
Implementation Guidelines for the
Optimal-Sampling-inspired Self-Triggered Control

Juan Benavides and Carlos Xavier Rosero
Universidad Técnica del Norte, 100102, Ibarra, Ecuador

Email: {jpbenavidesp,cxrosero}@utn.edu.ec

Abstract—In a self-triggered scenario the controller is allowed
to choose when the next sampling time should occur and which
control action will be maintained until that happens. This emerg-
ing control type is aimed at decreasing the use of computational
resources (processor and network) while preserving the same
performance control as the one obtained via a controller with
periodic sampling. Within this framework it has been developed
recently a self-triggered control technique inspired by a sam-
pling pattern whose optimal density minimizes the control cost;
this approach is called ”optimal-sampling inspired self-triggered
control”. However the strategies used to implement it on real
microprocessor-controlled systems working under disturbances
are still unclear, then this paper addresses some implementation
guidelines to make this theory applicable to actual controllers.
The proposed solution comprises a new conception of this tech-
nique based on a closed-loop observer as well as making strategies
for implementation of computationally expensive processes by
lightweight polynomials fitted at design stage. Simulations and
practical experiments confirm the solution is effective and there
could be an open research topic concerning observation in
optimal-sampling self-triggered control techniques.

I. INTRODUCTION

Nowadays controllers are implemented on digital systems
made up of microprocessors and communication networks.
Their general functions are sampling the states, calculating the
control action and finally performing it over the plant along
the runtime.

In a periodic fashion the execution of various control tasks
guaranteeing closed-loop performance, needs faster micro-
processors and/or higher-speed networks. Some alternatives
for efficient resource consumption within the nonperiodic
control paradigm are the event-triggered control (ETC), and
the self-triggered control (STC). They solve the fundamental
problem of determining both optimal sampling and process-
ing/communication strategies.

In STC, proposed by [1] and [2], each time the control
task is triggered, both the time the next sampling should
be performed (sampling rule) and the control action which
should be maintained until this event happens, are estimated.
The design of the sampling rule follows several strategies
handled by control and/or resource constraints. Within these
paradigms the optimal-sampling rules are oriented to optimal
control performance, in the sense of producing a sequence of
control inputs which are capable to deliver a control cost less
than an optimal control cost. Consider the latter as the one
corresponding to the minimum cost produced by the periodic
discrete-time linear quadratic regulator (LQR) in [3].

Several approaches aimed at solving the problem of deter-
mining optimal sampling rules have been addressed recently.
An optimal sampling pattern proposed in [4] inspired the
approach in [5] which describes a sampling rule that generates
approximated control actions by solving the continuous-time
LQR problem at each sample time. The performance guarantee
is based on a number of samples over a time interval with a
given sampling constraint. The sampling time is calculated by
the derivative of a continuous-time LQR problem and the rule
produces smaller sampling times while the control action has
more variation.

Though the optimal-sampling in [4] and [5] has standard
cost lower than the one obtained by periodic sampling tech-
niques, and even than other optimal-sampling techniques, it
has still many weaknesses. Since research is still new, there
are many open topics among which stand out two: (a) making
rules for implementation on actual microprocessor systems,
and (b) adapting the approach to cases with disturbances.

To solve the problem (a) in [5] both a simulated and an
experimental set-up are described. They consider a plant to be
controlled and a real-time kernel over certain hardware, how-
ever a deeper explanation of the paradigm that a designer of
control systems should use to write code on a microprocessor
system is not shown.

With regard to the solution to problem (b) the approach in
[4] could be restated by inserting disturbances in the model
and developing new theory, or otherwise assuming known or
unknown disturbances and applying observation techniques. A
settlement is presented in [6] where the control of a linear plant
in presence of unknown disturbances is described considering
a different self-triggered strategy to that used herein.

To overcome the problems mentioned above, the contribu-
tion of this paper is twofold. On the one hand, the imple-
mentation of the algorithm from [5] on microprocessor-based
controllers, replacing the online use of the LQR problem by
a lightweight polynomial fitted at design stage (offline). On
the other hand the application of a time-varying closed-loop
observer on the approach in [5], in order to make it less
sensitive to noise.

The rest of the paper is organized as follows. Section II
introduces certain theoretical knowledge involving optimal-
sampling-inspired self-triggered control (OSISTC) as well as
state observation. Section III presents strategies and models
used to develop the approach, and also describes guidelines for
implementing the solution. Section IV evaluates the numerical

results obtained. At the end, section V concludes the article.

II. BACKGROUND

A. Continuous-time dynamics

Consider the continuous-time linear time-invariant system
(LTI) described in state space representation by{

ẋ(t) = Acx(t)+Bcu(t)
y(t) =Cx(t)

, given x(0) = x0 (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the continuous
control input signal. Ac ∈ Rn×n and Bc ∈ Rn×m describe the
dynamics of the system, and C ∈ Rq×n is the weight matrix
used to read the state; x0 is the initial value of the state.
Variables m, n and q denote the dimensions of states, inputs
and outputs respectively.

B. Sampling

The control input u(t) in (1) is piecewise constant meaning
that it remains with the same value between two consecutive
sampling instants

u(t) = u(k) ∀t ∈ [tk−1, tk), (2)

where the control input u(k) is updated at discrete times
k ∈ N and the sampling instants are represented by tk ∈ R;
consecutive sampling instants are separated by sampling in-
tervals τk thus the relationship between instants and intervals
is described by

τk = tk+1− tk, tk =
k−1

∑
i=0

τi for k ≥ 1. (3)

C. Discrete-time dynamics

In periodic sampling a constant sampling interval τ is
considered, then the continuous-time dynamics from (1) is
discretized using methods taken from [3] by

Ad = eAcτ , Bd =
∫

τ

0
eAc(τ−t) dt Bc, (4)

resulting in the following discrete-time LTI system:{
x(k+1) = Adx(k)+Bdu(k)
y(k) =Cx(k)

, given x(0) = x0 (5)

where the state x(k) is sampled at tk.
The location of the system poles (or eigenvalues of the

dynamics matrix when state space representation is used) is
fundamental to determine/change the stability of the system.
Poles in continuous-time pc become poles in discrete-time pd
through

pd = epc∗τ , (6)

technique also taken from [3].

D. Linear quadratic regulator

The LQR optimal control problem allows to find an optimal
input signal that minimizes the continuous-time and discrete-
time infinite-horizon cost functions in (7) and (8) respectively.

Jc =
∫

∞

0
(xT

(t)Qcx(t)+2xT
(t)Scu(t)+uT

(t)Rcu(t))dt, (7)

Jd =
∞

∑
0
(xT

(k)Qdx(k)+2xT
(k)Sdu(k)+uT

(k)Rdu(k)). (8)

Regarding dimensionality in (7) and (8), weight matrices
Qc,Qd � 0 ∈ Rn×n are positive semi-definite, Rc,Rd � 0 ∈
Rm×m are positive definite, and Sc,Sd ∈ Rn×m.

E. Optimal sampling-inspired self-triggered control

The approach in [5] involves designing both a sampling rule
as a piecewise control input at the same time, such that the
LQR cost is minimized. Additionally the execution periodicity
of the controller is relaxed thereby decreasing the consumption
of resources. The sampling rule is

τk = τmax
1

τmax
η
|Kc(Ac +BcKc)x(k)|α +1

(9)

where an upper bound on the sampling intervals is given
by τmax; similarly η modifies the degree of density of the
sampling sequence (smaller η yields denser sampling instants
and viceversa). Minimizing the continuos-time cost function
(7) an optimal continuous-time feedback gain Kc is found
once. According to [4] and [5] there exist optimal settings for
the exponent α ≥ 0 which influences the density of the samples
set; with α = 0 the sampling becomes regular (periodic).

Additionally, from [5] the piecewise optimal control signal
expressed in linear state feedback form is

u(k) =−Kd(τk)x(k), (10)

where Kd(τk) is calculated at each controller execution. Its
value is obtained by solving the discrete-time LQR problem
with (8) considering a fixed sampling period τk.

F. Discrete-time observer

To implement any state feedback controller like that seen in
(10) knowledge on the complete state vector x(k) is required,
however often sensors only provide measurements of the
output y(k), without considering disturbances as shown in
(5). Thus, it appears the need to reconstruct missing state-
variable information necessary for control; that is achieved by
estimating the state x(k) only measuring the output y(k) and
knowing the control input u(k) applied to the system.

An observer constitutes a computer copy of the dynamic
system fed in parallel by the same signal u(k); for instance
the Luenberger observer [7] is a state estimator which works
properly in presence of unknown disturbances. See [3] for
better understanding.

The Luenberger observer in Fig. 1 is widely used to correct
the estimation x̂(k+1) with a feedback from the observer’s
output error ẽ(k); the deduced equation is

x̂(k+1) = Ad x̂(k)+Bdu(k)+Ld
[
y(k)− ŷ(k)

]
, (11)

Dynamical process

State observer

Bd z−1I C

Ad

x(k+1) x(k) y(k)

Bd

−Kd

Cz−1I

Ld

Ad

u(k)

û(k)

ŷ(k)

ẽ(k)

x̂(k+1) x̂(k)

Fig. 1. Discrete-time Luenberger state observer

ω(t)

u(k)

u(t)

x̂(k)

τk

y(k)

y(t)
Next sample at
tk+1 = tk + τk

Fig. 2. Architecture of the self-triggered feedback control system with
observation. Solid lines denote continuous-time signals and dashed lines
denote signals updated only at each sampling time.

where x̂(k+1) ∈ Rn is the state estimate and ŷ(k) ∈ Rq is the
output estimate; Ad , Bd , and C have the appropriate dimensions
and are explained in greater detail through (4) to (5). Ld ∈Rn×q

is the observer gain matrix.

III. IMPLEMENTATION GUIDELINES

A. Optimal-sampling-inspired self-triggered control in prac-
tice

Theory on OSISTC does not consider noise (ω(t) in Fig. 2),
therefore it is necessary to use some additional strategies for
its practical application on a plant under perturbations.

Figure 2 shows the proposed self-triggered architecture in
which the use of a discrete-time observer stands out. This
configuration has as disadvantage that the observer needs to
solve a new pole placement at each execution since the discrete
dynamics-matrices and the discrete-poles are dependent on
the sampling interval τk. This implies that the observer has
a different gain matrix Ld at each execution. Considering the
changing dynamics the system in (11) becomes

x̂(k+1) = Ad(τk)x̂(k)+Bd(τk)u(k)+Ld(τk)

[
y(k)− ŷ(k)

]
, (12)

where Ad(τk) and Bd(τk) are discretized matrices for a sampling
interval τk, u(k) is the linear piecewise control action calculated
from self-triggered strategy in (10), and Ld(τk) ∈ Rn×q is the
gain matrix of the sampling-dependent observer.

B. Problems considered

There are several drawbacks in assembling both OSISTC
controller and time-varying observer on a real-time control
system.

The first issue has to do with calculation of the controller
gain matrix Kd(τk) in (10) by solving the discrete LQR problem
in (8) through recursive computation of the discrete algebraic
Ricatti equation (DARE) until convergence [3]. The second
issue is the pole placement solved by Ackermann’s formula
[8] in order to obtain the observer gain matrix Ld(τk).

Both processes are computationally expensive and must
be performed at each controller execution; they are difficult
to implement in real time on a embedded system with low
computational capacity. If the execution time of the control
task is too close to the minimum sampling interval, they appear
undesirable effects such as jitter [9]. Particularly, in OSISTC
the worst case scenario comes out when the rate of change of
the control action is maximal, causing a highest density in the
emergence of samples (minimum τk).

To solve the problems above it is proposed to perform
certain offline mechanisms which produce approximations to
be used online in order to optimize the processor utilization.

C. Set of sampling intervals T

The proposed strategy includes offline calculation of a set of
all possible controller gain matrices Kd(τk), for later inferring
and using polynomial functions to imitate their behaviour.

The first step is based on describing a set of sampling
intervals T ∈ R1×s within a closed interval [τmin,τmax] as
follows

T = {τmin,τmin + τg,τmin +2τg, · · · ,τmax} (13)

where τg is the sampling granularity defined as the least
increase-unit for the sampling intervals. Each element of the
set T can be addressed in this way

τh = T[h] ∀h ∈ N : 1≤ h≤ s (14)

being s the length of T .
The minimum and maximum sampling times, τmin and τmax,

as well as τg are chosen following the conditions detailed in
[5]

β α

η
≤ 1

τmin
− 1

τmax
, β := sup

x∈X
|Kc(Ac +BcKc)x|

τRTOS ≤ τg

(15)

where X is the entire state space taken from the physical
constraint of the plant, and τRTOS is the sampling granularity of
the real-time operating system (RTOS) in which the algorithm
will be implemented.

D. Strategy to calculate the controller gain matrix Kd(τk)

Kd(τh) is calculated by brute force for each hth element from
the set of sampling intervals T in (13) addressed by (14). The
above involves each time first calculating the discrete matrices
Ad(τh), Bd(τh), Qd(τh) and Rd(τh) by (4) with which the discrete-
time LQR problem is solved later; the latter stipulates the

minimization of the cost function in (8). Therefore, we obtain
a total of s controller gain matrices of the Kd(τh) ∈Rm×n type
because they are evaluated for each of the s possible values
of τh within the set T . These matrices have the form

Kd(τh)= dlqr
(
Ad(τh),Bd(τh),Qd(τh),Rd(τh)

)
=

kd(τh)
11 · · · kd(τh)

1n
...

. . .
...

kd(τh)
m1 · · · kd(τh)

mn

(16)

where the superscript (τh) indicates the belonging of the
corresponding gain element to matrix Kd(τh).

If the elements from all gain matrices are regrouped accord-
ing to their position we have a group SKd , m · n training sets
long, where n and m are the dimensions of states and inputs
respectively, then

SKd = {[kd(τ1)
11 , · · · ,kd(τs)

11], · · · , [kd(τ1)
1n , · · · ,kd(τs)

1n], · · · ,

[kd(τ1)
m1 , · · · ,kd(τs)

m1], · · · , [kd(τ1)
mn , · · · ,kd(τs)

mn]}.
(17)

Each training set in (17) is defined in R1×s and used
to perform a polynomial curve fitting in order to find the
coefficients θ of d-degree polynomials Ki j(τk). Therefore, we
have a total of m ·n polynomials each one following the form

Ki j(τk) = θ
(i j)
1 τ

d
k +θ

(i j)
2 τ

d−1
k + · · ·+θ

(i j)
d τk +θ

(i j)
d+1, (18)

where superscript (i j) indicates the belonging of coefficients θ

to polynomial Ki j(τk); i-row and j-column show the position
of polynomials into the gain matrix. Note the change of τk
instead of τh since the former will be the current sampling
interval calculated online by equation (9) on a real controller.
Thus (16) to (18) become

Kd(τk) =

K11(τk) · · · K1n(τk)
...

. . .
...

Km1(τk) · · · Kmn(τk)

 , (19)

where

K11(τk) = θ
(11)
1 τ

d
k +θ

(11)
2 τ

d−1
k + · · ·+θ

(11)
d τk +θ

(11)
d+1

· · ·

K1n(τk) = θ
(1n)
1 τ

d
k +θ

(1n)
2 τ

d−1
k + · · ·+θ

(1n)
d τk +θ

(1n)
d+1

· · ·

Km1(τk) = θ
(m1)
1 τ

d
k +θ

(m1)
2 τ

d−1
k + · · ·+θ

(m1)
d τk +θ

(m1)
d+1

· · ·

Kmn(τk) = θ
(mn)
1 τ

d
k +θ

(mn)
2 τ

d−1
k + · · ·+θ

(mn)
d τk +θ

(mn)
d+1 .

E. Strategy to calculate the observer gain matrix Ld(τk)

It is a process similar to that described in subsection III-D.
All possible observer gain matrices L(τh) are evaluated offline
as functions of sampling intervals τh.

The error dynamics of the observer is given by the poles
of [Ad(τh)−Ld(τh)C]. A rule of thumb considers to place the
observer poles at least five to ten times farther to the left of
s-plane than the dominant poles of the system. Therefore, the

location of the continuous-time poles is statically assigned and
these ones are discretized using (6) for all τh, obtaining Pd(τh).

Computing again Ad(τh) by (4) for all τh, assigning statically
continuous-time poles and discretizing them by (6) also for
all τh to have Pd(τh), and finally considering C which remains
constant, we obtain a total of s observer gain matrices Ld(τh) ∈
Rn×q by the poles placement method in [8] with the form

Ld(τh)= ackermann
(
Ad(τh)

T ,CT ,Pd(τh)
T)=

ld(τh)

11 · · · ld(τh)
1q

...
. . .

...
ld(τh)

n1 · · · ld(τh)
nq

 .
(20)

Using the same regrouping criterion as in (17) a group SLd ,
n ·q training sets long, it can be obtained

SLd = {[ld
(τ1)
11 , · · · , ld(τs)

11], · · · , [kd(τ1)
1q , · · · ,kd(τs)

1q], · · · ,

[kd(τ1)
n1 , · · · ,kd(τs)

n1], · · · , [kd(τ1)
nq , · · · ,kd(τs)

nq]}.
(21)

Subsequently a total of n ·q polynomials are calculated with
the form

Li j(τk) = θ
(i j)
1 τ

d
k +θ

(i j)
2 τ

d−1
k + · · ·+θ

(i j)
d τk +θ

(i j)
d+1, (22)

such as in (18). Finally, using (22) we obtain

Ld(τk) =

L11(τk) · · · l1q(τk)
...

. . .
...

Ln1(τk) · · · lnq(τk)

 , (23)

where

L11(τk) = θ
(11)
1 τ

d
k +θ

(11)
2 τ

d−1
k + · · ·+θ

(11)
d τk +θ

(11)
d+1

· · ·

L1q(τk) = θ
(1q)
1 τ

d
k +θ

(1q)
2 τ

d−1
k + · · ·+θ

(1q)
d τk +θ

(1q)
d+1

· · ·

Ln1(τk) = θ
(n1)
1 τ

d
k +θ

(n1)
2 τ

d−1
k + · · ·+θ

(n1)
d τk +θ

(n1)
d+1

· · ·

Lnq(τk) = θ
(nq)
1 τ

d
k +θ

(nq)
2 τ

d−1
k + · · ·+θ

(nq)
d τk +θ

(nq)
d+1 .

Then, on each execution of the actual controller, after
calculating the next sampling interval τk via (9), each element
of the observer gain matrix is computed through a different
polynomial in the matrix Ld(τk).

F. Implementation guidelines

Through Algorithm 1 what was said in subsections III-D and
III-E is summarized; this program can be performed offline by
any numerical computing programming language. Algorithm
2 shows how to implement OSISTC on any processor with
reduced performance features.

IV. EXPERIMENTAL TEST

A. Controlled plant

The experimental plant to be considered with form (1) is
an electronic version of a double integrator circuit (critically

Data: Ac,Bc,C,Qc,Rc,τmin,τmax,τg,α,β ,η ,Pc
Result: Kc,Kd(τk),Ld(τk)

Kc = f (Ac,Bc,Qc,Rc) by continuous LQR (7);
T = f (τmin,τmax,τg) by (13) and (15);
for τh ∈ T do

Compute Ad(τh),Bd(τh),Qd(τh),Rd(τh) by (4);
Kd(τh) = f

(
Ad(τh),Bd(τh),Qd(τh),Rd(τh)

)
by discrete

LQR (16);
Compute Pd(τh) by (6);

Ld(τh) = f
(

AT
d(τh)

,CT ,Pd(τh)

)
by Ackermann (20);

end
Create SKd based on all Kd(τh) by (17);
Create SLd based on all Ld(τh) by (21);
for i≤ m and j ≤ n do

Ki j(τk) = f
(
SKd(i· j)

)
by polynomial curve fitting;

end
for i≤ n and j ≤ q do

Li j(τk) = f
(
SLd(i· j)

)
by polynomial curve fitting;

end
Create Kd(τk) by ordering all Ki j(τk) as in (19);
Create Ld(τk) by ordering all Li j(τk) as in (23);

Algorithm 1: Offline design

Data: Ac,Bc,C,Kc,τmax,τg,α,β ,η ,Kd(τk),Ld(τk)

Result: τk,u(k)
Initialization of hardware, RTOS and variables;
x(k) := read input();
τk := f

(
τmax,Kc,α,β ,η , x̂(k)

)
by (9);

Set RTOS to trigger next time after τk;
Calculate Kd(τk) by (19);
u(k) := f

(
Kd(τk), x̂(k)

)
by (10);

Set actuator with u(k);
Calculate Ld(τk) by (23);
Compute Ad(τk),Bd(τk) by (4);
x̂(k) := f

(
Ad(τk),Bd(τk),Kd(τk),Ld(τk), x̂(k),x(k)

)
by (12)

Algorithm 2: Online implementation

stable); advise with [5] for further information. Its dynamics
is

Ac =

[
0 −23.81
0 0

]
,Bc =

[
0

−23.81

]
,C = [1 0] . (24)

In Table I most important configurations used to design
both controller and observer are detailed. Their values have
been based on recommendations from literature on the original
approach [5].

B. Controller and observer

Numerical values obtained are summarized next:

• Continuous-time feedback gain Kc = [0.1581,−0.5841].
• Controller gain matrix which consists of two polynomials

Kd(τk) = [K11(τk),K12(τk)] where K11(τk) =−8.8668τk +
0.1548 and K12(τk) = 1.8819τk−0.5799.

TABLE I
EXPERIMENT SETTINGS

Parameter Value Parameter Value

Qc 0.0025 ·
[

1 0
0 1

]
Rc 0.1

τmin 15ms τmax 50ms
τg 1ms α 0.667
β 9.4 η 0.11
Pc [−5+2 j,−5−2 j]

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.6

−0.4

−0.2

0

0.2
Controller gains

τ
k
 (sec)

K
d
(τ

k
)

g
11

(τ
h
)

g
12

(τ
h
)

K
d11

(τ
k
)

K
d12

(τ
k
)

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.2

0

0.2

0.4

0.6
Observer gains

τ
k
 (sec)

L
d
(τ

k
)

l
11

(τ
h
)

l
21

(τ
h
)

L
d11

(τ
k
)

L
d21

(τ
k
)

Fig. 3. Gains behaviour: controller (top), and observer (bottom)

• Observer gain matrix formed by two polynomials
Ld(τk) = [L11(τk),L21(τk)]

T where L11(τk) = 8.7071τk +
0.0185 and L21(τk) =−0.8751τk−0.0048.

In Fig. 3 gains of both controller and observer evaluated for
the set of sampling intervals, are shown by circles. Likewise,
fitted curves (continuous lines) roughly describe the behaviour
of these gains.

C. Implementation on a processor

The development platform comprises a digital signal con-
troller (DSC) with its respective RTOS and a double integrator
electronic circuit characterized in (24). The controller is a Mi-
crochip dsPIC33FJ256MC710A, internally runs the Erika real-
time kernel and is physically mounted on the Full Flex board.
To learn more about this environment, it is recommended to
see the original work on [11] and the references that exist
within it.

The self-triggered controller uses rule (9) to calculate when
it will activate itself next time; this value is used to set the
RTOS to trigger the next sampling instant. Another function
of the controller is to read the states of the plant x(k) through
the DSC’s analog/digital converter, to then estimate the states
x̂(k) through the observer, and to compute the control action
u(k) which is applied directly to the plant via pulse width
modulation (PWM).

The controller gain matrix, instead of minimizing DARE,
uses two first-degree polynomials that are functions of τk and
are represented as K11(τk) and K12(τk), grouped into Kd(τk).
Finally, instead of using a pole placement method such as
Ackermann, the observer gain matrix is replaced by a pair of
first-degree polynomials L11(τk) and L21(τk), framed within
Ld(τk).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1

−0.5

0

0.5

1

Response

Time (sec)

V
o

lt
a

g
e

 (
V

)

x
1(k)

x
2(k)

r
(k)

u
(k)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.01

0.02

0.03

0.04

0.05
Sampling sequence

Time (sec)

τ
k
 (

s
e

c
)

τ
(k)

τ
av

Fig. 4. Simulation results considering step response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1

−0.5

0

0.5

1

Response

Time (sec)

V
o

lt
a

g
e

 (
V

)

x
1(k)

x
2(k)

r
(k)

u
(k)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.01

0.02

0.03

0.04

0.05
Sampling sequence

τ
k
 (

s
e

c
)

τ
(k)

τ
av

Fig. 5. Implementation results considering step response

D. Analysis of results

In Figures 4 and 5 the step response of OSISTC is evidenced
both in simulation and actual implementation on a DSC,
respectively; additionally both figures show the behaviour of
the sampling sequence.

Considering same duration of both simulation and exper-
iment, the criteria for determining correspondence between
them are: time-response, minimum and maximum sampling
intervals, and average sampling interval.

Within the time domain analysis a very close correspon-
dence for both cases has been obtained, except that in the
real controller there are slight variations due to uncertainty in
process and sensors. These are reflected in the establishment
time, overshoot, and steady-state error. In addition, the sam-
pling interval tends to oscillate around τmax in steady state.

Sampling intervals τ(k) in the simulation lie within the range
[22,50]ms, while in the real system are within [21,50]ms. It
was ensured through guarantee in (15) that both meet the range
[τmin,τmax].

The average sampling metric τav is taken from [5] and
establishes that

τav =
1
N

N−1

∑
k=0

τk, (25)

where N is the number of samples within the experi-
ment/simulation time. Based on this it can be determined that
for the simulation τav = 40.82ms, and for the implementation

τav = 39.96ms. These results are very close and the slight
difference may be due to uncertainty. It is necessary to point
out that a larger τav indicates less resource utilization, which
is a primary objective in self-triggered control.

V. CONCLUSION

Some implementation guidelines to make the theory in
[5] applicable to real controllers were presented. For this,
the implementation of the algorithm on microprocessor-based
controllers was made by replacing the online use of the LQR
problem by a lightweight polynomial fitted at design stage
(offline). Additionally, a time-varying closed-loop observer
has been implemented by polynomial fitting techniques while
avoiding the online use of pole placement methods like
Ackermann. The coherence between theory and practice has
been demonstrated so that implementation can be assumed to
be effective. Simulations and practical experiments on a real
processor confirm the solution is effective and there could be
an open research topic regarding observation techniques in
OSISTC.

There are interesting performance measures in the literature
which could become future work for this implementation;
metrics from [5] and [12] would allow further evaluation
on a real system. A comparison between the implementation
with and without observer can be made to determine the true
contribution of the latter. In addition, one could replace the
Luenberguer observer with another observer with uncertainty
information such as Kalman.

REFERENCES

[1] M. Velasco, J.M. Fuertes, and P. Marti, ”The Self Triggered Task Model
for Real-Time Control Systems”, in Proc. IEEE Real-Time Systems
Symposium, pp. 67-70, 2003.

[2] A. Anta and P. Tabuada, ”To Sample or Not to Sample: Self-Triggered
Control for Nonlinear Systems”, IEEE Transactions on Automatic Con-
trol, vol. 55, no. 9, pp. 2030-2042, 2010.

[3] K.J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory
and Design, Prentice Hall, third edition, 1997.

[4] E. Bini and G.M. Buttazzo, ”The Optimal Sampling Pattern For Linear
Control Systems”, in IEEE Transactions on Automatic Control, vol. 59,
no. 1, pp. 78-90, January 2014.

[5] M. Velasco, P. Martı́, and E. Bini, ”Optimal-Sampling-Inspired Self-
Triggered Control”, in 1st IEEE International Conference on Event-based
Control, Communication, and Signal Processing, Krakow, Poland, June
2015.

[6] J. Almeida, C. Silvestre, A.M. Pascoal, ”Observer Based Self-Triggered
Control of Linear Plants with Unknown Disturbances”, in American
Control Conference, pp. 5688-5693, 2012.

[7] D. Luenberger, ”An introduction to observers”, in IEEE Transactions on
Automatic Control, vol. 16, no. 6, pp. 596-602, December 1971.

[8] J. Ackermann, ”On the synthesis of linear control systems with specified
characteristics”, in Automatica, vol. 13, pp. 89-94, 1977.

[9] F. Paez, R. Cayssials, J. Urriza, E. Ferro and J. Orozco, ”Frequency
domain analysis of a RTOS in control applications”, in Seventh Argentine
Conference on Embedded Systems (CASE), pp. 21-26, 2016.

[10] E. Weisstein, ”Least Squares Fitting-Polynomial”,
from MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

[11] C. Lozoya, P. Martı́, M. Velasco, J. Fuertes and E. Martin, ”Resource
and performans trade-offs in real-time embedded control systems”, in
Real-Time Systems, vol. 49, no. 3, pp. 267-307, 2013.

[12] C. Rosero, C. Vaca, L. Tobar and F. Rosero, ”Performance of Self-
Triggered Control Approaches” in Enfoque UTE, vol. 8, no. 2, pp. 107-
120, 2017.

