UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERIA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

ESCUELA DE INGENIERIA AGROINDUSTRIAL

"ELABORACION DE SABILA Y PIÑA EN ALMIBAR"

Tesis previa a la obtención del Título de:

Ingeniera Agroindustrial

AUTOR

MARCELA MENA

DIRECTOR

ING. WALTER QUEZADA M.Sc.

Ibarra – Ecuador 2007

UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERIA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

ESCUELA DE INGENIERIA AGROINDUSTRIAL

"ELABORACION DE SABILA Y PIÑA EN ALMIBAR"

Tesis revisada por el Comité Asesor por lo cual se autoriza su presentación como requisito parcial para obtener el Título de:

Ingeniera Agroindustrial

APROBACI	ON:
Ing. Walter Quezada DIRECTOR DE TESIS	Firma
Ing. Ángel Satama ASESOR	Firma
Dra. Lucía Yépez ASESOR	Firma
Dra. Lucía Toromoreno ASESOR	Firma

Las ideas, conceptos, cuadros figuras y más que se presentan en está investigación son responsabilidad del autor

Marcela Mena

DEDICATORIA

El presente trabajo quiero dedicar a mi padre Hugo, que ha sido la fuerza en todo este tiempo de trabajo y constancia.

A mi esposo Danny que con su compresión ha sabido ayudarme cuando más necesité.

A mis hermanos Hugo y Maura y a toda mi familia que siempre me ha brindado su apoyo.

AGRADECIMIENTO

A Dios por darme salud, amor, una familia, amigos y la valentía para salir adelante.

A mis padres, de manera especial a mi madre que con su ejemplo me ha enseñado los valores de la honestidad y la veracidad.

Agradezco a todos los docentes que a lo largo de mi vida estudiantil contribuyeron con mi formación personal y académica.

De manera especial al Ingeniero Walter Quezada, quién con sus conocimientos y experiencia me supo dirigir de la mejor manera en el desarrollo de la tesis.

Un agradecimiento a la Dra. Lucía Yépez, Dra. Lucía Toromoreno, Ing. Ángel Satama y al Ing. Marco Cahueñas quienes me asesoraron en la realización del presente trabajo.

ÍNDICE

PRESENTACION

DEDICATORIA

AGRADECIMIENTO

CAPÍ	CAPÍTULOS Pág.		
Capít	ulo I. GENERALIDADES		
1.1.	Introducción	1	
1.2.	Importancia	3	
1.3.	Objetivos	4	
1.3.1.	Objetivo General.	4	
1.3.2.	Objetivo Específico.	4	
1.4.	Hipótesis	5	
CAPI	TULO II. MARCO TEORICO		
2.1.	Sábila	6	
2.1.1.	Origen y distribución geográfica	6	
2.1.2.	Clasificación botánica	7	
2.1.3.	Descripción Morfológica.	7	
2.1.4.	Estructura celular del tejido	8	
2.1.5.	Variedades	9	
2.1.6.	Condiciones de cultivo de la sábila	9	
2.1.7.	Composición química	10	
2.1.8.	Propiedades nutricionales y funcionales del Aloe Vera	11	

2.1.9.	Propiedades y usos de la sábila	12
2.1.10.	Contraindicaciones.	12
2.1.11.	Aloe vera como componente de un alimento funcional	13
2.2.	Piña	13
2.2.1.	Origen y distribución geográfica	13
2.2.2.	Clasificación taxonómica	13
2.2.3.	Descripción botánica.	14
2.2.4.	Variedades	14
2.2.5.	Condiciones para el cultivo de la piña	14
2.2.6.	Composición química	15
2.2.7.	Propiedades e indicaciones.	15
2.2.8.	Usos de la piña	16
2.3.	Frutas en almíbar	16
2.3.1.	Proceso de elaboración de frutas en almíbar	18
2.3.1.1	.Descripción del proceso de elaboración de frutas en almíbar	19
CAPI	ΓULO III. MATERIALES Y METODOS.	
3.1.	Materiales y equipos	22
3.1.1.	Materia prima e insumos	22
3.1.2.	Materiales y equipo de proceso	22
3.2.	Métodos	23
3.2.1	Localización	23
3.2.2.	Factores en estudio.	23
3.2.3.	Tratamientos	24
3.2.4.	Diseño experimental	24

3.2.4.1	1 Características del experimento	25
3.2.4.2	2. Esquema del análisis de varianza	25
3.2.5.	Análisis Funcional	25
3.2.6.	Variables evaluadas	26
3.2.6.1	1. Variables Cuantitativas	26
3.2.6.2	2. Variables Cualitativas	27
3.3.	Manejo específico del experimento	28
3.3.1.	Descripción del proceso	31
4.	RESULTADOS Y DISCUSION	
4.1.	Temperatura y tiempo de escaldado de los trozos de sábila	39
4.2.	Análisis de sólidos solubles, densidad y viscosidad del jarabe	•••
	preparado	40
4.3.	Análisis estadístico de la variable sólidos solubles al finalizar	
	el período de cuarentena	42
4.4.	Análisis estadístico de la variable densidad al finalizar el período	
	el período de cuarentena	47
4.5.	Análisis estadístico de la variable viscosidad al finalizar el	
	período de cuarentena	51
4.6.	Análisis sensorial del producto terminado	55
4.6.1.	Color	55
4.6.2.	Olor	56
4.6.3.	Sabor	57
4.7.	Análisis físico-químico de sábila y piña en almíbar	59

4.8.	Análisis microbiológico61
4.9.	Balance de materiales para obtener sábila y piña en almíbar61
4.9.1.	Balance de Materiales para la Elaboración de sábila y piña en
	almíbar para T6 (21°Brix-20% sábila 80% piña)63
4.9.2.	Balance de Materiales para la Elaboración de sábila y piña en
	almíbar para T9 (30°Brix-20% sábila 80% piña)64
4.9.3.	Balance de Materiales para la Elaboración de sábila y piña en
	almíbar para T8 (30°Brix-50% sábila 50% piña)65
4.10.	Análisis económico
5. CO	NCLUSIONES Y RECOMENDACIONES
5.1.	Conclusiones
5.2.	Recomendaciones
RESU	MEN
SUMN	MARY
BIBLI	OGRAFIA
ANEX	XOS

INDICE DE CUADROS

CUADRO 1.	Composición química de la sábila10	0
CUADRO 2.	Composición química de la parte comestible del fruto (100 g)1	5
CUADRO 3.	Tratamientos en estudio	4
CUADRO 4.	Análisis de Varianza2	5
CUADRO 5.	Temperaturas y tiempos de escaldado de los trozos de sábila4	0
CUADRO 6.	Sólidos solubles, densidad y viscosidad del jarabe preparado4	1
CUADRO 7.	Sólidos solubles al finalizar el período de cuarentena4	3
CUADRO 8.	Análisis de varianza para la variable sólidos solubles al	
	finalizar el período de cuarentena44	1
CUADRO 9.	Prueba de tukey para tratamientos	5
CUADRO 10.	Prueba DMS para el Factor A (sólidos solubles en el jarabe)4:	5
CUADRO 11.	Prueba DMS para el Factor B (% de trozos de sábila y piña)40	5
CUADRO 12.	Densidad al finalizar el período de cuarentena4	7
CUADRO 13.	Análisis de varianza para la variable densidad al	
	finalizar el período de cuarentena	3
CUADRO 14.	Prueba de Tukey al 5% para Tratamientos	9
CUADRO 15.	Prueba DMS para el Factor A (sólidos solubles del jarabe)4	9
CUADRO 16.	Prueba DMS para el Factor B (% de trozos de sábila piña)50)
CUADRO 17.	Viscosidad (centipoise) al finalizar el período de cuarentena5	1
CUADRO 18.	Análisis de varianza para la variable viscosidad al	
	finalizar el período de cuarentena52	2
CUADRO 19.	Prueba de Tukey al 5 % para tratamientos	3
CHADRO 20	Prueha DMS para el Factor A (sólidos solubles del jarabe) 5	3

CUADRO 21. Prueb	oa DMS para el Factor B (% de trozos de sábila piña)5	54
CUADRO 22. Análi	sis de Freedman para las variables de la evaluación	
Senso	rial5	59
CUADRO 23. Resu	ltados de los análisis Físico-Químico6	50
CUADRO 24. Resul	tados de los análisis Microbiológicos6	51
CUADRO 25. Rend	limiento de la hoja de sábila, fruto de piña y	
produ	acto terminado6	52
CUADRO 26. Costo	de producción para la obtención de sábila y piña	
en aln	níbar T6 (21°Brix- 20 % sábila 80% piña)6	56
INDICE DE FOTO	GRAFIAS	
FOTOGRAFIA 1.	Hoja entera y corte transversal de la sábila	8
FOTOGRAFIA 2.	Células de la sábila en estado fresco (X 100 aumentos)	.9
FOTOGRAFIA 3.	Refractómetro	26
FOTOGRAFIA 4.	Densímetro2	26
FOTOGRAFIA 5.	Hojas de sábila3	31
FOTOGRAFIA 6.	Lavado de la sábila	32
FOTOGRAFIA 7.	Desinfección de la sábila.	32
FOTOGRAFIA 8.	Despuntado y separación de filos de la hoja de sábila3	33
FOTOGRAFIA 9.	Fileteado de la sábila	33
FOTOGRAFIA 10.	Troceado de la sábila	34
FOTOGRAFIA 11.	Piña3	35
FOTOGRAFIA 12.	Troceado de la piña.	36
FOTOGRAFIA 13.	Llenado	37

FOTOGRAFIA 14.	Exhausting37
FOTOGRAFIA 15.	Esterilización
FOTOGRAFIA 16.	Enfriamiento
INDICE DE GRAFI	cos
GRAFICO 1. Repres	sentación gráfica de la relación entre sólidos
soluble	es y densidad41
GRAFICO 2. Repres	entación gráfica de la relación entre sólidos
soluble	es y densidad42
GRAFICO 3. Repres	sentación gráfica de la variable sólidos solubles
al final	lizar el período de cuarentena46
GRAFICO 4. Repres	entación gráfica de la variable densidad al finalizar
el perío	odo de cuarentena50
GRAFICO 5. Repres	entación gráfica de la variable viscosidad al finalizar
el perío	odo de cuarentena54
GRAFICO 6. Caracte	erización del color de sábila y piña en almíbar56
GRAFICO 7. Caracte	erización del olor de sábila y piña en almíbar57
GRAFICO 8. Caracte	erización del sabor de sábila y piña en almíbar58