

UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERÍA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

CARRERA DE INGENIERÍA AGROINDUSTRIAL

ENVOLTURA COMESTIBLE A BASE DE CELULOSA MICROCRISTALINA DE BAGAZO DE CAÑA DE AZÚCAR

AUTORA: Bastidas Flores Vanessa del Carmen

DIRECTORA: Dra. Lucía Yépez Vásquez, Msc.

El Ecuador posee diversas fuentes de fibra vegetal, una de las más abundantes sea la caña de azúcar con 5'086.970 t, las cuales producen 1'300.000 t de bagazo

El uso de embalajes no biodegradables principalmente en el empaque de alimentos por su bajo costo y rentable fabricación

El inadecuado manejo de los residuos industriales y uso de materiales no biodegradables.

Problema

Justificación

Desconocimiento del valor de subproductos

Aprovechamiento de residuos

Falta de procesos tecnológicos

Demanda de envases reciclables, biodegradables o comestibles Interés por el medio ambiente

Sustituir empaques sintéticos que cumplan con el mismo propósito

Objetivo general

Obtener una envoltura comestible a base de celulosa microcristalina de bagazo de caña de azúcar

Objetivos específicos

1. Caracterizar mediante análisis fisicoquímicos la celulosa microcristalina obtenida del bagazo de caña de azúcar.

2. Evaluar el efecto de la cantidad y tipo de plastificante (glucosa líquida o glicerol), y la cantidad de aceite de orégano en la obtención de una envoltura comestible a base de celulosa microcristalina de bagazo de caña de azúcar.

3. Evaluar las propiedades mecánicas (tensión máxima y elongación de ruptura), de barrera, solubilidad y color de la envoltura.

4. Evaluar las características organolépticas, microbiológicas y fisicoquímicas (mejor tratamiento) para determinar la calidad de las envolturas comestibles de celulosa microcristalina.

Hipótesis

Hipótesis Nula

La cantidad y tipo de plastificante (glucosa líquida o glicerol) y la cantidad de aceite de orégano NO INFLUYE en las propiedades mecánicas, de barrera, solubilidad y color de la envoltura comestible a base de celulosa microcristalina obtenida del bagazo de caña de azúcar.

Hipótesis Alternativa

La cantidad y tipo de plastificante (glucosa líquida o glicerol) y la cantidad de aceite de orégano INFLUYE en las propiedades mecánicas, de barrera, solubilidad y color de la envoltura comestible a base de celulosa microcristalina obtenida del bagazo de caña de azúcar.

MARCO TEÓRICO

Bagazo

Material procedente de la molienda de los tallos de caña después de ser extraído el jugo.

Humedad : 13,91

Celulosa: 44,87

Lignina: 14,40

Celulosa microcristalina

La celulosa microcristalina es una forma no fibrosa de la celulosa en la que la pared celular de la fibra ha sido descompuesta en fragmentos mediante tratamientos químicos.

Películas comestibles

Una película comestible es una capa preformada y delgada elaborada con material comestibles y la cual una vez elaborada puede ser colocada sobre el alimento o entre los componentes del mismo.

Caracterización del área de estudio

Materia prima

Ingenio azucarero

Región: Zona 1

Provincia: Imbabura

Cantón: Ibarra

Lugar: Unidades Edu-productivas de la carrera de

Ingeniería Agroindustrial-UTN

Situación Geográfica

Altitud: 2250 m.s.n.m

Características Climáticas

Temperatura media anual: 18,9 °C

Humedad Relativa media anual: 73%

Fuente: Estación de Meteorología e Hidrología de la ciudad de Ibarra, Granja Experimental "Yuyucocha" de la Universidad Técnica del Norte, (2014)

Materiales y equipos

FACTOR A

FACTOR B

FACTOR C

- Tipo de plastificante
- Cantidad de plastificante
- Cantidad aceite de orégan

- 🔲 A₁: glucosa líquida
- B₁: 20%

□ C₁: 10 %

 \square A₂: glicerol

 \square B₂: 30%

 \Box C₂: 20%

☐ B₃: 40%

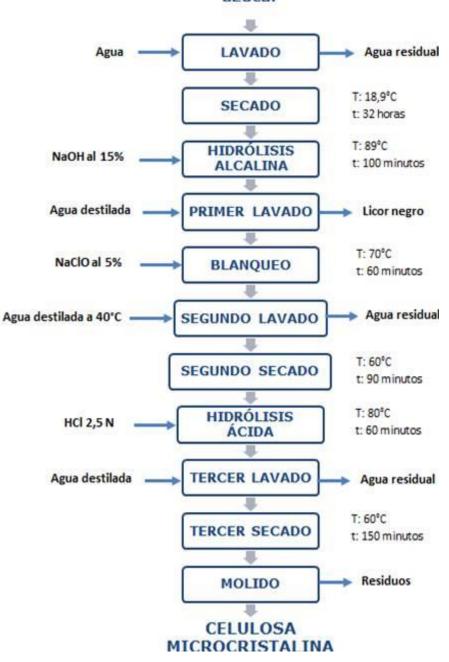
Diseño de la investigación

 Se empleó un Diseño Completamente al Azar con arreglo factorial A x B x C con 3 repeticiones

Características del Experimento

- Número de repeticiones por tratamiento: Tres (3)
- Número de tratamientos: Doce (12)
- Número de unidades experimentales: Treinta y seis (36)

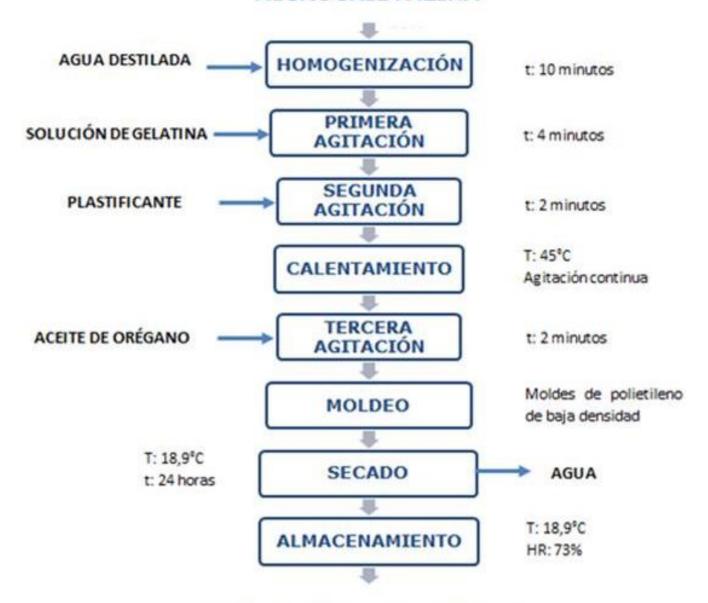
Unidad experimental


Cada unidad experimental estuvo conformada por 0,14 ml de solución obtenida por cada cm² que fueron vertidos en cajas Petri de plástico de 8 cm de diámetro (50,26cm² de área).

Manejo Específico del Experimento

Obtención de celulosa microcristalina a partir del bagazo de caña de azúcar

Bagazo de caña de azúcar



Obtención de envolturas comestibles a base de celulosa microcristalina

CELULOSA MICROCRISTALINA

MICROCRISTALINA

Variables evaluadas

Cuantitativas

Cualitativas

Resistencia a la tracción

Norma ASTM D882-97

Microestructura de las películas

• Microscopía óptica, aumento de 10X

Elongación a la ruptura

• Ecuación $\varepsilon = \frac{l-l_o}{l_o} * 100$

Análisis microbiológico

• Recuento de mohos y levaduras

Grado de transmisión de vapor de agua

Norma Chilena Oficial NCh2098

Características organolépticas

• Pruebas no paramétricas FRIEDMAN

Solubilidad en agua

 Método propuesto por Gontard et al, (1994) con adaptación.

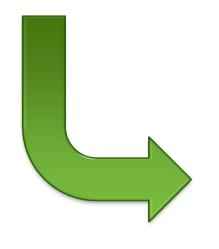
Análisis fisicoquímicos

- Fibra: AOAC 978.10.
- Carbohidratos totales: cálculos.
- Proteína: AOAC 920.87.
- Contenido de cenizas.: AOAC 923.03.
- Extracto etéreo: AOAC 920.85.
- Humedad: AOAC 925.10.

Método L*a*b

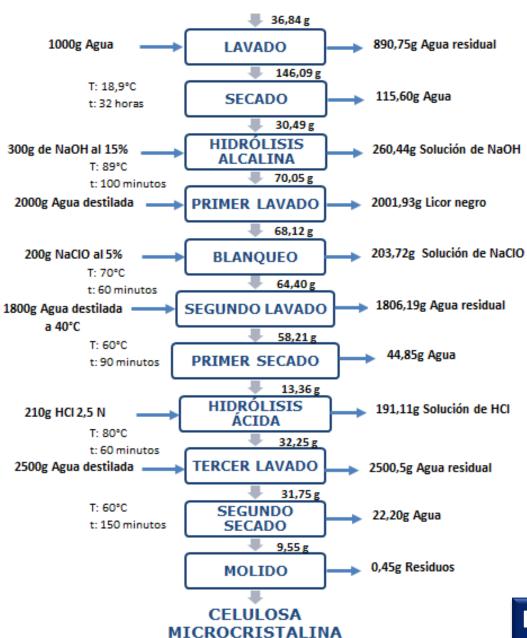
$$\Delta E = \sqrt{(L^* - L)^2 + (a^* - a)^2 + (b^* - b)^2}$$

RESULTADOS Y DISCUSIÓN


Caracterización de la celulosa microcristalina del bagazo de caña de azúcar

BAGAZO

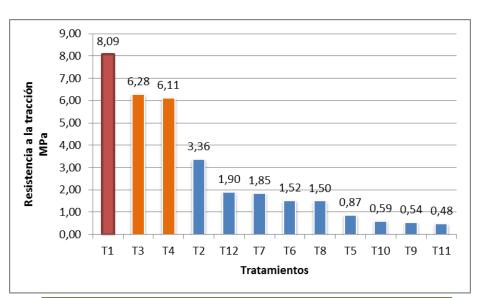
Humedad 9,16%


Contenido de celulosa 56,83%

CELULOSA MICROCRISTALINA

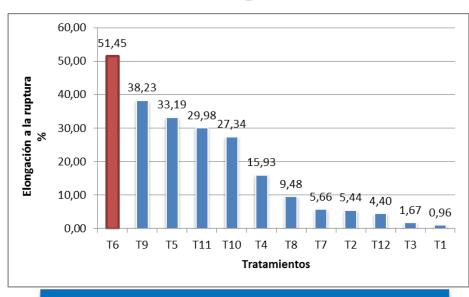
_	Celulosa microcristalina obtenida del bagazo de caña de azúcar	Celulosa microcristalina comercial (Barros,2009)		
Humedad	6,1%	No más del 7%		
Cenizas	3,92%	No más del 0,5%		
Contenido de celulosa	81,79 %	97%		
Contenido de lignina	8,20 %			
Solubilidad en agua	3,16%	No más del 0,24%		
Descripción	Polvo fino Casi blanco Inodoro	Polvo fino y blanco o casi blanco, inodoro		

Bagazo de caña de azúcar



Rendimiento= 24,70% Costo= 0,75 USD/g

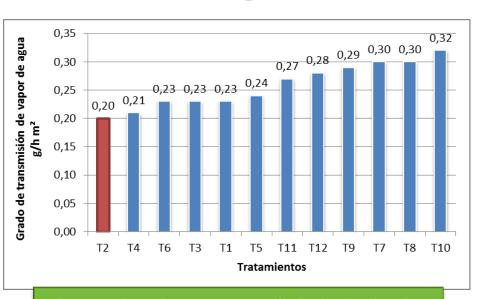
9,10 g


Análisis de las propiedades mecánicas

Resistencia a la tracción

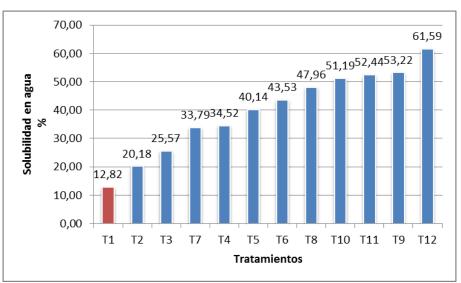
La formulación de la envoltura si influye significativamente en la resistencia a la tensión.

% Elongación


el % elongación del producto terminado depende de la cantidad de plastificante y ácido graso.

5 MEJORES TRATAMIENTOS

Tratamiento	Descripción	Elongación a la ruptura (%)
Т6	40% de glucosa líquida, 10% de aceite de orégano, 10% de gelatina, 40% celulosa microcristalina	51,45
Т9	30% de glicerol, 10% de aceite de orégano, 10% de gelatina, 50% celulosa microcristalina	38,23
Т5	40% de glucosa líquida, 20% de aceite de orégano, 10% de gelatina, 30% celulosa microcristalina	33,19
T11	40% de glicerol, 10% de aceite de orégano, 10% de gelatina, 40% celulosa microcristalina	29,98
T10	30% de glicerol, 20% de aceite de orégano, 10% de gelatina, 40% celulosa microcristalina	27,34


Grado de transmisión de vapor de agua y Solubilidad en agua

Permeabilidad al vapor de agua

El grado de permeabilidad de las envolturas depende del tipo de plastificante utilizado.

Material soluble en agua

La solubilidad del producto final depende de los tres factores

Color

Luminosidad

Cromaticidad en a Cromaticidad en b

- 94.38 y 100.84
 - Consideran claras

- Negativos y próximos a cero
- No presenta roja/verde

- Son positivos
- Presentan coloración amarilla

Análisis microscópico

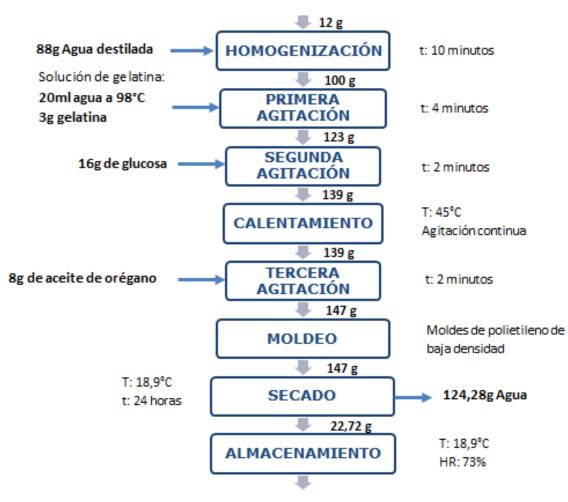
Estructura homogénea, firme y mayormente compacta

Estructura menos densa y se puede apreciar las fibras más claramente

Análisis microbiológico

PARÁMETROS UNIDAD		RESULTADOS					LIMITE	MÉTODO
ANALIZADOS	UNIDAD	T6	Т9	T5	T11	T10	PERMISIBLE	DE ENSAYO
Recuento de mohos	UPM/g	410	1200	550	750	560	1,0 x 10 ³	
Recuento de	UPL/g	800	780	630	820	400	1,0 x 10 ³	AOAC 997.02
levaduras	51 L/g	000	700	000	020	400	1,0 % 10	

Análisis organoléptico


	VALOR	VALOR	VALOR	
VARIABLE	CALCULADO	TABULAR	TABULAR	TRATAMIENTOS
	\mathbf{X}^2	5%	1%	
Color	6,55 *	0,71	13,27	T6 T9 T10
Aspecto	6,63 *	0,71	13,27	T9 T10 T6
Olor	2,27 *	0,71	13,27	T5 T9 T6
Sabor	11,59 *	0,71	13,27	T10 T11 T6
Solubilidad en la boca	10,47 *	0,71	13,27	T10 T11 T9

Análisis fisicoquímicos

PARÁMETROS	MÉTODO	UNIDAD	RESULTADOS		
ANALIZADOS			T10	Т6	
Fibra	AOAC 978.10	%	26	28	
Proteína total	AOAC 920.87	%	9,50	8,41	
Carbohidratos totales	Cálculo	%	64,23	78,54	
Humedad	AOAC 925.10	%	25,48	11,00	
Cenizas	AOAC 923.03	%	0,45	0,10	

Balance de materiales para el mejor tratamiento

ENVOLTURAS DE CELULOSA MICROCRISTALINA

22,72 g

T6

Rendimiento= 16,02% Costo= 0,25USD/envoltura

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- La caracterización fisicoquímica de la celulosa microcristalina de bagazo de caña de azúcar mostró que el contenido de celulosa es de 81,79%, lignina 8,20%, cenizas 3,92%, humedad 6,10% y se presenta como polvo fino, casi blanco e inodoro, con lo cual, se determina que posee características similares a la celulosa que se encuentra comercialmente.
- La cantidad de plastificante fue el factor de mayor efecto sobre las propiedades mecánicas de las películas, donde el nivel más alto de 40% permite una elongación a la ruptura de 51,45%; lo que indica que la flexibilidad de las envolturas depende directamente de la cantidad de plastificante utilizado.

CONCLUSIONES

- Las envolturas comestibles a base de celulosa microcristalina de bagazo de caña de azúcar presentaron poca resistencia mecánica 1,52Mpa, alta elongación a la ruptura 51,45%, baja permeabilidad al vapor de agua 0,23g/hm2, intermedia solubilidad al agua 43,53% y la coloración fue clara, levemente amarilla en comparación con estudios realizados en películas de almidón modificado de yuca (Morales, 2014), zeína (Rojas, 2010) y almidón de maíz y yuca (Muñoz, 2014). Por lo que se concluye que el mejor tratamiento es T6 (40% de glucosa líquida, 10% de aceite de orégano, 10% de gelatina, 40% celulosa microcristalina) ya que posee características adecuadas para ser utilizadas como empaque de alimentos.
- ❖ Del análisis de resultados de las pruebas mecánicas de elongación a la ruptura del producto terminado, se concluye que los 5 mejores tratamientos fueron: T6, T5, T9, T10 Y T11, ya que presentan mayor elasticidad con valores entre 51,54% a 27,34%; con lo cual, se obtiene envolturas con flexibilidad para adaptarse a las diferentes formas que presente el alimento.

CONCLUSIONES

- Los análisis fisicoquímicos demuestran que la envoltura tiene un considerable aporte de fibra equivalente al 28% y proteína de 8,41%; esto se debe a la celulosa por su naturaleza de fibra que al mezclarse con la gelatina aporta un considerable porcentaje de proteína.
- La cantidad y tipo de plastificante (glucosa líquida o glicerol) y la cantidad de aceite de orégano influyen en las variables cuantitativas de las envolturas comestibles a base de celulosa microcristalina de bagazo de caña de azúcar, por lo que se acepta la hipótesis alternativa, considerando que estadísticamente el mejor tratamiento es T6 (40% de glucosa líquida, 10% de aceite de orégano, 10% de gelatina, 40% celulosa microcristalina) por poseer las mejores características mecánicas, fisicoquímicas, nutricionales y organolépticas.

RECOMENDACIONES

- ❖ Estudiar la obtención de la celulosa microcristalina a partir del bagazo de caña de azúcar utilizando tratamientos físicos o enzimáticos para optimizar su rendimiento.
- A la matriz de la película incorporar un conservante natural para mantener la estabilidad del producto durante su almacenamiento y lograr preservar las propiedades mecánicas (tensión máxima y elongación de ruptura), de barrera, solubilidad y color de la envoltura.
- Realizar el secado de las envolturas en estufa con la finalidad de disminuir el tiempo del proceso y optimizar recursos, para lo cual, se recomienda utilizar temperaturas de entre 30 a 35°C y tomar en cuenta el flujo de aire del sistema para evitar la dispersión de la solución en los moldes.
- * Realizar pruebas de degradabilidad a las envolturas para evaluar el cambio que se produce en condiciones ambientales.
- Plantear un estudio del tiempo de vida útil y condiciones de almacenamiento adecuadas de las envolturas comestibles, con el fin de establecer parámetros para su durabilidad.

