DISEÑO DE UN SISTEMA ELECTRONEUMÁTICO PARA EL PROCESO DE SELLADO DE ENVASES EN LA FÁBRICA DE LÁCTEOS "EL LABRADOR"

2015-2016

Richar Arturo Recalde Guerra Universidad Técnica del Norte Carrera de Ingeniería en Mantenimiento Eléctrico richar-90@hotmail.com

Abstract. El presente trabajo se lo realizó con el propósito de diseñar un sistema electroneumático para una maquina prototipo de prueba de sellado de envases para la fábrica de lácteos "El Labrador", comandado mediante un PLC y que será implementado en el Laboratorio de la carrera de Ingeniería en Mantenimiento Eléctrico; con la finalidad de mejorar los métodos de aprendizaje del estudiante dentro del campo de control industrial, de tal manera que se amplíen más sus conocimientos en diferentes áreas de estudio y que los conocimientos obtenidos en las aulas los pongan en práctica realizando pruebas de laboratorio en el prototipo.

I ANTECEDENTES

La fábrica de lácteos "El Labrador" está ubicada en la provincia del Carchi, cantón Espejo, parroquia de San Isidro. Esta tiene como finalidad la elaboración y distribución de productos lácteos, y para ello realiza los procesos de envasado y sellado de leches y sus derivados.

En esta fábrica de lácteos, el proceso de sellado de los envases de yogurt es esencial para garantizar una adecuada conservación y distribución de los productos. Sin embargo, las técnicas a utilizar para este proceso carecen de un sistema automatizado que evite las pérdidas de tiempo y se pueda despachar la totalidad de pedidos solicitados, proceso que ayuda a abastecer los requerimientos de los productos en el menor tiempo posible con alta calidad y eficiencia en la producción.

A. Objetivo general

Diseñar un módulo didáctico de un sistema electroneumático, que permita evidenciar la optimización del proceso productivo de sellado de envases de yogurt en la fábrica de lácteos "El Labrador".

B. Justificación

En la actualidad los sistemas neumáticos son de una gran ayuda para realizar proceso de automatización en las industrias. La neumática dentro de la automatización industrial se ha vuelto una herramienta muy útil. A través de componentes neumáticos, se da soluciones más sencillas, rentables y con mayor futuro de aplicación en la industria.

Al emplear este tipo de tecnología la cual puede ser operada por la persona que sea encargada y destina a cierta área, ayudara a mejorar la producción en un menor tiempo.

El presente proyecto estará orientado al mejoramiento de la fábrica de tal modo que ayudará a optimizar tiempo, realizar los trabajos de sellado con mayor confiablidad y con un grado de alta calidad.

II DIAGNÓSTICO DE LA SITUACIÓN ACTUAL DE LA FÁBRICA

La empresa actualmente realiza el trabajo del sellado de los envases de manera manual o artesanal, lo que conlleva a que la producción no sea mayor a la demandada.

Tabla 1

Datos de productos sellados elaborados de forma no automatizada.

	Producción	Tiempo	Hora
Envases de	40	diario	15
litro			minutos
Envases	100	diarios	1 hora
pequeños			
Envases	500	semanal	5 horas
pequeños			

III SELECCIÓN DE ELEMENTOS ELÉCTRICOS, ELECTRÓNICOS, NEUMÁTICOS, Y MECÁNICOS.

A. Funcionamiento del módulo

- La banda transportadora realizara el transporte de los envases de una manera continua y regular.
- 2) Al momento que el sensor ubicado frente al cilindro B detecte la presencia del envase, este cilindro empujara el envase hasta la posición de sellado.
- 3) Cuando el envase este ubicado en la posición adecuada de sellado el sensor del cilindro A realizara el proceso de sellado al mismo tiempo que el cilindro B se retira para que avance el envase sellado.
- 4) El envase ya sellado avanza por la banda hasta que el sensor del cilindro C lo empuje hacia afuera por un riel donde se almacenarán todos los envases ya sellados para la revisión final.

B. Parámetros de diseño de la banda transportadora

- Diámetro del envase a transportar
- Longitud de la banda
- Productividad del sistema
- Diámetro de tambores
- Peso máximo por cada envase
- Número de envases dentro de la banda.

Para la construcción de la banda transportadora se utilizó material de hierro para la parte de la estructura, así mismo como para las partes mecánicas y de rodamientos.

Ilustración 1: Perforación para ajustar la banda

Se realizó una perforación en una parte de la estructura de manera horizontal de tal manera que sirvan como guías para templar la banda transportadora. Esto se realizó para ambas estructuras.

Ilustración 2: Diseño del rodillo con eje para el motor reductor

Como se muestra en la ilustración aquí se está construyendo uno de los rodillos de la banda transportadora, el mismo que tendrá un eje de mayor longitud el cual se acoplara a una polea y una banda giratoria que irán acoplados al motor. El otro rodillo se lo realizo de la misma manera con la diferencia que sus ejes son de la misma longitud, este rodillo será el que ira en el espacio donde se realizaron las guías de ajustes de la banda transportadora.

Ilustración 3: Ubicación de las chumaceras en la estructura principal

Para esta parte se realizó las perforaciones para la ubicación de las chumaceras en cada estructura, las cuales fueron ubicadas de acuerdo a la longitud especificada de la banda transportadora, luego de lo que se procedió a ser sujetas en la estructura para la banda.

Ilustración 4: Verificación de ejes de rodillos para las chumaceras

Como se observa en la ilustración 4, antes de acoplar a la estructura las chumaceras se procedió a realizar una verificación con cada uno de los rodillos para evitar cualquier inconveniente más adelante.

Ilustración 5: Ubicación de elementos en estructura principal

Una vez que se comprobó que todos los elementos estén en perfecto estado se procedió a armar la estructura con cada uno de los componentes los cuales forman parte de efectuar el movimiento de la banda transportadora.

Ilustración 6: Ubicación de la banda transportadora

Como parte final se procedió a ubicar la banda de nilón en la estructura y a realizar los respectivos ajustes de cada uno de sus elementos.

C. Selección de elementos neumáticos eléctricos y electrónicos

Selección del cilindro B

Para seleccionar el cilindro adecuado primero se obtuvo la presión a la cual se ira a trabajar que será de 6 bar, con este dato se procedió a realizar el cálculo de la fuerza con la que el cilindro trabajara.

Para seleccionar los cilindros se tomó en cuenta que el primero será el que empuje el envase hasta la posición de sellado, con esto se tendrá en cuenta que necesitaremos calcular una fuerza necesaria tanto para sujeción.

Tabla 2 Datos experimentales para el cálculo del cilindro

В

Presión	6 (Bar)
Fuerza	desconocida
Fuerza de rozamiento	90%
Diámetro	25mm

$$F=P.A=10.\,p.\,\pi\!\left(\!\frac{d^2}{4}\right)\!.\,n$$

Remplazamos valores:

$$F = 10.(6|bar|).\pi \left(\frac{(2.5cm)^2}{4}\right).(0.9)$$

$$F = 265.07 (N)$$

Con la fuerza obtenida de 265.07 [N] podemos seleccionar un cilindro, con un diámetro de 2,5 [cm] o 25 [mm] a una presión de P = 6 [Bar] y una fuerza F = de 265 [N] y una carrea de 80[mm].

De acuerdo a los datos planteados se seleccionará un cilindro de doble efecto del catálogo de la marca Airtac.

En la siguiente tabla se detallan el modelo del cilindro:

Gráfico 1: Cilindro de doble efecto B

Tabla 3
Especificaciones del cilindro B

Especificaciones Técnicas	
Tipo	Doble efecto Ø 32
	200 mm
Material	Aleación de
	Aluminio
Temperatura	0°C a 70°C ~ 0°F a
	158°F
Presión de trabajo	1 a 9 Bar ~ 15 a
	130 PSI
Amortiguación	Neumática,
	Regulable
Fluido	Aire comprimido
	Filtrado, lubricado o no
	lubricado

Selección del cilindro C

Para el cilindro C se realiza el mismo calculo tomando en cuenta que este será el encargado de sacar de la banda transportadora el envase sellado hacia el riel de almacenamiento, este actuador deberá tener una carrera mayor que el anterior.

Como sabemos que el ancho de la banda es de 20 centímetros a los cuales se les agregara 5 centímetros más para evitar cualquier inconveniente.

Tabla 4

Datos experimentales para el cálculo del cilindro
C

Presión	6 (Bar)
Fuerza	265 (N)
Fuerza de rozamiento	90%
Diámetro	25mm

$$F=P.A=10,p.\pi\bigg(\frac{d^2}{4}\bigg),n$$

Despejando d tenemos:

$$d = \sqrt{\frac{4F}{10p.\pi.n}}$$

$$d = \sqrt{\frac{4(265)}{(10)(6)(\pi)(0.9)}} = 2,49 \text{ [cm]}$$

Con el diámetro obtenido podemos seleccionar que cilindro vamos a utilizar, con un diámetro de 2,49 [cm] o 24.9 [mm] a una presión de P=6 [Bar] y una fuerza F=265 [N] y una carrera de 200 [mm].

De acuerdo a los datos lo más cercano a ese cilindro es un de 25 [mm] el cual encontramos en el mercado, por tal motivo se seleccionó un cilindro de doble efecto de marca Airtac.

Gráfico 2: Cilindro de doble efecto C

Tabla 5 Especificaciones para el cilindro C

Especificaciones Técnicas		
Tipo	Doble efecto Ø 32	
	200 mm	
Material	Aleación de	
	Aluminio	
Temperatura	0°C a 70°C ~ 0°F	
	a 158°F	
Presión de trabajo	1 a 9 Bar ~ 15 a	
	130 PSI	
Amortiguación	Neumática,	
	Regulable	
Fluido	Aire comprimido	
	Filtrado, lubricado o	
	no lubricado	

Selección del cilindro A

Para la selección de este cilindro se tomará en cuenta los siguientes aspectos, este cilindro será el encargado de realizar el tapado del envase, tomando en cuenta que deberá tener la suficiente presión para poner la tapa en su lugar. En la siguiente tabla se detallan los parámetros para el cálculo del cilindro:

Tabla 6

Datos experimentales para el cálculo del cilindro

A

Presión	6 (Bar)
Fuerza	270 (N)
Fuerza de rozamiento	90%
Diámetro	25mm

$$F=P.A=10.\,p.\,\pi\!\left(\!\frac{d^2}{4}\right)\!.\,n$$

Despejando d tenemos:

$$d = \sqrt{\frac{4F}{10p. \pi. n}}$$

$$d = \sqrt{\frac{4(270)}{(10)(6)(\pi)(0.9)}} = 2,52 \text{ [cm]}$$

Con el diámetro obtenido podemos seleccionar que cilindro vamos a utilizar, con un diámetro de 2,52 [cm] o 25,2 [mm] a una presión de P=6 [Bar] y una fuerza F=270 [N] y una carrera de 80 [mm].

Gráfico 3: Cilindro de doble efecto A

Tabla 7 Especificaciones para el cilindro A

Especificaciones técnicas		
Tipo	Doble efecto Ø 32	
	200 mm	
Material	Aleación de	
	Aluminio	
Temperatura	-5°C a 70°C ∼	
	23°F a 158°F	
Presión de trabajo	2 a 9 Bar ~ 28 a	
	130 PSI	
Amortiguación	Elástica	
Fluido	Aire comprimido	
	Filtrado, lubricado o no	
	lubricado	

Selección de unidad de mantenimiento

Para elegir la unidad de mantenimiento se analizó cada uno de los elementos a instalarse elegir y de acuerdo a las especificaciones se eligió una FRL a

continuación se detallan los datos técnicos de la unidad:

Gráfico 4: Unidad de mantenimiento

Tabla 8

Datos técnicos de la unidad de mantenimiento

Especificaciones técnicas		
Tipo	Filtro/Regulador,	
	Lubricador y	
	Manómetro	
Fluido	Aire comprimido	
Remoción de	5 micrones	
partículas		
Presión de	1.5 a 9 Bar ~ 21 a	
trabajo	128 PSI	
Temperatura de	5°C a 60°C ∼	
trabajo	41°F a 140°F	
Material	Aluminio	

Nota: Tomado del Catálogo Airtac, 2014.

Electroválvulas

La selección de las electroválvulas se la realizo mediante los datos obtenidos al momento de la dimensión de los cilindros a utilizar, para lo cual se eligieron las electroválvulas de 5/2 monoestables.

Para la válvula de 5/2 se tiene:

Gráfico 5: Electroválvula a 5/2

Tabla 9

Datos técnicos para la válvula de 5/2

Especificaciones Técnicas		
Modelo	Válvula solenoide	
	5/2	

Presión de	0 a 8 Bar ~ 0 a	
operación	114 PSI	
	Aire comprimido	
Fluido	Filtrado, lubricado o	
	no lubricado	
Temperatura de	-5°C a 60°C ∼	
trabajo	23°F a 140°F	
Tiempo de	0.05 segundos	
respuesta		
Máximo ciclaje	5 Ciclos/segundo	
Material	Aluminio	

Sensores

Los sensores a ocupar fueron escogidos los sensores tipo red switch por su versatilidad, fácil instalación y costo. El trabajo de este sensor es detectar la posición del vástago del cilindro neumático durante la operación de la máquina.

De la misma manera se seleccionó los sensores fotoeléctricos los que vas a ser encargados de detectar la presencia del envase durante el proceso de sellado.

Gráfico 6: Sensor reed switch

Tabla 10
Especificaciones técnicas del sensor reed switch

Especificaciones Técnicas		
Contacto	Normalmente	
	abierto	
Indicador	Led superior	
Temperatura	0 a 60 °C ~ 32 a 140	
	°F	
Protección	IP 67	
Rango de voltaje	5 ~ 380V AC, 5 ~	
	240V DC	
Rango de corriente	AC 5 ~ 50 mA, DC	
	5 ~ 60 mA	
Resistencia a la	10~ 50 Hz	
vibración		
Tiempo de	1 ms	
respuesta		
Longitud de cable	2 Mts	

Gráfico 7: Sensor fotoeléctrico

Tabla 11 Especificaciones técnicas del sensor fotoeléctrico

Especificaciones Técnicas		
Tipo	Cuerpo de plástico	
	compacto 50x50	
Rango de difusión	1	
(m)		
Escala de reflejo	4	
polarizado (m) (con		
accesorio de reflector)		
Escala de supresión	0.4	
de fondo (m)		
Escala de haz	20	
pasante (m) (con		
accesorio)		
Dimensiones (mm)	SS 50x18x50	
	Relé 50x18x50	
Temperatura	-15°C a +55°C	

Tuberías

En esta parte la selección de las tuberías se la realizo tomando en cuenta el tipo conectores a utilizar con los cilindros y demás actuadores, siendo así se procedió a elegir la manguera en poliuretano. Se eligió este tipo de manguera por su flexibilidad, a su duración, a su peso que es muy ligera siendo así ideal para conexiones neumáticas.

Gráfico 8: Tubería

Tabla 12
Datos técnicos de la tubería

Especificaciones Técnicas			
Fluido	Aire comprimido		
Presión de trabajo	0 a 10.3 Bar ~ 0 a		

	150 PSI	
Presión de vacío	-750mm Hg	
	(10Torr)	
Temperatura de	0°C a 60°C ~ 32°F a	
trabajo	140°F	

Racores y silenciadores

Como la tubería a utilizar es una manguera a ¼ los racores a utilizar serán milimétricos de unión recta, unión codo, unión T, dependiendo de la conexión que deseamos realizar, así mismo se seleccionaron los silenciadores de aire. En la Tabla 16 se detallarán las características técnicas de los racores:

Gráfico 9: Racores de conexión

Tabla 13
Especificaciones para los racores

Especificaciones Técnicas			
Fluido	Aire		
	comprimido		
Presión de	0 a 10.3 Bar ~		
trabajo	0 a 150 PSI		
Presión de	-750mm Hg		
vacío	(10Torr)		
Temperatura	0°C a 60°C ∼		
de trabajo	32°F a 140°F		

Gráfico 10: Silenciadores

Tabla 14
Especificaciones para los silenciadores

Especificaciones Técnicas			
Fluido Aire			
	comprimido		
Presión de	0 a 10 Bar ~ 0 a		
trabajo	142 PSI		
Material	Bronce zincado		
Temperatura de	0°C a 70°C ∼		
trabajo	32°F a 158°F		

Selección del compresor

Para la selección del compresor se guio en los diferentes parámetros que se obtuvieron al escoger los diferentes cilindros los cuales serán los encargados de realizar el trabajo.

Gráfico 11: Compresor

Tabla 15

Datos técnicos del compresor

Especificaciones Técnicas			
Voltaje	110 V 60 Hz		
Frecuencia			
Motor	550 W – HP:		
	0.75		
Producción de	70 l/min		
aire			
Presión de aire	0.75 Mpa		
Volumen del	32 L – 7 Gal.		
envase de aire.			
Ruido	56-65 dB(A)		
Peso	30 Kg		
Dimensiones	56x56x70 cm		

Selección de protecciones y dimensionamiento de

conductores

Para realizar el dimensionamiento de los conductores eléctricos nos basaremos en la potencia del motor que sería la carga más grande dentro del sistema, para lo cual se utilizaran tablas de conductores eléctricos donde se especifique tanto corriente, voltaje admisible y temperatura de operación.

Para esto utilizaremos la ecuación de la potencia eléctrica:

Potencia mecánica

$$P = V.I$$

Donde la potencia P=W

Potencia eléctrica

Entonces como datos tenemos la potencia del motor que es de ¼ de HP y el voltaje que es de 220 V estos valores remplazaremos en la ecuación 4 para calcular la corriente y así determinar el tipo de conductor.

$$I = \frac{186.425 \ W}{220 \ V} = 0.846 \ A$$

En la siguiente tabla se especifica el tipo de conductor de acuerdo a la temperatura admisible de operación.

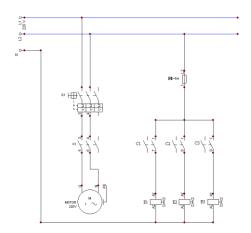
Tabla 16 Calibres de conductor

Amperaje que soportan los cables de cobre							
Nivel de temperatura:	60°C	75°C	90°C	60°C SPT			
Tipo de aislante:	TW	RHW, THW, THWN	THHN, XHHW-2, THWN-2				
Medida / calibre del cable	A	mperaje soporta	ado	Medida / calibre del cable	Amperaje soportado		
14 AWG	15 A	15 A	15 A	20 AWG	2 A		
12 AWG	20 A	20 A	20 A				
10 AWG	30 A	30 A	30 A				
8 AWG	40 A	50 A	55 A	18 AWG	10 A		
6 AWG	55 A	65 A	75 A	10 AWG			
4 AWG	70 A	85 A	95 A				
3 AWG	85 A	100 A	115 A	16 AWG	13 A		
2 AWG	95 A	115 A	130 A				
1 AWG	110 A	130 A	145 A	14 AWG	18 A		
1/0 AWG	125 A	150 A	170 A				
2/0 AWG	145 A	175 A	195 A				
3/0 AWG	165 A	200 A	225 A	12 AWG	25 A		
4/0 AWG	195 A	230 A	260 A				

Tabla 17
Conductores y protecciones eléctricas

Protecciones y calibres de conductores			
Breaker Schneider	110 V a 2 A		
Electric			
Breaker Schneider	220 V a 6 A		
Electric			
Contactor	24 VDC		
Relés	24 V		
Fusibles	2 A		
Guarda motor	1.6 a 2.5 A		
Fuente de poder	24 V		
	Conductor concéntrico		
Conductores	3x12 AWG		
	Conductor #22 AWG		

Ilustración 7: Tablero de control vista interna


IV VALIDACIÓN DEL DISEÑO DEL MÓDULO

A. Determinación los parámetros

Los parámetros a establecer fueron tiempos y cantidad de envases sellados, estos datos fueron tomados con el módulo didáctico ya en su etapa de funcionamiento.

B. Diagrama de fuerza

C. Diagrama de bloque

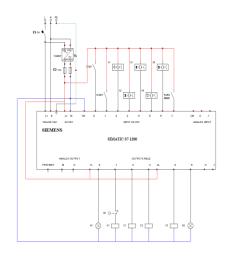


Tabla 18 Comparación de resultados

Validación del módulo didáctico					
Antes			Después		
Minutos	15	40	Minutos	1.10	6
Horas	1	100	Horas	1	327
Semanales	5	500	Semanales	5	1635

V CONCLUSIONES

Con la construcción de un módulo automatizado de sellado de envases se demuestra que es posible automatizar este proceso a escala industrial.

La automatización del proceso de sellado de envases conlleva a elevar la capacidad productiva de la fábrica, mediante la disminución de los tiempos de proceso y la reducción de las pérdidas por defecto o desperdicio.

La implementación del módulo didáctico, será de mucha utilidad para ampliar y fortalecer los conocimientos de los estudiantes de la Carrera de Ingeniería en Mantenimiento Eléctrico en el área de control electroneumático.

VI RECOMENDACIONES

Se recomienda realizar una revisión periódica de cada elemento del módulo, antes de proceder a su puesta en marcha para evitar posibles daños durante la operación de la máquina, mantener en buen estado el módulo y preservar los sensores y actuadores neumáticos.

Sería conveniente que los estudiantes busquen la manera de expandir el módulo mediante la implementación de nuevos sensores o actuadores.

Antes de operar el módulo y efectuar modificaciones se debe leer los manuales de cada uno de los equipos y el manual de programación elaborado en este trabajo de grado para garantizar la operación correcta de las instrucciones que se programan en el PLC.

Referencias

- [1] Agudelo Alvarez, R. (22 DE FEBRERO DE 2012). Automatización Industrial.
- [2] Anónimo. (28 de abril de 2011). Electroneumática.
- [3] Aragonés, O. B., Saigí Grau, M., & Ferran Zabaleta , A. (1993). Automatismo Eléctricos Programables. Barcelona.
- [4] Barreto Véliz, B. P. (s.f.). *Controladores Programables*.
- [5] Bernal, V. H. (2010). Automatización. *Guia de Trabajo*.
- [6] Bolton, W. (2006). Programmable Logic Controllers.
- [7] Calderón, J. J. (2011). Electroneumática. Volúmen 01.
- [8] Carmona Preciado, J., & Perez Arango, J. A. (2014). Diseño electroneumático para maquina de doblado y planchado de prendas. Pereira.
- [9] Casignia Vásconez, B., & Gavilánez Carvajal, H. J. (2011). Diseño, implementación de un módulo didáctico para simulación de procesos industriales en una banda transportadora, por medio de PLC. Riobamba.
- [10]Castiñeira, N. H. (2010). Sistemas Nuemáticos.
- [11]Catalogo BKB. (2015). *Maquinaria Industrial*, 16-17.
- [12]Creus Solé, A. (2007). Neumática e Hidraulica.
- [13] Creus Solé, A. (2011). *Neumática e Hidraúlica*. Barcelona: Alfaomega.

- [14] Domingo Peña , J., Martínez García, H., & Gamíz Caro , J. (2003). *Introducción a los autómatas programables*.
- [15] Eggel, R. D., Fernández, J. P., & Killer, C. (2013). Introducción a la Electroneumática.
- [16] Escalera Tornero, M. J., & Rodríguez Fernández , A. J. (2009). *Actuadores Neumáticos*.
- [17]Escalera Tornero, M. J., & Rodríguez Fernández, A. J. (2012). Actuadores Neumáticos.
- [18] Escalona Moreno, I. (2014). Circuitos Neumáticos y Aplicaciones de Ingeniería Industrial.
- [19] Fernández Amador, G. (2005). Sensores Magnéticos e Inductivos.
- [20] Festo. (2012). Electroválvulas, Válvulas Neumáticas, Midineumática.

SOBRE EL AUTOR

Autor: Richar A. Recalde G., realizó sus estudios superiores en la Carrera de Ingeniería en Mantenimiento Eléctrico de la Universidad Técnica del Norte de la ciudad de Ibarra, Imbabura, Ecuador. (2010-2015).