
MOBILE ROBOTICS PLATFORM FOR EXPERIMENTS USING ROS: 

DEVELOMENT OF THE REAL – TIME BOARD 

 

1 career of Mechatronics Engineering, FICA, Technical University Northern, Av. 17 de Julio, Ibarra, 

Ecuador 

e-mail: edwinlb20@gmail.com 

 

Abstract 

The field of robotics comprises a number of technologies and systems for its operation and 

control. The robotics branch that has evolved the most in recent years is mobile robotics. Mobile 

robots are machines capable of moving in any environment without being fixed to a single 

physical location. In addition, they perform complex movements that are performed in real time, 

occur with predictable planning and must be performed within a defined time frame. 

At the Universidad Técnica del Norte, no mobile robotics tools have yet been developed to 

visualize, understand and apply the theories and fundamentals of robotics subjects and control 

systems. Based on the aforementioned aspects, the idea was born to realize this same project that 

was realized with educational aims to contribute to the area of Applied Sciences of the University. 

Connecting real-time integrated systems to ROS is a way to take advantage of the higher-level 

capabilities of this meta-operating system. For the development of this project, the mobile robot 

was implemented through the robotic platform (ROS), which provides libraries, visual software 

applications and communication tools. It was run on a computer with open source applications. 

For the part of the real time system a microcontroller and an ultrasonic sensor were used that are 

communicated by nodes to the computer. 

 

 

Introduction 

Robotics is experiencing explosive growth 

driven by advances in computing, sensors, 

electronics and software [1]. Robots are 

already revolutionizing the procedures that 

are used in medicine, agriculture, mining 

and transportation, by solving most of their 

control and automation needs. In this way, 

there are innumerable applications that day 

by day improve the daily life of society. 

Currently there are several Frameworks of 

Development in Robotics such as Player / 

Stage / Gazebo, Yarp, Orocos, OpenRave 

among others, all open source, however, 

Robot Operating System (ROS) has 

managed to group the best features of all 

these projects giving a comprehensive and 

very uniform solution to the problem of 

development of robotic systems, is 

characterized by being a multi-language 

platform (c ++, python, java), peer2peer, 

tool-oriented, lightweight and open source 

(OpenSource) ]. A system built using (ROS) 

provides the standard services of an 

operating system such as hardware 

abstraction, low-level device control, 

implementation of commonly used 

functionality, message passing between 

processes and packet maintenance [3]. It is 

based on a point-to-point architecture where 

processing takes place at nodes that can 

receive, deliver and multiplex messages 

from sensors, control, states, schedules and 

actuators, among others. 

The realization of this project is based on a 

need which consists, at present, the 

Technical University of North and 

particularly the Faculty of Engineering in 

Applied Sciences, there are no mobile robots 

to be used as teaching and research 

equipment, a situation that repercussions on 

subjects related to robotics and control, 

making them purely theoretical. 

Based on the described problem, we believe 

it imperative to implement a mobile robot for 

experiments in robotics that is used as 

teaching and research equipment in FICA 

laboratories. 

Keywords 

ROS (mobile robotic platform), real-time, 

ultrasonic sensor, distance, 

Methodology 

Before the development of the project begins 

with a small definition and with fundamental 

mailto:edwinlb20@gmail.com


concepts for understanding the theme such 

as: real-time systems, ros and the tools that 

each of them gives us. 

1. Real-time system 

A system is the set of components that work 

together to achieve a common purpose. 

Real-time systems are systems based on a 

computer that must solve different aspects 

simultaneously, fast response, reacts to 

stimuli, failure in components or their 

connections and possible needs to adapt over 

time (while in operation ) before the changes 

of requirement and circumstances. 

A real-time system must meet three 

fundamental conditions: 

• Interact with the real world. 

• Emits correct answers. 

• Complies with temporary restrictions. 

General structure of a real-time system 

The general structure of a real-time system 

that controls any process is shown in the 

figure. 
SENSORES LISTA DE TRABAJO RELOJ

GENERADOR DE 

DISPARO

EJECUCÍON

MONITOR OPERADOR

ACTUADORES

PROCESO 

CONTROLADO

AMBIENTE

 Real-time system applications 
There are many applications where real-
time systems are used: 

 Defense systems 

 Radar systems 

 Process control 

 Aviation air traffic control 
multimedia servers 

 Comunication system 

 Satellite systems 

 Signal processing systems 

 Autonomous navigation systems 

 Data acquisition and control 
systems. Etc... 

An important group of real-time systems 
are embedded systems. They are systems 
designed for a specific application. For 
example a mobile phone, abs control in a 
car, etc. However a personal computer 
would not be an embedded system since it 

was not designed to make a specific 
application. Thus the assertion that every 
embedded system is a real-time system is 
true, whereas the contrary statement is not. 
[4] 
Real-time robots 

A robot is a machine that performs 

productive work and imitation of 

movements and behaviors of living beings. 

Currently robots are engineering works that 

are composed of mechanical systems, 

actuators, sensors and control systems. The 

latter is important since it is in charge of 

obtaining the information from the outside 

by means of the sensors, interpreting the data 

and sending the information to the actuators. 

The figure details the robot its elements and 

the interaction with the environment. 

 

 

 

 

 

 

 

 

 

 

 

In industry, robots are increasingly 

indispensable in production processes and 

with a growing population the demand for 

products requires them to be faster in 

collecting, interpreting and sending data to 

make them more efficient, in addition, they 

can to perform actions in response to 

eventualities that can arise in their 

environment in very short periods of time by 

them is necessary the implementation of 

systems in real time for the robot. [5] 

The advantages of using real-time systems in 

robots are: its greater accuracy, security and 

adaptability to various contingencies of its 

environment and in each of the processes 

that are performing as it is continuously 

acquiring information from the external 

environment. 

2. Robot Operating System (ROS) 

The platform (ROS) is a framework for the 

development of control algorithms in 

robotics. It also has packages that include 

control libraries of devices for actuators, 

sensors, motors. It is open source, this 

license allows freedom for commercial use 

and for research, it is also currently 



supported by Unix-Ubuntu and has 

experimental support for Mac, Fedora, 

Windows, OpenSuse among others. 

The main advantage of this type of 

communication is the creation of large 

databases for free since all computers 

connected online can download files from 

other computers also connected. 

(ROS) has two main parts for its smooth 

operation: the operating system core and the 

ros-pkg. The latter a group of open source 

license packages, developed by users that 

implement different functionalities such as 

mapping, planning, etc. 

Main Features of the Robots Operating 

System (ROS) 

The main characteristics of ROS are: 

Free and Open Code.- (ROS) is free code 

under BSD license terms, contains freedom 

of use both commercial and research that 

means that you are available to the general 

public. [6] 

"Peer to Peer".- It is a distributed system in 

which the different processes communicate 

with each other using a "peer to peer" 

topology. With this topology a new channel 

is used for the communication between two 

different processes, avoiding to use a central 

server to communicate all the processes. [6] 

Multi-Language.- It can work in different 

programming languages such as: C ++, 

Phyton and Lisp. It also contains libraries in 

Java and Lua, in experimental phase. 

Multi-Tools.- It contains a large number of 

tools, which allows us to perform different 

tasks, from browsing the files, also to modify 

the configuration parameters of a robot, 

process or driver, observing the topology of 

the running processes and performing 

communication between processes. [6] 

Basic Concepts of the Robots Operating 

System (ROS) 

To obtain an adequate operation of (ROS) 

you must have knowledge of the 

fundamental elements of this platform such 

as: nodes, ROS Master, Messages and 

topics. 

Nodes.- They are executables that 

communicate with other processes using 

topics or services. The use of nodes in (ROS) 

provides fault tolerance and separates the 

system code making it simpler. A packet can 

contain several nodes (each node has a 

unique name), each of them performs a 

certain action. 

ROS Master.- Provides a register of the 

nodes that are running and allows 

communication between nodes. Without the 

master the nodes would not be able to find 

the other nodes, exchange messages or 

invoke services. 

Messages.- The nodes communicate with 

one another by means of the message 

passage. Primitive message types ("integer", 

"floating point", "boolean", etc.) are 

supported and custom types can be created. 

[2] 

Topics.- They are channels of 

communication to transmit data. Topics can 

be transmitted without direct 

communication between nodes, meaning the 

production and consumption of data is 

decoupled. Nodes can communicate with 

each other through topics, being able to act 

as publishers and as subscriber. 

Publisher.- The node that acts as publisher 

is in charge of creating the topic for which it 

is going to spread certain messages. These 

messages can be visible by the nodes that are 

subscribed to this topic. [2] 

Subscriber.- This node must be subscribed 

to the corresponding topics in order to access 

the messages that are published in them. 

A node can post or subscribe to a message 

through a topic. Figure 6 shows an example 

of communication between two nodes by 

means of a topic. In this example, the 

"publisher odometry" node publishes a 

"nav_msgs / odometry" message in the topic 

"Odom" and the "Base_movil" node 

accesses this message by subscribing to this 

topic. The following figure details the 

communication between topics. 

Publicar odometría

(NODO)

Base_movil

(NODO)

Odom (titulo)

nav_msgs/odometry
(mensaje)

 
Real time in ROS 

Despite the importance of reactivity and low 

latency in robot control (ROS), it is not a 

real-time operating system (RTOS), 

although it is possible to integrate (ROS) 

with real-time code. To do this, it must fulfill 

certain requirements for its proper 

functioning. 

The requirements of a real-time system vary 

depending on the use case. In essence, the 

real-time requirement of a system has two 

components: 



 

a. Latent state 

 Update period (also known as 

deadline) 

 Predictability 

b. Fault mode 

 How to react to a deadline [6] 

 

When referring to hard / soft / firmer systems 

in real time it generally refers to the failure 

mode. A hard real-time system treats a 

deadline as a system failure. A soft real-time 

system tries to meet deadlines, but does not 

fail when a deadline is missing. A firm real-

time system discards calculations made for 

non-compliance with deadlines and may 

degrade your performance requirement in 

order to accommodate an unfulfilled 

deadline. 

A real-time failure mode is often associated 

with high predictability. Critical security 

systems often require a real-time system 

with high predictability. 

Solution to the problem raised 

The Kobuki robotic platform has many 

sensors as they are: impact sensors are three 

that allows you in the instate to get to have 

contact with an object the robotic platform 

stops immediately, sensors are three levels 

of these sensors are located under the 

bumper that are infrared that serve to detect 

if it can follow by the direction anticipated 

otherwise it will take another route, sensor of 

fall of wheel are two are switches of two 

positions with return spring to its initial 

potion and are actuated by means of a lever. 

They are located on the inside of the wheels. 

However none of these sensors send a signal 

of the objects that surrounds it without 

colliding for this reason it has been 

convenient to implement a sensor that gives 

an early warning and so the operator makes 

avoidance decisions avoiding obstacles on 

either the robotic platform as in its 

environment without the need for the 

operator to be located near the robotic 

platform. 

An ultrasonic sensor was selected as it 

provides a simple method of distance 

measurement. This sensor is perfect for any 

number of applications that require 

measurements between moving or stationary 

objects. 

Consisting of ultrasonic transmitter, receiver 

and control circuits, when it is triggered, it 

sends a series of 40KHz ultrasonic pulses 

and receives an echo from an object. The 

distance between the unit and the object is 

calculated by measuring the travel time of 

the sound and its output as the width of a 

TTL pulse. [7] An ultrasonic sensor is shown 

in the following figure. 

 

 

 

 

 

 

 

 

 

This sensor can be coupled to different 

applications such as: security systems, 

interactive animated exhibitions, parking 

attendance systems and robotic navigation. 

General diagram of the system 

BASE 
MÓVIL 

SISTEMA DE 

PLATAFORMA ROBOTICA 

KOBUKI

NODO 
MASTER

ROSCORE

ROSSERIAL

SISTEMA DE CONTROL

(ORDENADOR)
SISTEMA DE TIEMPO REAL.

NODO 
MOTORES

NODO 
SENSORES

ARDUINO

USB

E/S
DIGITALES

SENSOR
ULTRASONICO

USB USB

Robotic Platform System (Kobuki) 

IClebo Kobuki is a low-cost mobile research 

base designed for education and research on 

the state of art robotics. With continuous 

operation in mind, Kobuki provides power 

supplies for an external computer, as well as 

additional sensors and actuators. Its highly 

precise odometry, as amended by our 

gyroscope calibrated in the factory, allows 

accurate navigation. 

The Kobuki is a mobile base. It has sensors, 

motors and power sources, however by 

itself, it can not do anything. 

To be functional, it is necessary to build a 

platform above the command sheet. On the 

hardware side, this usually involves the 

addition of a notebook or a built-in board to 

be the computational core for your system 

and usually some extra sensors to make it 

really functional. On the software side, this 

involves building any proprietary software 

or integrating software from other groups 

with their own developmental sources. 

 

 



Control System (Computer) 

This system is composed of software as 

hardware. The software comprises of an 

Acer brand computer that meets the 

requirements necessary for optimal 

operation of the robot. 

The hardware that will be used to carry out 

the project, is the operating system Ubuntu 

14.04 LTE. For the good operation and 

development of the project the choice of the 

operating system is fundamental. Bearing in 

mind that (ROS) can also be installed on 

Windows, applications developed (Packets) 

must meet certain computational limitations. 

Also, it should be mentioned (ROS) is only 

fully functional on the Linux platform 

fundamentally for the Ubuntu distribution; 

with other distributions do not guarantee the 

correct operation of (ROS). 

To conclude, Linux has been chosen, 

specifically the distribution Ubuntu 14.04 

LTS, whose origin is based on Debian, in 

addition was chosen this version because it 

is LTS (Long Term Support), this means that 

it is a version of Ubuntu that will be 

supported and will be updated more time 

than a normal version. 

Likewise, LTS versions are usually more 

stable and tested versions. In addition, the 

LTS versions of Ubuntu have support for 5 

years and the normal versions have a support 

of 9 months, after that time will have to be 

updated in a relatively short period of time. 

In the interior of the robotic operating 

system (ROS) two extremely important 

nodes are being executed for the 

communication between the computer and 

the system in real time these are: roscore and 

rosserial. 

Roscore 

It is a set of nodes and programs that is a 

precondition for the use of a system based on 

(ROS). A roscore must be executed in order 

that (ROS) can communicate with all the 

nodes. It starts with the roscore command. 

Rosserial 

ROS Serial is a point-to-point 

communications (ROS) over serial, mainly 

for the integration of low cost 

microcontrollers (Arduino) in (ROS). ROS 

series consists of libraries for use with 

Arduino, and nodes for the PC / Tablet side 

(currently in Python and Java). [9] 

 

 

Real Time System 

For the part of the system in real time was 

used the Arduino microcontroller and the 

ultrasonic sensor that are connected by 

means of cables, and the two elements is 

communicated to the computer by means of 

UBS. 

Sampling frequency of the ultrasonic sensor 

is 1 samples per second. 

Testing, Results and Analysis 

For the tests the following steps were 

performed: 

a. Load the program that was made in 

the Arduino software to the Arduino 

board one. 

b. It opens a new terminal in Ubuntu 

and runs roscore. 

c. The code is executed in a new 

terminal 

roslaunch kobuki_node 

minimal.launch --screen to power 

the kobuki robot. 

d. The code is entered in a new 

terminal 

roslaunch kobuki_node 

minimal.launch -screen that allows 

the robot to tele-operate. 

e. Using the command ls / dev / tty and 

pressing the tab key twice, prints all 

the ports that are being used. You 

can check if the Arduino is 

connected to a computer. 

f. Then the command is executed: 

rosrun rosserial_python 

serial_node.py / dev / ttyUSB0 

This command runs the rosserial 

client application that forwards its 

messages from the Arduino to the 

rest of (ROS). 

g. Then the command is executed: 

rostopic list 

This command allows us to print a 

list of the topics to which you can 

subscribe. 

h. Running the following code 

rostopic echo / ultrasound 

It prints the information of the 

ultrasonic subject that for the case is 

the Ultrasonic sensor towards the 

computer by the serial port, that is 

visualized in the terminal. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i. To visualize in a graphical way can 

be done by executing the next catch. 

rosrun rviz rviz 

What the simulator opens and using 

a yellow beam represents the 

distances currently being sent by the 

sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis and Results 

With this test it was verified that the sensor 

is sending data to the microcontroller, and 

that the microcontroller in turn is sending 

them to the computer. 

Conclusions and Discussion 

The Kobuki mobile robotic platform has the 

advantage of being an omnidirectional robot 

that allows to perform displacement and 

rotation movements facilitating the 

implementation of algorithms for 

teleoperation. 

The configuration of the system was based 

on three fundamental segments that are: 

Kobuki robotic platform system, Control 

system, Real time system. Those who 

worked at par could solve the problem. 

The implementation of the software with the 

hardware was done quickly thanks to the 

facilities provided by the Kobuki robotic 

platform. 

Bibliography 

[1] A. O. Baturone, Robótica: 

manipuladores y robots móviles. Marcombo, 

2005. 

[2] A. Koubaa, Robot Operating System 

(ROS): The Complete Reference. Springer, 

2017. 

[3] «ROS.org | Acerca de ROS». . 

[4] Manuel Ortiz, «SISTEMAS 

INFORMÁTICOS EN TIEMPO REAL». 

[5] A. Araújo, D. Portugal, M. S. 

Couceiro, J. Sales, y R. P. Rocha, 

«Desarrollo de un robot móvil compacto 

integrado en el middleware ROS», Rev. 

Iberoam. Automática E Informática Ind. 

RIAI, vol. 11, n.o 3, pp. 315-326, jul. 2014. 

[6] «ROS/Introduction - ROS Wiki». 

[En línea]. Disponible en: 

http://wiki.ros.org/ROS/Introduction. 

[Accedido: 16-sep-2017]. 

[7] «Sensor de Distancia de Ultrasonido 

HC-SR04», Electronilab. . 

[8] «The leading operating system for 

PCs, IoT devices, servers and the cloud | 

Ubuntu». [En línea]. Disponible en: 

https://www.ubuntu.com/. [Accedido: 16-

sep-2017]. 

[9] «rosserial». [En línea]. Disponible 

en: 

http://library.isr.ist.utl.pt/docs/roswiki/rosse

rial.html. [Accedido: 13-sep-2017]. 

 


