidos se concluye que el mejor tipo de luz y la mejor potencia a utilizar en la crianza de pollos broiler es la utilizada por el tratamiento T7, ya que presentó resultados de mayor eficiencia en cuanto a peso final producido por cada ave, mejor Conversión Alimenticia Acumulada (C.A.Ac.), mejor Índice de Eficiencia Americano producida a la séptima semana y menor costo por kilogramo de pollo vivo al final de la producción. El mejor Índice de Eficiencia Europeo producido a la séptima semana fue para el tratamiento T3.

7. SUMARY

"INCIDENCE OF TWO TYPES OF LIGHT AND ITS LUMINOUS INTENSITY

ON THE EXECUTION PROCEEDS OF BROILERS LINE ROSS,

TUMBABIRO - URCUQUÌ."

This research was conducted in the parish of Tumbabiro to 1 800 meters with an

average temperature of 17 ° C, located in the canton of Urcuquí of the province of

Imbabura.

The overall objective was to determine what kind of light and power that improves

the production of broilers Ross of the line.

The work was developing over a period of 49 days, using a completely randomized

design (DCA), with nine treatments and three repetitions for each treatment. Under

a factorial arrangement A x B +1; factor which corresponded to a type of light, the

B factor corresponded to the power and +1 was the witness, without artificial

lighting.

An analysis of variance was assessed the coefficient of variation (CV) and to detect

significant differences took place proof of Tukey to 5% for Treatment & Power

(FB) and proof DMS 5% rate for light (FA).

Treatments were:

T1: 25-watt incandescent light

T2: 40-watt incandescent light

T3: 60-watt incandescent light

T4: 100-watt incandescent light

T5: Electricity fluorescent 5 watts

T6: Electricity fluorescent 7 watts

T7: 11 watts fluorescent light

T8: fluorescent light 20 watts

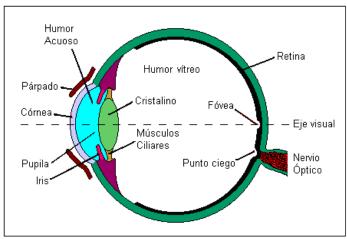
T9: Natural or Solar Light

50

There were five variables:

- 1.- Weight end
- 2.- Conversion food accumulated (C.A.Ac.)
- 3 .- European efficiency index (i.e.)
- 4 .- efficiency indicators American (i.e.)
- 5 .- Economic analysis.

According to the results concluded that the best kind of light and power to better use in the rearing of broiler chickens is used for treating T7, as presented results of greater efficiency in terms of final weight produced by each bird, the better Conversion Food Accumulated (CAAc.), better efficiency indicators American produced the seventh week and lower cost per kilogram of live chicken at the end of production. The best efficiency indicators European produced the seventh week was for treating T3.


8. BIBLIOGRAFÍA

- **1.** AGUILAR, M. (2006). Presupuestos Agropecuarios. Escuela de Ingeniería Agropecuaria de la UTN- Ibarra.
- **2.** ALVARADO, J. (2002). Programa de manejo para broiler, influencia de la Iluminación. México. pp. 65-77.
- 3. ANDRADE, D. (1990). Comparación entre las fuentes de luz adecuadas en el galpón de las aves de engorde y los fotoperiodos. Buenos Aires, Argentina pp. 14 19.
- **4.** AVIAGEN LIMITED (2002). Manual de Manejo de Pollo de Engorde, línea Ross. Newbridge. 117 p.
- 5. AVÍCOLA METRENCO, E.I.R.L. DIPRODAL (2000). Distribuidora y Productora Avícola Ltda. Guía de Manejo de Broilers. Chile. 25 p.
- **6.** BARRAGÁN, R. (2005). Principios de diseño experimental. Escuela de Ingeniería Agropecuaria de La UTN-Ibarra. 80p.
- **7.** GUERRERO, P. (2005). IV Seminario de de Aves. Enfoque a la nueva industria Florianópolis SC.
- **8.** HEINZ, J. (1993). Nutrición de las aves. Zaragoza-España. pp. 45-87.
- 9. KARDONG, K. V. (2000). Vertebrados. Anatomía Comparada, Función, Evolución, Madrid. 732 p.
- **10.** LEWIS, P Y MORRIS T. (1998). Respuestas de las aves domésticas a las diversas fuentes de energía. World's Poultry Science Journal. pp. 7 25.
- **11.** NORTH, M. (1986). Manual de Producción Avícola. pp. 386 403.

- **12.** POULTRY INTERNATIONAL. (2007). Seminario sobre la Iluminación en la Avicultura. Reino Unido.
- 13. QUILES, A. y Hevia M. (2005). Influencia de la luz sobre el comportamiento de las aves, Facultad de Veterinaria, Universidad de Murcia España. 127p.
- 14. ROBINSON F Y RENEMA R. (1999). Principios del Manejo de los Fotoperiodos en Reproductores de Engorde. Universidad de Alberta, Canadá. 6p.
- **15.** RODRÍGUEZ J. (2008). Producción y Negocio, Enfermedades del pollo del engorde. Colombia pp. 23 -36
- **16.** SANTOMÁ G. Y PONTES M. 2004. Interacción Nutrición Iluminación en explotaciones para aves. Barcelona, 60 p.
- 17. SMITH, F. (1992). Manual of veterinary physiology, London. 90 p.

9. ANEXOS

ANEXO 1. ANATOMÍA DEL OJO DEL AVE

Anatimia ocular del ave. (Magrane 1997)

GRAFICO 1. Anatomía del ojo del ave

ANEXO 2. Diseño de Unidades Experimentales.

ÁREA TOTAL: 105 m²

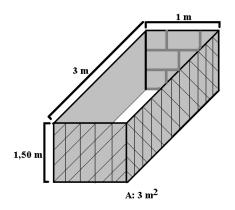

	Largo= 14 m														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	1))
T9R2	T8R2	T2R1	T5R2	T3R3	T6R2	T3R1	T5R1	T1R2	T7R3	T4R2	T6R1	T4R1	T1R1] 2	
Testigo	20WF	40WI	SWF	60WI	7WF	60WI	SWF	25WI	11WF	100W	7WF	100WI	25WI	3m	
]]	ancho≕
						PA	ASILI	LO]1,50 n	7,50 m
15	16	17	18	19	20	21	1	22	23	24	25	26	27	ľΥ	
T9R1	T8R3	T3R2	T7R2	T4R3	T7R1	T1R3	1	T9R3	T8R1	T2R3	T5R3	T6R3	T2R2	11	
Testigo	20 WI	60WI	11WF	100WI	11WF	25WI	1	Testigo	20WF	40WI	5WF	7 WF	40WI] 3 m	
														H	
ш						Щ.								1)	J
								Ţ							•

GRÁFICO 2. Distribución al azar (DCA) de unidades experimentales en galpón.

Para todo el ensayo se empleó un área de 105 m², donde cada tratamiento con su repetición fueron distribuidos al azar.

SIMBOLOGÍA:

1	Número de la unidad.
T9R2	Tratamiento y Repetición de la Unidad.
Testigo	Nombre de la Unidad.

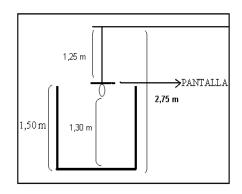
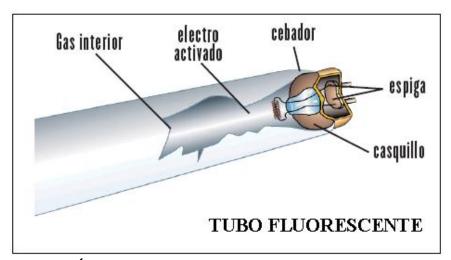
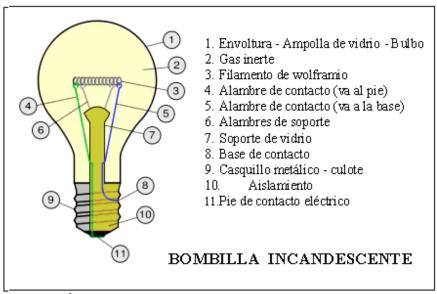




GRÁFICO 3. Características de las unidades experimentales.

Cada unidad experimental tuvo un área de 3 m², de 3m de largo por 1 m de ancho y una altura de 1, 50 m donde fueron ubicadas las cortinas negras. También se ubicó un foco protegido con una pantalla para evitar el paso de luz a las otras unidades a una altura de 1, 30 m desde la superficie del suelo.

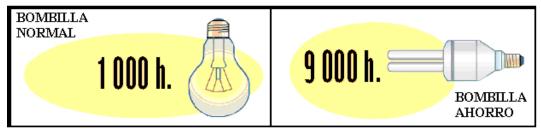


GRÁFICO 4. Luz Fluorescente: Partes de la bombilla

GRÁFICO 5. Luz Incandescente: Partes de la bombilla

VIDA UTIL - DURACIÓN HORAS

GRÁFICO 6. Vida útil de los focos

ANEXO 3.- Guía de Manejo Para Pollos Broiler

Para 30 pollos

1			AC	CTIVIDA	DES			
SEM	DIA	VITAMINAS	VACUNAS Y DESINFECTANTES	TIPO DE ALIMENTO	gr. / pollo	TOTAL kg/día	Temp. Amb. °C	PESASJE y pollos/m2
	1	Estrés life plus + enrofloxacina	Vacuna Bronquitis spray		10	0,300	30-32	60 pollos/m2 PESAJE
	2	Estrés life plus + enrofloxacina			13	0,390		
1	3	Estrés life plus + enrofloxacina			15	0,450	28	
•	4	enrofloxacina			18	0,540		34 pollos/m2
	5				22	0,660		
	7	estrés forte	1ª Vacuna Newcastle		24 26	0,720	1	
	- /		1 vacuna Newcasue	I	20	0,780		24 pollos/m2
	8		desinfección cid 20	N	29	0,870	25	PESAJE
	9	estrés forte	Voormo Crombono	I	33	0,990	27	
2	10		Vacuna Gumboro	C	35	1,050		
	11	estrés life plus		I	39	1,170		
	12			\mathbf{A}	44	1,320	26	17 pollos/m.
	13	estrés forte		L	50 55	1,500 1,650	1	
	14 15		desinfección cid 20		59	1,770	25	PESAJE
	16	estrés forte	desinfección cid 20		64	1,770	23	14 pollos/m2
	17	estres forte			69	2,070	1	14 ponos/m2
3	18	estrés life pus			73	2,190	24	
	19	estres fire pas			76	2,280		
	20	estrés forte			81	2,430		12 pollos/m2
	21		2ª Vacuna Newcastle		85	2,550	23	
	22				93	2,790		PESAJE
	23	estrés forte	desinfección cid 20		96	2,880		
	24				99	2,970	22	
4	25	estrés life plus			103	3,090		
	26	enrofloxacina		C	108	3,240		11 pollos/m2
	27	enrofloxacina		R	113	3,390	21	
	28	enrofloxacina			115	3,450		
	29		desinfección cid 20	E	118	3,540		PESAJE
	30			C	121	3,630		
	31	estrés forte		I	125	3,750		
5	32			M	128	3,840		
	33	estrés life plus		I	133	3,990		
	34			E	138	4,140		
	35			N	143	4,290		
	36		desinfección cid 20		147	4,410		PESAJE
	37	estrés forte		T	151	4,530		
	38			О	153	4,590		
6	39				157	4,710		
	40				160	4,800		
	41				162	4,860		
	42				164	4,920		
	43		desinfección cid 20	E	166	4,980		PESAJE
	44	electro c		N	168	5,040		
	45	electro c		G	169	5,070		
7	46	electro c		O	170	5,100		
	47	_		R	171	5,130		
	48			D	172	5,160		
	49			E	172	5,160		PESAJE

- DOSIS DE MEDICAMENTOS:

 * Enrofloxacina: 0,5 cc /lt de agua
 * Formol: 3 cc/litro de agua
 * Cid 20: 5 cc / 2 lt de agua
 * Estrés life Plus: 1 gr / lt de agua.
 * Vinagre: 12,50 cc / lt de agua.

4835

VACUNAS:
* BRONQUITIS: Una dosis por ave * NEW-CASTLE: Dos dosis por ave. * GUMBORO: Una Dosis por ave

145,050

ANEXO 4.- CONSUMO DE ALIMENTO

ANEXO 4.1. Composición del alimento utilizado

nutrAvan	ALIMENTO NUTRAVAN				
NUTRICION O AVANZADA	INICIAL %	CRECIMIENTO %	ENGORDE %		
Proteína Mínima	21	19	18		
Humedad Máxima	12	12	12		
Grasa Mínima	3,5	3,5	3,5		
Fibra Cruda Máxima	5,0	5,0	5,0		
PRECIO	17,25	17,15	17,05		

INGREDIENTES:

Maíz, Torta de Soya y/o, Soya Extruída y/o Gluten de Maíz y/o Harina de Pescado, Aceite de Palma, Afrecho de trigo, Carbonato de Calcio, Antimicótico, Secuestrante de Toxinas, Fosfato Dicálcico y/o Fosfato Monocálcico, VIT A, E, D3, K3, B1, B2, B6, B12, Niacina, Acido Pantotenico, Biotina, Ácido fólico, Colina, Fe, Cu, Zn, Mn, Se, I, Metionina, Lisina, Treonina y/o Triptofano, Acido Silícico, Fuente de Minerales Orgánicos, Antioxidante, Sal.

ANEXO 4.2. Consumo de alimento en kg para cada tratamiento y sus repeticiones

TRATAMIENTOS	REI	REPETICIONES				
IKATAMIENTOS	R1	R2	R3	SUAMA		
T1	145,050	145,050	140,225	430, 325		
T2	140,479	140,751	141,050	422, 280		
T3	145,050	145,050	140,687	430, 787		
T4	145,050	140,440	140,440	425, 930		
T5	136,564	145,050	145,050	426, 664		
T6	145,050	140,230	140,687	425, 967		
T7	145,050	145,050	145,050	435, 150		
T8	145,050	143,540	141,526	430, 116		
Т9	135,450	125,910	135,446	396, 806		
				3824, 025		

Para todo el ensayo se consumió una cantidad de 3824, 025 kilos, es decir un total de 96 sacos de 40 kilos.

ANEXO 4.3. Costo total de Consumo de Alimento Inicial en kg para cada Tratamiento

TRATAMIENTOS	ALIMENTO Inicial kg	PRECIO Kg	SUBTOTAL
T1	81,89	0,4313	35,32
T2	81,76	0,4313	35,26
Т3	81,96	0,4313	35,34
T4	81,29	0,4313	35,06
T5	82,80	0,4313	35,71
T6	81,44	0,4313	35,12
T7	82,11	0,4313	35,41
Т8	82,80	0,4313	35,71
Т9	75,91	0,4313	32,74
TOTAL	731,95		315,65

El consumo total de alimento inicial fue de 731, 95 kilos; con un valor de 315, 65 Dólares.

ANEXO 4.4. Costo total de Consumo de Alimento de Crecimiento en kg por cada Tratamiento

TRATAMIENTOS	ALIMENTO Crecimiento kg	PRECIO Kg	SUBTOTAL
T1	242,703	0,4288	104,06
T2	238,739	0,4288	102,36
Т3	242,703	0,4288	104,06
T4	239,976	0,4288	102,89
T5	245,43	0,4288	105,23
T6	239,976	0,4288	102,89
T7	239,976	0,4288	102,89
Т8	242,768	0,4288	104,09
Т9	223,614	0,4288	95,87
TOTAL	2155,885		924,34

El consumo total de alimento de crecimiento fue de 2155, 887 kilos; con un valor de 924, 34 Dólares.

ANEXO 4.5. Costo total de Consumo de Alimento de Engorde en kg por cada Tratamiento.

TRATAMIENTOS	ALIMENTO Engorde kg	PRECIO Kg	SUBTOTAL
T1	105,732	0,4263	45,07
T2	103,356	0,4263	44,06
Т3	105,732	0,4263	45,07
T4	104,544	0,4263	44,56
T5	106,920	0,4263	45,57
T6	104,544	0,4263	44,56
T7	104,544	0,4263	44,56
Т8	104,544	0,4263	44,56
Т9	97, 416	0,4263	41,52
TOTAL	937,332		399,54

El consumo total de alimento de engorde fue de 937, 332 kilos; con un valor de 399, 54 Dólares.

ANEXO 4.6. Costo total de Alimento consumido.

	TIPO DE ALIMENTO							
	COSTO							
INICIAL	CRECIMIENTO	ENGORDE	TOTAL					
315,65	315,65 924,34 399,54							

El costo total por ensayo fue de 1639, 53 Dólares para una cantidad de 96 sacos de alimento consumidos

ANEXO 5.- CUADRO DE MORTALIDAD POR TRATAMIENTOS

	RE	PETICION	ES	CTIMA
TRATAMIENTOS	I	II	III	SUMA
T1	0	0	1	1
T2	1	1	1	3
Т3	0	0	1	1
T4	0	1	1	2
T5	2	0	0	2
T6	0	1	1	2
T7	0	0	0	0
Т8	0	1	1	2
Т9	2	4	2	8
				21

El tratamiento T9 fue el que obtuvo un alto número de animales muertos, debido a que desde los primeros días no tuvieron luz y esto ocasionó amontonamientos entre ellos, provocando así una mortalidad alta.

El tratamiento T7 que fue el que mejores resultados obtuvo, debido a que durante los 49 días de investigación no presentaron mortalidad.

El ensayo general presento un porcentaje de mortalidad de 2, 59 %, resultado que nos permite ubicarnos dentro del parámetro de mortalidad que es de hasta el 3% en la avicultura general.

ANEXO 6.- CUADROS DE RESULTADOS DE CADA VARIABLE.

ANEXO 6.1. Peso semanal en gramos obtenido por cada tratamiento y repeticiones

			SEMA	NAS EVA	LUADAS				
	1ª	2ª	3ª	4 ^a	5ª	6 ^a	7 ª	N° AVES VIVAS	TOTAL KILOS
T1R1	148,560	389,505	712,433	992,273	1357,300	1935,667	2441,333	30	73,240
T1R2	148,667	387,562	712,305	995,000	1344,667	1935,000	2431,000	30	72,930
T1R3	148,583	390,908	712,143	997,158	1381,817	1931,000	2419,417	29	70,163
							SUMA	89	216,333
T2R1	149,800	389,732	714,987	1026,833	1285,259	1996,703	2566,000	29	74,414
T2R2	149,957	391,988	714,297	1026,524	1494,833	1999,733	2567,833	29	74,467
T2R3	149,667	390,878	714,510	997,667	1540,000	2001,667	2562,333	29	74,308
		,					SUMA	87	223,189
T3R1	153,743	391,160	716,708	1018,000	1482,150	2019,667	2598,667	30	77,960
T3R2	152,667	393,820	716,109	1106,000	1530,667	2026,667	2599,333	30	77,980
T3R3	152,333	393,319	716,122	1024,095	1443,963	2030,133	2596,250	29	75,291
		,					SUMA	89	231,231
T4R1	155,333	394,853	715,145	1056,667	1482,150	1969,067	2395,000	30	71,850
T4R2	156,333	395,059	715,407	1037,696	1530,667	1948,333	2389,167	29	69,286
T4R3	154,667	396,207	715,448	1005,119	1443,963	1957,133	2409,250	29	69,868
		,					SUMA	88	211,004
T5R1	149,644	389,783	712,686	1018,423	1364,583	1953,667	2376,556	28	66,544
T5R2	149,588	385,805	712,973	1004,300	1412,333	1975,933	2368,667	30	71,060
T5R3	151,333	389,842	713,071	995,603	1397,333	1973,967	2360,333	30	70,810
				-	-	-	SUMA	88	208,414
T6R1	151,557	391,105	714,531	1023,333	1466,917	1989,700	2548,667	30	76,460
T6R2	152,138	392,943	714,476	1018,810	1458,951	1992,633	2539,833	29	73,655
T6R3	152,300	391,749	715,288	1028,905	1439,040	1992,533	2551,917	29	74,006
							SUMA	88	224,121
T7R1	153,333	395,167	715,800	1107,100	1557,300	2016,333	2617,000	30	78,510
T7R2	153,667	392,932	715,943	1098,153	1408,811	2005,067	2613,333	30	78,400
T7R3	152,667	395,533	715,531	1088,967	1564,743	2009,000	2615,667	30	78,470
		1					SUMA	90	235,380
T8R1	155,000	392,667	713,776	996,667	1411,667	1909,000	2529,333	30	75,880
T8R2	155,963	392,166	713,077	1023,667	1396,667	1888,933	2544,250	29	73,783
T8R3	153,000	394,386	713,928	1020,262	1433,407	2026,667	2528,417	29	73,324
	1	1	ı	1	1	1	SUMA	88	222,987
T9R1	147,143	387,751	713,776	979,345	1358,712	1899,761	2331,889	28	65,293
T9R2	148,242	387,650	713,077	976,677	1361,640	1901,457	2335,133	26	60,713
T9R3	148,339	386,995	713,928	987,172	1350,850	1905,739	2329,000	28	65,212
							SUMA	82	191,22
						SUM	A TOTAL	789	1963,887

ANEXO 6.2. Conversión Alimenticia Acumulada por tratamiento y repeticiones

		TOTAL ALIEMNTO kg	PESO FINAL kg/AVE	Nº AVES VIVAS	C.A.Ac.
	R1	145,050	2,441	30	1,98
T1	R2	145,050	2,431	30	1,99
	R3	140,225	2,419	29	2,00
	R1	140,479	2,566	29	1,89
T2	R2	140,751	2,568	29	1,89
12	R3	141,050	2,562	29	1,90
- FIG.	R1	145,050	2,599	30	1,86
Т3	R2	145,050	2,599	30	1,86
	R3	140,687	2,596	29	1,87
	R1	145,050	2,395	30	2,02
T4	R2	140,440	2,389	29	2,03
	R3	140,440	2,410	29	2,01
	R1	136,564	2,377	28	2,05
T5	R2	145,050	2,369	30	2,04
	R3	145,050	2,360	30	2,05
	R1	145,050	2,549	30	1,90
Т6	R2	140,230	2,540	29	1,90
	R3	140,687	2,552	29	1,90
	R1	145,050	2,617	30	1,85
T7	R2	145,050	2,610	30	1,85
	R3	145,050	2,616	30	1,85
	R1	145,050	2,529	30	1,91
Т8	R2	143,540	2,540	29	1,95
	R3	141,526	2,528	29	1,93
	R1	135,450	2,332	28	2,07
Т9	R2	125,910	2,340	26	2,07
	R3	135,446	2,329	28	2,08

ANEXO 6.3. I.E.E. por tratamiento y repeticiones

		% SUDEDX	PESO	DIAS EN	C.A.AC.	CONSTANTE	I.E.E.
	R1	SUPERV 100	kg / AVE 2,441	GALPÓN 49	1,98	x 100	251,572
T1	R2	100	2,441	49	1,98	x 100	249,446
11				-			
	R3	97	2,420	49	2,00	x 100	238,822
	R1	97	2,566	49	1,89	x 100	268,152
T2	R2	97	2,568	49	1,89	x 100	268,016
	R3	97	2,560	49	1,90	x 100	266,303
	,						
	R1	100	2,599	49	1,86	x 100	285,042
T3	R2	100	2,599	49	1,86	x 100	285,188
	R3	97	2,600	49	1,87	x 100	274,105
	ı	1		1		T	
	R1	100	2,395	49	2,02	x 100	242,113
T4	R2	97	2,389	49	2,03	x 100	232,531
	R3	97	2,410	49	2,01	x 100	236,457
		100	2.255	10	2.02	100	220 200
	R1	100	2,377	49	2,03	x 100	238,398
T5	R2	100	2,369	49	2,04	x 100	236,818
	R3	100	2,36	49	2,05	x 100	235,155
	R1	100	2,549	49	1,90	x 100	274,179
T6	R2	97	2,540	49	1,90	x 100	263,187
	R3	97	2,550	49	1,90	x 100	264,824
	•	•		•			
	R1	97	2,617	49	1,85	x 100	278,994
T7	R2	100	2,613	49	1,85	x 100	288,268
	R3	97	2,530	49	1,92	x 100	259,144
	D.1	100	2.520	40	1.01	100	270.025
	R1	100	2,529	49	1,91	x 100	270,035
Т8	R2	97	2,544	49	1,95	x 100	258,011
	R3	97	2,530	49	1,93	x 100	258,428
	R1	93	2,332	49	2,07	x 100	214,116
T9	R2	87	2,335	49	2,07	x 100	199,149
	R3	93	2,330	49	2,08	x 100	213,585

El % de supervivencia se obtiene del resultado de aves vivas por cada repetición (Cuadro 44).

ANEXO 6.4. I.E.A. por tratamiento y repeticiones

		PESO PROMEDIO VIVO (kg)	C.A.AC.	CONSTANTE	I.E.A.
	R1	2,44	1,98	x 100	123,270
T1	R2	2,43	1,99	x 100	122,229
	R3	2,42	2,00	x 100	121,058
	ı				
	R1	2,57	1,89	x 100	135,925
T2	R2	2,57	1,89	x 100	135,856
	R3	2,56	1,90	x 100	134,988
	ı	<u> </u>			
	R1	2,60	1,86	x 100	139,670
Т3	R2	2,60	1,86	x 100	139,742
	R3	2,60	1,87	x 100	138,943
	R1	2,40	2,02	x 100	118,635
T4	R2	2,39	2,03	x 100	117,869
	R3	2,41	2,01	x 100	119,859
	R1	2,38	2,03	x 100	116,815
T5	R2	2,37	2,04	x 100	116,041
	R3	2,36	2,05	x 100	115,226
	R1	2,55	1,90	x 100	134,348
T6	R2	2,54	1,90	x 100	133,408
	R3	2,55	1,90	x 100	134,238
	R1	2,62	1,85	x 100	141,421
T7	R2	2,61	1,85	x 100	141,252
	R3	2,62	1,86	x 100	140,581
	I			1	
	R1	2,53	1,91	x 100	132,317
Т8	R2	2,54	1,95	x 100	130,785
	R3	2,53	1,93	x 100	130,996
	1	 		<u> </u>	
	R1	2,33	2,07	x 100	112,411
Т9	R2	2,34	2,07	x 100	112,596
	R3	2,33	2,08	x 100	112,132

ANEXO 7. Costo inicial de producción.

	DETALLE	UNIDAD	CANTIDAD	COSTO UNIT	COSTO TOTAL
1.	Mano De Obra (2)				
	Estudiante	días	56	2,33	130,67
	Estudiante	días	56	2,33	130,67
2.	Material Experimental		•	,	
	Pollos	Unidad	810	0,50	405,00
		25 watts	3	0,35	1,05
		40 watts	3	0,35	1,05
	Focos incandescentes	60 watts	3	0,35	1,05
		100 watts	3	0,35	1,05
		5 watts	3	2,55	7,65
		7 watts	3	2,75	8,25
	Focos Fluorescentes	11 watts	3	2,95	8,85
			3		
_	A10	20 watts	3	3,20	9,60
<i>Z</i> .	Alimento Alimento Inicial	Canaa (40 Va)	10	17.05	215.00
		Sacos (40 Kg)	18	17,25	315,99
	Alimento de Crecimiento	Sacos (40 Kg)	54	17,15	924,34
_	Alimento de Engorde	Sacos (40 Kg)	23	17,05	399,54
3.	Vacunas		97		
	Bronquitis 1000 Dosis	Dosis	1	3,50	3,50
	New-Castle 1000 Dosis	Dosis	2	3,50	7,00
_	Gumboro 1000 Dosis	Dosis	1	4,50	4,50
4.	Desinfectantes				
	Frasco Cid 20	Litro	1	3,80	3,80
	formol	Litro	1	2,15	2,15
	Vinagre	Litro	1	2,25	2,25
	Cal viva	Libra	245	0,06	14,70
5.	Vitaminas				
	Estrés Forte	Litro	1	14,80	14,80
	Estrés Life plus	Litro	1	14,60	14,60
	Enrofloxacina	Litro	1	15,80	15,80
	Electro Ce	Litro	1	12,50	12,50
6.	Equipos				
	Termómetro	Unidad	5	9,50	47,50
	Caja Térmica	Unidad	1	10,50	10,50
	Boquillas	Unidad	24	0,45	10,80
	Criadora (1000 pollos)	Unidad	5	70,00	350,00
	Centralina	Unidad	1	3,80	3,80
	Manguera de gas	Metro	22	0,20	4,40
	Tanques De Gas	Unidad	18	2,00	36,00
	Bebedero manual de galón	Unidad	27	2,30	62,10
	Bebedero Automático	Unidad	27	8,50	229,50
	Bandejas De Cartón	Unidad	27	0,35	9,45
	Comederos de Tolva	Unidad	27	7,50	202,50
	Balanza	Unidad	1	90,00	90,00
	Cortinas	m2	230	0,25	57,50
	Bomba de Mochila	unidad	1	30,00	30,00
	Pintura negra	Galón	5	3,50	17,50
	Malla	m2	112	0,70	78,40
	Alambre de luz Nº 12	Rollo (100 m)	1,5	30,50	45,75
	Alambre de acero inoxidable	Libra	4	0,25	1,00
	Viruta	sacos	118	0,34	40,12
	Transporte varios	unidad			45,00
	SUBTOTAL				3777, 64

DETALLE	UNIDAD	CANTIDAD	COSTO UNIT	COSTO TOTAL
Pago de luz	Kw/h	196,98	0,08	15,76
Pago de Agua	m3	14	0,35	4,90
Pago de galpón	pollos	810	0,08	64,80
SUBTOTAL				85,46
TOTAL				3863,10

El costo inicial sin depreciar fue de 3863, 10 Dólares, resultado que se obtiene de la suma de todos los gastos realizados en la investigación. Para obtener el valor de cada kilo de pollo vivo se debe realizar los cálculos de costos de depreciación, donde los resultados fueron:

ANEXO 8. Depreciación de Costos (C)

C1.- MANO DE OBRA

Valor mes	Valor Diario	Días trabajados	Valor individual	N° Estudiantes	L'I'ntal	Producción KILOS	Valor KILO
70	2,33	56	130,67	2	261,33	1963,877	0,13

C1: El costo de un kilo de pollo vivo para Mano de Obra es de **0,13 Dólares**, con 56 días de trabajo, es decir, 7 días antes de preparación del galpón para la recepción de las aves y 49 días de producción o desarrollo de la tesis.

C2.- RENTA DEL GALPÓN

	Nº de pollos	Costo Unitario	subtotal	Días ocupados	valor/día	Producción KILOS	Valor KILO
ı	810	0,08	64,80	49	1.32	1963,877	0,033

C2: El costo de un kilo de pollo vivo para Renta del galpón **0,13 Dólares**, con 56 días de trabajo, es decir, 7 días antes de preparación del galpón para la recepción de las aves y 49 días de producción o desarrollo de la tesis.

C3.- VIDA UTIL DE LOS EQUIPOS

C3.1. FOCOS INCANDESCENTES (depreciación)

		Cantidad	Costo unit.	Costo total	Vida Útil	Costo Total por Hora	horas de uso	Valor por Camada
	3	de 25 watts	0,35	1,05	1000	0,00105	245	0,26
foco	3	de 40 watts	0,35	1,05	1000	0,00105	245	0,26
Incandescente	3	de 60 watts	0,35	1,05	1000	0,00105	245	0,26
	3	de 100 watts	0,35	1,05	1000	0,00105	245	0,26
						0,00420		1,04

El costo total por hora de los focos incandescentes es de 1, 04 Dólares.

C3.2. FOCOS FLUO RESCENTES (depreciación)

	Cantidad	Costo unit.	Costo total	Vida Útil	Costo Total por Hora	horas de uso	Valor por Camada
	3 de 5 watts	2,55	7,65	9000	0,00085	245	0,21
foco	3 de 7 watts	2,75	8,25	9000	0,00092	245	0,22
Incandescente	3 de 11 watts	2,95	8,85	9000	0,00098	245	0,24
	3 de 20 watts	3,20	9,60	9000	0,00107	245	0,26
		•		•	0,00382		0,94

El costo total por hora de los focos fluorescente es de 0,94 Dólares.

C3.1 + C3.2 = El costo de los focos por camada es: **1,98 Dólares**

C3.3. VIDA UTIL DE LOS EQUIPOS (depreciación)

CONCEPTO	UNIDAD	CANT.		COSTO	Vida Útil	COSTO	VALOR Un Equipo	VALOR Un equipo	VALOR total
CONCELLIO	CNIDAD	CAIVI.	UNIT.	TOTAL	AÑOS	AÑO	Por AÑO	CAMADA	CAMADA
Termómetro	unidad	5	9,5	47,5	5	9,50	1,90	0,33	1,64
Caja Térmica	unidad	1	10,5	10,5	6	1,75	1,75	0,30	0,30
Boquillas	unidad	24	0,45	10,8	5	2,16	0,09	0,02	0,37
Criadora	unidad	5	70	350	6	58,33	11,67	2,01	10,07
Centralina	unidad	1	3,8	3,8	3	1,27	1,27	0,22	0,22
Manguera de gas	metro	22	0,20	4,4	6	0,73	0,03	0,01	0,13
Bebedero Galón	unidad	27	2,3	62,1	5	12,42	0,46	0,08	2,14
Bebedero Autom.	unidad	27	8,5	229,5	7	32,79	1,21	0,21	5,66
Comedero Tolva	unidad	27	7,5	202,5	7	28,93	1,07	0,18	4,99
Balanza	unidad	1	90	90	7	12,86	12,86	2,22	2,22
Cortinas	m 2	230	0,25	57,5	2	28,75	0,13	0,02	4,96
Bomba mochila	unidad	1	30	30	4	7,50	7,50	1,29	1,29
Malla	m 2	112	0,70	78,4	3	26,13	0,23	0,04	4,51
TOTAL			233,7	1177		223,12	40,17	6,93	38,51

El costo de un kilo de pollo vivo para Equipos de **223, 12 Dólares**, luego del cálculo de depreciación o vida útil de los equipos. El costo para cada equipo por camada se obtiene del cálculo de 63 días de uso, es decir 49 días en producción y 14 días de reposo.

Total C3=	valor/día	uso-días	valor	producción kilos	Total
225,08	0,62	63	38,85	1963,877	0,02

C3: El costo total de un kilo de pollo vivo para Equipos y focos es de **0,02 Dólares**, con un periodo de 63 días de trabajo, es decir, 49 días de producción y 14 días de reposo.

C4.- Luz y Agua

COSTO DE LUZ

				UN FOCO	TOTAL		TOTAL	
_	POTENCIA Watts / h	UN FOCO Kw/h	USO HORAS	TOTAL USO Kw /h	Kw /h POR TRATAM (3) FOCOS	Constante A PAGAR	POR TRATAM.	
T1	25	0,025	245	6,13	18,375	0,08	1,47	
T2	40	0,04	245	9,80	29,4	0,08	2,35	
T3	60	0,06	245	14,7	44,1	0,08	3,53	
T4	100	0,1	245	24,5	73,5	0,08	5,88	
T5	5	0,005	245	1,225	3,675	0,08	0,29	
T6	7	0,007	245	1,715	5,145	0,08	0,41	
T7	11	0,011	245	2,695	8,085	0,08	0,65	
T8	20	0,02	245	4,9	14,7	0,08	1,18	
			•		196,98		15,76	

COSTO DE AGUA

Consumo	Constante A PAGAR	
m3	+ impuestos	Total pagar
14	0,35	4,90

COTO TOTAL DE AGUA Y LUZ

Detalle	Costo	Días uso	Valor/día	subtotal	Producción KILOS	ו
Luz	15,76	49	0,32	15,76	1963,877	0
Agua	4,90	63	0,08	4,90	1963,877	0

Valor
KILO
0,0080
0,0025
0.011

C4: El costo total de un kilo de pollo vivo para Consumo de agua y Luz fue **0,01 Dólares**, con un periodo de 63 días de trabajo, es decir, 49 días de producción y 14 días de reposo.

C5.- Costo de Consumo de Alimento

Semana	Cantidad Kg	Costo saco de 40 Kg	costo del Kg de alimento	Precio kg	producción kg	Valor Kilo
1	102,808	17,25	0,43	44,34	1963,877	0,02
2	227,423	17,25	0,43	98,08	1963,877	0,05
3	402,489	17,25	0,43	173,57	1963,877	0,09
4	575,448	17,15	0,43	246,72	1963,877	0,13
5	716,503	17,15	0,43	307,20	1963,877	0,16
6	863,934	17,15	0,43	370,41	1963,877	0,19
7	937,332	17,05	0,43	399,54	1963,877	0,20
				1639,86		0,84

C5: El costo total de un kilo de pollo vivo para Consumo de Alimento fue **0,84 Dólares**. Este costo es el más alto de toda la producción.

C6.- Costos Medicamentos, Desinfectantes y Vitaminas

			Costo	Costo	producción	Valor
Concepto	Unidad	Cantidad	Unit.	Total	kg	Kilo
1. Vacunas						
Bronquitis	Dosis	1000	0,0035	3,50	1963,877	0,0018
New-Castle	Dosis	2000	0,0035	7,00	1963,877	0,0036
Gumboro	Dosis	1000	0,0045	4,50	1963,877	0,0023
2. Desinfectantes						
Frasco Cid 20	Litro	1	3,80	3,80	1963,877	0,0019
formol	Litro	1	2,15	2,15	1963,877	0,0011
Vinagre	Litro	1	2,25	2,25	1963,877	0,0011
Cal viva	Libra	245	0,06	14,7	1963,877	0,0075
3. Vitaminas						
Estrés Forte	Litro	1	14,80	14,8	1963,877	0,0075
Estrés Life plus	Litro	1	14,60	14,6	1963,877	0,0074
Enrofloxacina	Litro	1	15,80	15,8	1963,877	0,0080
Electro Ce	Litro	1	12,50	12,5	1963,877	0,0064
	·			95,6		0,0487

C6: El costo total de un kilo de pollo vivo para Costo de medicamentos fue **0,0487 Dólares**.

C7.- Costo de las aves

Nº	Costo	Total	producción	Valor
Pollos	Unitario		kg	KILO
810	0,50	405	1963,877	0,21

C7: El costo total de un kilo de pollo vivo para Costo de las aves fue de 0,21 Dólares.

C8.- GASTOS VARIOS

Detalle	Unidad	Cantidad	Costo Unit.	Costo Total	Producción kg	Valor kilo
Viruta	sacos	118	0,34	40,12	1963,877	0,0204
Tanques de gas	Unidad	18	2,00	36,00	1963,877	0,0183
Bandejas de Cartón	Unidad	27	0,35	9,45	1963,877	0,0048
Pintura negra	Galón	5	3,50	17,50	1963,877	0,0089
Alambre de luz Nº 12	Rollo (100 m)	1,5	30,50	45,75	1963,877	0,0233
Alambre de acero inoxd.	Libra	4	0,25	1,00	1963,877	0,0005
Transporte	unidad			45,00	1963,877	0,0229
				203,47		0,104

C8: El costo total de un kilo de pollo vivo para Gastos Varios fue de 0, 10 Dólares.

CT. COSTO TOTAL UN KILO DE POLLO VIVO.

El costo de un kilo de pollo vivo para todo el ensayo es igual a la sumatoria de todos los costos:

$$CT = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 =$$

C1	C2	C3	C4	C5	C6	C7	C8	CT=
0,13	0,03	0,02	0,01	0,84	0,05	0,21	0,10	1,39

El costo de un kilo de pollo vivo es de **1, 39 Dólares**, es decir el costo de la libra de pollo es de **0, 63 Dólares** para todo el ensayo

ANEXO 9. RENTABILIDAD

Ingresos:

DETALLE	UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO TOTAL
1. Venta de 789 pollos en pie	kilo	1963,877	1,39	2729, 79
2. Venta de Abono y fundas de alimento usadas	Saco	135	1,00	135, 000
				2864, 79

Se vendieron 789 pollos con un peso total de 1964 kilos a 1, 39 Dólares por kilo, además la venta del abono, que se obtuvo 5 fundas de abono por unidad experimental con un total de 135 fundas de abono. Los ingresos totales fueron de 2864, 70 Dólares.

Egresos:

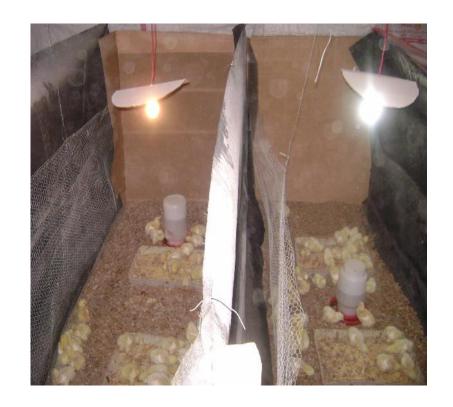
Costo	Costo Varios	Costo
Alimento	(equipos, medicamento, agua, luz, Mano de obra)	Total
1639,53	1082,69	2722,22

El total de gasto fue de **2722, 22 Dólares**. Resultado que se obtiene de la suma de todos los gastos anteriormente calculados para todo el ensayo.

RENTABILIDAD

Ingresos	2864, 79
Egresos	2722,22
TOTAL	142,57

La rentabilidad de este ensayo es de 142, 57 Dólares, resultado que se obtiene de la diferencia de ingresos con egresos.


Manejo de Cortinas externas - entrada y salida de aire

Manejo cortinas negras - paso de la luz y de aire

MANEJO DE CORTINAS



Características de la unidad experimental

Distribución de foco Incandescente y Fluorescente

RECEPCIÓN DE LAS AVES

Pesaje semanal de los pollos

Venta de los pollos – pesaje por tratamiento

PESAJE DE LOS POLLOS