UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERÍA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

ESCUELA DE INGENIERÍA AGROPECUARIA

COMPORTAMIENTO DE LAS PRINCIPALES VARIEDADES COMERCIALES DE TOMATE DE MESA (Lycopersicum esculentum Mill) AL PARASITISMO DE LOS NEMATODOS "NUDO DE LA RAIZ" (Meloidogyne incognita) Y "ROSARIO DE LA RAIZ" (Nacobbus aberrans) EN IBARRA-IMBABURA

Tesis de Ingeniero Agropecuario

AUTOR GABRIELA ALEXANDRA SÀNCHEZ DELGADO

DIRECTOR

Ing. Jorge Revelo, M.Sc

Ibarra – Ecuador 2007

UNIVERSIDAD TECNICA DEL NORTE

FACULTAD DE INGENIERÍA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

ESCUELA DE INGENIERIA AGROPECUARIA

COMPORTAMIENTO DE LAS PRINCIPALES VARIEDADES

COMERCIALES DE TOMATE DE MESA (Lycopersicum esculentum Mill)

AL PARASITISMO DE LOS NEMATODOS "NUDO DE LA RAIZ"

(Meloidogyne incognita) y "ROSARIO DE LA RAIZ"(Nacobbus aberrans)

EN IBARRA-IMBABURA

Tesis revisada por el Comité Asesor, por lo cual se autoriza su presentación como requisito parcial para obtener el Titulo de:

INGENIERA AGROPECUARIA

APRORADA.

Ing. M. Sc. Jorge Revelo Director de Tesis	
Ing. M. Sc. Carlos Cazco Asesor	
Ing. M. Sc. Raúl Barragán Asesor	
Ing. Galo Varela Asesor	

Ibarra-Ecuador 2007

PRESENTACIÓN

Las ideas, conceptos, tablas, datos, resultados, discusión, conclusiones incluso omisiones que se presentan en esta investigación son de absoluta responsabilidad de la autora.

GABRIELA A.SANCHEZ D.

DEDICATORIA

A Dios por permitirnos vivir, guiarnos y bendecirnos a cada instante.

A mis Padres, quienes con esfuerzo, dedicación, sacrificio y sabios consejos supieron encaminarme por el camino del bien e inculcarme valores como el respeto, la disciplina y la perseverancia, ya que estos han sido muy importantes en mi vida. A ellos todo mi amor y respeto.

A mis Hermanas y todas las personas quienes me han visto luchar, vencer, caer y que comparten conmigo la alegría de poder culminar esta etapa profesional de mi vida y que siempre han estado a mi lado apoyándome, de corazón gracias.

GABRIELA A. SANCHEZ D.

iv

AGRADECIMIENTO

A mis Padres quienes ha sido el eje fundamental de apoyo constante antes, durante y después de la realización de la presente investigación.

A la Estación Experimental Santa Catalina INIAP, SENACYT y la Universidad Técnica del Norte por patrocinar la investigación.

Mi más profundo y perdurable agradecimiento al Ing. JORGE REVELO, como Director de la Tesis, y profesor de la Universidad Técnica del Norte por la orientación brindada durante esta investigación. Al Ing. Carlos Cazco (Asesor), Ing. Raúl Barragán (Asesor), Ing. Galo Varela (Asesor), Ing. Miguel Echeverría (Administrador de la Granja Experimental "Yuyucocha").

LA AUTORA

INDICE GENERAL

PRE	SENTACIÓNl	
DED	ICATORIAI	V
AGR	ADECIMIENTO	V
IND	ICE GENERAL	V]
CON	TENIDO	V]
IND	ICE DE CUADROSI	X
IND	ICE DE ANEXOS	X
IND	ICE DE FOTOS	X]
CON	VTENIDO	
COI		
CAP	ITULO I	. 1
INTE	RODUCCIÒN	. 1
1.1.	OBJETIVOS	4
1.1.1	Objetivo General	.4
1.1.2	.ObjetivosEspecíficos	.4
1.2.	HIPOTESIS	.4
CAP	ITULO II	.5
REV	ISIÒN DE LITERATURA	.5
2.1.	Generalidades del cultivo	5
2.2.	Generalidades de Nacobbus aberrans	6
2.2.1	.Ciclo de Vida	.6
2.2.2	.Especies del género Nacobbus	.8
2.3.	Generalidades de Meloidogyne incognita	8
2.3.1	.Especies del género Meloidogyne	و.
2.4.	Efectos de los nematodos sobre plantas	10
2.5.	Distribución geográfica	11
2.6.	Métodos de control	1 1

2.7.	Respuesta de las plantas al parasitismo de nematodos	12
2.7.1	1.Hospedante	12
2.7.2	2.Resistencia	15
2.8.	Características de las variedades de tomate de mesa disponibles en	los
	mercados de Ibarra	17
CAP	PITULO III	19
MA	TERIALES Y MÉTODOS	19
3.1.	Descripción del área donde se realizó el experimento	19
3.2.	Verificar la resistencia o tolerancia de las variedades e híbridos comerc	iales
	de tomate de mesa al parasitismo de Meloidogyne incognita	20
3.2.1	l.Metodología	20
3.2.1	1.1.Factores en Estudio	20
3.2.2	2.Tratamientos	20
3.3.	Determinación del comportamiento de variedades e híbridos de tomas	e de
	mesa al parasitismo de Nacobbus aberrans	22
3.3.1	l.Metodología	22
3.3.1	1.1.Factores en Estudio	22
3.3.2	2.Tratamientos	22
3.4.	Unidad experimental en los dos experimentos	24
3.5.	Diseño experimental en los dos experimentos	24
3.6.	Variables y métodos de evaluación en los dos experimentos	24
3.6.1	l.Incremento de la población del nematodo	24
3.6.2	2.Rendimiento	25
3.7.	Manejo de los dos experimentos	25
CAP	PITULO IV	28
RES	ULTADOS Y DISCUSIÓN	28
4.1.	Verificación de la resistencia o tolerancia de variedades e híbridos	
	comerciales de tomate de mesa al parasitismo de Meloidogyne	
	incognita	28
4.2.	Determinación del comportamiento de variedades e híbridos de	
	tomate de mesa al parasitismo de Nacobbus aberrans	30

CAPITULO V	34
CONCLUSIONES	34
CAPITULO VI	
RECOMENDACIONES	
RESUMEN	
SUMMARY	
BIBLIOGRAFÍA	
ANEXOS	45

INDICE DE CUADROS

Cuadro 1. (Criterios para calificar el tipo de hospedero a Nacobbus	
aberrans	s, a través de la presencia o ausencia de agallas, hembras	
adultas,	matrices en las raíces y el índice de incremento de la	
població	n	13
Cuadro 2. H	Escala modificada para calificar el tipo de hospedero a	
Nacobbu	as aberrans, a través del número de agallas y del índice de	
incremer	nto de la población	14
Cuadro 3.	Términos para describir la respuesta de las plantas a	
nematod	os	16
Cuadro 4. (Características de las principales variedades de tomate de	
mesa dis	ponibles en los mercados de Ibarra. 2007	18
Cuadro 5.	Tratamientos evaluados para verificar la resistencia o	
toleranci	ia de variedades de tomate de mesa al parasitismo de M .	
incognita	a	21
Cuadro 6.	Tratamientos evaluados para determinar la resistencia o	
toleranci	ia de las variedades de tomate de mesa al parasitismo de N.	
aberrans	S	23
Cuadro 7.	Comportamiento de las principales variedades de tomate de	
mesa al	l parasitismo de <i>Meloidogyne incognita</i> . Yuyucocha,	
Imbabur	a. 2007	29
Cuadro 8. (Comportamiento de las principales variedades de tomate de	
mesa al j	parasitismo de Nacobbus aberrans. Yuyucocha, Imbabura.	
2007		31
Cuadro 9. (Comportamiento de variedades e híbridos de tomate de	
mesa al	parasitismo de <i>Meloidogyne incognita</i> y <i>Nacobbus</i>	
aberrans	y Yuvucocha, Imbabura, 2007.	32

INDICE DE ANEXOS

Anex	to 1.	Ubicación geográfica del ensayo	46
Anex	xo 2.	Esquema del área del experimento	47
Anex	3.	Análisis del sustrato utilizado en las macetas y programa de	
	fertiliza	ación aplicado en el desarrollo del cultivo en Yuyucocha,	
	Imbabu	ıra. 2007	48
Anex	o 4.	Datos de rendimiento (kg/planta) registrados en el	
	experin	nento "Verificación del comportamiento de variedades de	
	tomate	de mesa al parasitismo de Meloidogyne incognita" en	
	inverna	ndero. Yuyucocha, Imbabura. 2007	49
Anex	xo 5.	Datos originales de población de M. incognita registrados	
	en el ex	xperimento "Verificación del comportamiento de variedades	
	de tom	ate de mesa al parasitismo de M. incognita" en invernadero.	
	Yuyuco	ocha, Imbabura. 2007	51
Anex	co 6.	Datos de rendimiento (kg/planta) registrados en el	
	experin	nento "Determinación del comportamiento de variedades de	
	tomate	de mesa al parasitismo de Nacobbus aberrans" en	
	inverna	ndero. Yuyucocha, Imbabura. 2007	52
Anex	xo 7.	Datos originales de población final de N. aberrans	
	registra	ndos en el ensayo comportamiento de variedades e híbridos	
	de tom	ate de mesa al parasitismo de N. aberrans. Yuyucocha-	
	Imbabu	ıra, 2006	54
Anex	xo 8.	Fotografías	55
Anex	xo 9.	Evaluación de impactos ambientales (matriz de	
	LEOPO	OLD)	61

INDICE DE FOTOS

Α.	Tamizado de suelo de paramo para preparar sustrato	55
B.	Llenado de fundas de polietileno con el sustrato	55
C.	Colocación de plástico negro en las camas	56
D.	Transplante de las variedades en macetas para los dos ensayos	
	M. Incognita y N.aberrans.	56
E.	Cosecha de la fruta en el ensayo de M.incognita	57
F.	Cosecha de la fruta en el ensayo de Nacobbus aberrans	57
G.	Registro del peso de la fruta.	58
Н.	Enfermedad causada por Botrytis sp.	58
I.	Muestras de las raíces de los ensayos de M. incognita y N. aberrans	
	para extracción de la población de huevos y larvas en el	
	laboratorio	59
J.	Material de Laboratorio para el procesamiento de las muestras	59
K.	Sistema radical de la variedad Paronset sano y afectado por M.	
	incognita	60
L.	Sistema radical de la variedad Nemonetta sano y afectado por N.	
	aberrans	60

CAPITULO I

INTRODUCCIÓN

En Ecuador, entre las hortalizas, el tomate de mesa (Lycopersicum esculentum Mill) ocupa el cuarto lugar en importancia con un área sembrada de 3.333 hectáreas, una producción total de 61.426 toneladas métricas y un promedio de 18,4 t/ha (INEC, 2002).

Según las estadísticas del INEC (1965 a 1997 y 2002), la demanda del tomate de mesa presentó un aumento constante de 1965 a 1997 al considerar que la superficie cosechada se incrementó en 218%, sin embargo los rendimientos disminuyeron de 25 t/ha en 1965 a 9,7 t/ha en 1997 y luego muestran una recuperación a 22 t/ha en el 2002.

Entre las causas de la disminución de los rendimiento se aduce al incremento de la incidencia de enfermedades, insectos plagas y de los nematodos agalladores *Meloidogyne* sp. y *Nacobbus* sp. (INIAP, 1982; MAG; 1986; Eguiguren et al. 1992). En cambio, la recuperación del rendimiento registrada en el 2002, se debería a que a partir del año 2000, esta hortaliza empezó a cultivarse bajo cubierta (invernadero) en la sierra, cuya superficie se estimó en 400 ha, presentando un constante crecimiento y desarrollo tecnológico (AGRIPAC, 2000).

Si bien las condiciones bajo cubierta ayudan a obtener una excelente productividad del cultivo y a reducir la incidencia de enfermedades e insectos plaga, en relación a campo abierto, en cambio en el caso de *Meloidogyne* sp y

Nacobbus sp. su población se incrementa constantemente por las siembras continuas de tomate de mesa (monocultivo) que los productores realizan para recuperar la inversión de construcción de los invernaderos.

En el caso particular de las principales zonas tomateras del Carchi e Imbabura (Valle del Chota y Pimampiro), en un diagnostico realizado por Revelo et al. (2006) sobre la incidencia y severidad de N. *aberrans*, establecieron que en 61 muestras de suelo provenientes de campos e invernaderos, en 12 campos y 5 invernaderos (27,8%) se detectó la presencia de N. *aberrans*, en 31 campos y 22 invernaderos (86,9%) se detectó a M. *incognita* y en 6 campos y 4 invernaderos (16,4%) a N. *aberrans* y a M. *incognita* en forma conjunta, con niveles de población de nematodos/100 g de suelo (severidad) que variaron desde bajos (1 a 20), moderados (21 a 40), altos (41 a 80) a muy altos (> a 80). Concluyen señalando que los dos nematodos estarían causando daño al cultivo de tomate de mesa y que la presencia simultánea de los dos parásitos en 6 campos y 4 invernaderos, implica un mayor daño al cultivo, dificultades de control y riesgo de diseminación.

Por otra parte, al considerar que bajo condiciones de invernadero *Nacobbus* sp. causa pérdidas de 60 a 70% (INIAP, 1982) o de 68 a 75% (Eguiguren y Défaz, 1992) y M. *incognita* 36, 43 y 47%, en las variedades de tomate de mesa Sheila, Sahel y Charleston, respectivamente (Revelo et al., 2006), se podría asumir que estos dos nematodos si constituyen un factor limitante de la producción del tomate de mesa.

Para el control de N. *aberrans*, los agricultores de las zonas mencionadas no disponen de alternativas para su control, desconocen su existencia y realizan un control indirecto y errado al confundir las agallas o nudos de las raíces que produce, con aquellas agallas producidas por M. *incognita*; bajo condiciones de invernadero, principalmente, cultivan híbridos de tomate de mesa con resistencia a M. *incognita* las mismas que probablemente no son resistentes a N. *aberrans*.

También realizan aplicaciones de nematicidas en forma irracional, especialmente de Furadan (carbofuran), Mocap (ethoprophs) y Nemacur (fenamiphos).

El uso de variedades resistentes es el método de control más económico, de fácil aplicación y adopción y no afecta el ambiente y la salud humana. En algunos países su uso ha economizado millones de dólares a los productores de tomate.

En la actualidad en el mercado se dispone de variedades e híbridos de tomate de mesa, que a decir de las casas comerciales que los producen, poseen resistencia a nematodos, principalmente a *Meloidogyne* sp.; sin embargo, en la zona de Pimampiro, cuando los agricultores cultivan estas variedades, generalmente las raíces presentan un número elevado de nudos o agallas, síntomas característicos del ataque de nematodos agalladores, hecho que se asume a un probable ataque de *Nacobbus* sp. y no al vencimiento de su resistencia.

Lo anotado, más la importancia del cultivo de tomate de mesa en las principales zonas tomateras del Carchi e Imbabura (Valle del Chota y Pimampiro), motivaron a planificar y ejecutar la presente investigación.

1.1. OBJETIVOS

1.1.1. Objetivo General

Conocer el comportamiento de las principales variedades e híbridos de tomate de mesa al parasitismo de *Meloidogyne incognita* y de *Nacobbus aberrans*.

1.1.2. Objetivos Específicos

- a. Verificar la resistencia o tolerancia de las principales variedades e híbridos de tomate de mesa al parasitismo de *Meloidogyne incognita*.
- b. Evaluar el comportamiento de las principales variedades e híbridos de tomate de mesa al parasitismo de *Nacobbus aberrans*.

1.2. HIPOTESIS

- Ho = Todas las variedades e híbridos comerciales de tomate de mesa, reportados como resistentes o tolerantes a *M. incognita*, se comportan como tales al parasitismo de la población de *M. incognita* del Valle del Chota.
- Hi = Al menos una de las variedades e híbridos comerciales de tomate de mesa reportadas como resistentes o tolerantes a *M. incognita*, se comporta como resistente o tolerante al parasitismo de la población *N. aberrans* del Valle del Chota.

CAPITULO II

REVISIÒN DE LITERATURA

2.1. Generalidades del cultivo

El tomate de mesa (*Lycopersicon esculentum* Mill.) es una hortaliza nativa de América, cultivada por los Aztecas e Incas desde el año 700 A.C. Los europeos la conocieron cuando los conquistadores llegaron a México y Centroamérica en el siglo 16. Las semillas llevadas a Europa, fueron aceptadas en España, Portugal e Italia (Villareal, 1982; Jano, 2006).

El tomate de mesa, de la familia de las solanáceas, es la hortaliza más extensamente cultivada en el mundo después de la papa, para consumo en fresco y para la industria. Es fuente importante de vitaminas A y C (Villareal, 1982; Jano, 2006).

Esta hortaliza se la consume en fresco y la industria prepara los siguientes productos: enlatado, pulpa o puré, pasta, jugos, salsa, salsa picante y polvo de tomate para reconstituirse como jugo, dulces y encurtidos.

En Ecuador, el tomate de mesa se cultiva en los valles cálidos de la serranía y en el litoral, en la época de verano, el tomate industrial para elaborar pasta, en Los Ríos y Manabí (Villareal, 1982; Jano, 2006).

2.2. Generalidades de *Nacobbus aberrans*

2.2.1. Ciclo de Vida

En función del hospedante, la temperatura del suelo y la raza del nematodo, el ciclo de vida de *N. aberrans* tiene diferente duración (Sasser, 1987, citado por Ortuño *et al*, 2005); así, según Quimí (1981), poblaciones de *N. aberrans* provenientes de Guayllabamba, Ecuador, completaron su ciclo de vida en 35 días en tomate de mesa a 25 °C.

Nacobbus spp. Presenta dimorfismo sexual marcado. Su ciclo de vida dura de 25 a 59 días, variando en función de poblaciones específicas, tipo de hospedante y condiciones ambientales. El primer estadio larval (J1) y la primera muda ocurren dentro del huevo. La larva que emerge del huevo es el segundo estadio (J2) e infecta la raíz penetrando por la zona de elongación. En la raíz ocurre una segunda muda que origina el tercer estadio larval (J3) que se distingue por adoptar forma de "C" abierta o en espiral. En el cuarto estadio (J4) experimenta la cuarta muda, se desarrollan las gónadas y abandona la raíz en estado pre-adulto, copulan e invaden nuevamente las raíces donde se establecen e inducen la formación de las agallas o nudos. La hembra madura deposita sus huevos en una masa gelatinosa llamada "matriz" (Clark, 1967; Castillo, 1984, citados por Ortuño et al, 2005; Mai et al, 1981). Una de las características particulares de este nematodo es que presenta anhidrobiosis, estado que le permite sobrevivir bajo condiciones de desecación del suelo por más de ocho meses (Jatala y Kaltenback, 1979, citados por Ortuño et al, 2005) característica que dificulta su combate.

El ciclo de vida de *N. aberrans* comprende un estado de huevo, cuatro estados juveniles y un estado adulto, tras producirse cuatro mudas, la primera de ellas en el huevo. En el estado adulto es donde se produce un marcado dimorfismo sexual (Costilla, 1985, citado por Ortuño *et al.*, 2005).

Los huevos son depositados por la hembra fuera de su cuerpo en una masa gelatinosa (matriz), expuesta fuera de los tejidos del nudo, quedando en contacto con el suelo y rodeando la parte caudal de la hembra. Cada masa puede contener de 231 a 372 huevos en el cultivo de papa paro también la hembra puede retener algunos huevos en la parte posterior de su cuerpo (Mejía, 1996, citado por Ortuño *et al.*, 2005).

A más de la hembra adulta, presentan una hembra juvenil que es vermiforme y permanece estirada, tiene desarrollada la vulva que es una hendidura transversal visible y ubicada en el extremo posterior del cuerpo muy cerca del ano. Tiene movilidad y por su capacidad de infectar es considerada como la segunda en importancia, después del segundo estadio juvenil (J2). Pueden ser encontradas en el suelo a lo largo de todo el ciclo del cultivo, pero el máximo de su población en el suelo ocurre cerca de la cosecha. Reingresan a las raíces causando necrosis y ligeros ensanchamientos en la raíz 24 horas después de su penetración y establecen su cabeza cerca de los tejidos vasculares (González, 1985, citado por Ortuño *et al*, 2005).

De acuerdo con Franco citado por Ortuño (2005), los mecanismos de sobrevivencia de este nematodo están relacionados con las masas de huevos que se encuentran adheridas a residuos de raíces en descomposición de diversos hospedantes, lo que les permite soportar condiciones adversas entre cultivos. Cuando las condiciones ambientales no son favorables, los huevos pueden entrar en un estado de anhidrobiosis en el cual resisten la desecación, y Según Canto citado por Ortuño (2005), en este estado pueden permanecer viables hasta 10 años, lo que obligaría a realizar rotaciones prolongadas.

2.2.2. Especies del género Nacobbus

Sher (1970) revisa el género *Nacobbus* y propone la existencia de dos especies: *N. aberrans* y *N. dorsalis*, quedando las demás especies y una subespecie como sinónimos de *N. aberrans* y a *N. dorsalis* como especie tipo.

N. dorsalis, es de menor importancia económica por su limitada distribución geográfica y ataque ocasional a remolacha en pocos campos de California en Estados Unidos (Steele, 1984; Baldwin y Cap, 1992, citados por Manzanilla-López, et al, 2002).

N. aberrans es la especie de mayor importancia económica en campos cultivados de Norte y Sur América (Manzanilla-López, et al, 2002).

En Ecuador, en poblaciones del nematodo colectadas de raíces de tomate de mesa y falsa quinua, se determina a la especie *N. aberrans* (Quimí, 1979).

2.3. Generalidades de Meloidogyne incognita

El ciclo de vida de *M incognita*, es similar a la de todas las especies de este género, sin embargo, la tasa de desarrollo depende de la temperatura y del hospedante (CATIE, 1990); así, su ciclo concluye a los 25 días a una temperatura de 27 ° C, pero tarda más tiempo a temperaturas más altas o más bajas (Agrios, 1988).

Su ciclo de vida comprende un estado de huevo, cuatro estados juveniles y un estado adulto, tras producirse cuatro mudas, la primera de ellas en el huevo. En el estado adulto se produce un marcado dimorfismo sexual (Costilla, 1985, citado por Ortuño *et al*, 2005).

Los huevos son puestos por la hembra en estado de célula simple; estos se encuentran embebidos en una masa gelatinosa glicoproteínica (matriz), que los protege de la deshidratación; son ovalados, algunas veces elipsoidales, levemente cóncavos y pueden medir de 30 a 52 micras de ancho por 67 a 128 micras de largo, la hembra oviposita un promedio de 500 a 1000 huevos (Taylor y Sasser, 1983; CATIE, 1990).

Esta especie, al igual que todas las especies de nematodos, se reproduce sexualmente, pero cuando las condiciones no son apropiadas o favorables lo hacen partenogenéticamente (asexual). Produce muchas generaciones durante el ciclo del cultivo, incrementando su población al final del mismo y, de esta forma, el inóculo para la siguiente siembra.

2.3.1. Especies del género Meloidogyne

Las especies más comunes, económicamente importantes y causantes del 90% de daño a cultivos agrícolas, a nivel mundial, son: *Meloidogyne incognita*, *M. javanica*, *M. arenaria* y *M. hapla* (Eisenback *et al*, 1983).

Según Eisenback *et al* (1983), las principales características de estas especies, basadas en la morfología de los modelos perineales de los genitales de hembras adultas, son:

Meloidogyne incognita. La característica determinante para identificar a esta especie es arco dorsal alto, cuadrado y sin líneas laterales claramente visibles.

Meloidogyne javanica. La característica determinante para identificar a esta especie es arco bajo a redondeado y con líneas laterales bien visibles que separan las estrías dorsales de las ventrales; sin embargo, en ocasiones el arco puede ser alto.

Meloidogyne arenaria. Arco dorsal con "hombreras", formadas por ondulaciones pronunciadas de las estrías dorsales, cerca de las líneas laterales que son visibles, y las estrías que se bifurcan, también cerca de las líneas laterales, son los caracteres más importantes de esta especie.

Meloidogyne hapla. El modelo perineal no presenta líneas laterales bien visibles; en conjunto, presenta la forma de hexágono redondeado a óvalo aplanado y la presencia de puntuaciones en el área en que termina la cola.

2.4. Efectos de los nematodos sobre plantas

Los síntomas que causa *N. aberrans* son: plantas pequeñas o enanas y follaje clorótico con tendencia a marchitarse en condiciones de poca humedad y en las horas de alta temperatura. En las raíces se observan nudos o agallas similares a los causados por *Meloidogyne* sp, pero dispuestos en forma individual a manera de rosario, de donde se deriva el nombre común de "nematodo del rosario de la raíz" o "nematodo del falso nudo de la raíz" (Mai *et al*, 1981; Jatala, 1985).

M. incognita induce la formación de nudos o agallas en las raíces, en ocasiones en forma individual y más comúnmente unidos más de dos formando agallas grandes, de cuya parte exterior sobresalen las matrices de color café oscuro conteniendo los huevos del nematodo. Las plantas son pequeñas, con follaje clorótico y tendencia a marchitarse durante las horas y días calurosos (Taylor y Sasser, 1983).

Estos nematodos conocidos también como nematodos agalladores, dañan las raíces que afectan la capacidad de absorción de agua y nutrientes, retardan el crecimiento, producen síntomas de deficiencia de nitrógeno (clorosis) en la parte aérea, disminuyen los rendimientos considerablemente y los frutos son de mala calidad (Taylor y Sasser, 1983).

En ocasiones produce acortamiento de raíces, reducción del número de raíces laterales y de los pelos absorbentes, lo cual causa detenimiento del crecimiento de la planta, marchites en los días soleados y síntomas de deficiencia de nutrientes, aún cuando el agua y nutrientes sean abundantes en el suelo (Taylor y Sasser, 1983).

Generalmente el efecto de los nematodos es aducido a cansancio o fatiga del suelo y a una mala nutrición de la planta (Agrios, 1988).

2.5. Distribución geográfica

Nacobbus aberrans ha sido encontrado en asociación con numerosos cultivos y plantas nativas en regiones templadas y subtropicales de Norte y Sur América.

Este nematodo constituye una plaga de importancia económica en Estados Unidos, Perú, Bolivia, Argentina, Chile, México, Inglaterra, India, Rusia, y Ecuador (Jensen *et al*, 1978).

En Ecuador se ha encontrado a *Nacobbus aberrans* en Pimampiro y en los valles de Chota y Guayllabamba (Quimí, 1981) y Revelo *et al.* (2006).

M. incognita está distribuido en todos los estratos geográficos con 80% de incidencia; las densidades poblacionales más altas se encuentran en las áreas climáticas cálidas incluyendo los valles de la Sierra, atacando alrededor de 800 plantas hospedantes (Triviño y Quimí, 1984; Eguiguren *et al.*, 1992; Revelo, 2002).

2.6. Métodos de control

Las medidas de control cultural son la rotación de cultivos, barbechos, cultivos trampa, variedades resistentes o tolerantes, eliminación de malezas hospedantes, enmiendas orgánicas, etc.

El empleo de variedades resistentes o tolerantes, es un método de manejo económico y ambientalmente seguro, que aprovecha la característica de que la resistencia de las plantas a los nematodos es controlada por un gen en algunos casos y por más de uno en otros, y además de que en el campo, por lo general, existe una especie dominante a combatir. Sin embargo, no existen fuentes de resistencia en la naturaleza ante todos los géneros de nematodos ni para todas las plantas cultivables (Taylor y Sasser citados por Fernández 1994).

Existen variedades comerciales resistentes a *Meloidogyne* (principalmente a *M. incognita*), *Ditylenchus dipsaci*, *Aphelenchoides besseyi* y *Ditylenchus angustus*, dentro de los nematodos de cultivos tropicales, que tienen los mayores representantes en el tomate, tabaco, pimiento, arroz, alfalfa, boniato y maíz. (Luc *et al* y Sasser citados por Fernández 1994).

La resistencia debe ser manejada con cuidado y debe considerársela dentro de un plan de rotación de cultivos, debido a que la siembra continua de una variedad resistente, permite la selección de especies o razas que se encuentren en minoría y convertirlas en dominantes, como sucedió en tabaco en Carolina del Sur, donde la siembra indiscriminada de la variedad Speight G-28, para controlar a *M. incógnita* raza 1, permitió que surja con fuerza la raza 2 y además *M. arenaria* (Fortnum, 1994); esta situación también se presentó en Cuba, donde la especie nueva dominante fue *M. javanica*, que no tiene fuentes de resistencia dentro del género Nicotiana, según anota Fernández (1994).

2.7. Respuesta de las plantas al parasitismo de nematodos

2.7.1. Hospedante

De acuerdo con Ortuño *et al* (2005) la presencia o ausencia de agallas en las raíces y de hembras adultas con matrices conteniendo huevos, es el criterio considerado por muchos investigadores para calificar a una planta como hospedante o no

hospedante, respectivamente. Señalan que en el caso de una especie hospedante, se califica como hospedante-eficiente, hospedante-moderadamente eficiente y hospedante-no eficiente, según el número de agallas que presente la planta en la raíz, pero no indican el número de agallas a considerar en cada calificación. También indican que un hospedante-eficiente corresponde a un genotipo susceptible porque permite la reproducción del nematodo, y que un hospedante-no eficiente y un hospedante-moderadamente eficiente, corresponden a un genotipo resistente o a uno parcialmente resistente, respectivamente, porque no permiten la reproducción del nematodo, o si esto ocurre, es en baja proporción, pero tampoco establecen valores de reproducción para cada uno.

Posteriormente, los anteriores autores, incorporan la tasa de multiplicación del nematodo como parámetro para identificar material resistente, para lo cual relacionan la población final con la población inicial (I = Pf/Pi) y mencionan los siguientes criterios para calificar la respuesta de las plantas: resistente consideran a la planta donde el nematodo presenta un incremento menor a 1, y susceptible a la planta donde el nematodo presenta un incremento mayor a 1, criterios que se resumen en el Cuadro 1.

Cuadro 1. Criterios para calificar el tipo de hospedero a *Nacobbus aberrans*, a través de la presencia o ausencia de agallas, hembras adultas, matrices en las raíces y el índice de incremento de la población.

Nematodo				
En la raíz	Categoría	Reproducción (I = Pf/Pi)	Respuesta	
Presencia de		>1	Hospedante-eficiente	Susceptible
agallas, hembras adultas y matrices	Hospedante	< 1	Hospedante- moderadamente eficiente	Parcialmente resistente
		< 1	Hospedante-no eficiente	Resistente
Ausencia de agallas, hembras adultas y matrices	No hospedante		No hospedante	

Fuente: Ortuño et al, 2005; I = incremento; Pi = población inicial; Pf = población final

Como una posible solución a lo anteriormente anotado y considerando varias escalas que la literatura reporta e información de ensayos experimentales de campo, se ha estructurado la escala del Cuadro 2 para calificar la respuesta de las plantas como hospedante o no (Revelo *et al*, 2006), en la cual se considera el número de agallas y se incorporan rangos de valores de incremento de la población obtenidos en ensayos experimentales.

Cuadro 2. Escala modificada para calificar el tipo de hospedero a *Nacobbus aberrans*, a través del número de agallas y del índice de incremento de la población.

Grado	Número de agallas	Incremento I = Pf/Pi	Respuesta	
0	0	0	No hospedero	No hospedante
1	1 a 10	0.1 a 0.4	Hospedero deficiente	Resistente
2	11 a 30	0.41 a 0,9	Hospedero	Parcialmente resistente
3 4	31 a 75 > 75	1 a 2 > 2	Hospedero eficiente Hospedero muy eficiente	Susceptible

Fuente: CIP (1985); I = incremento; Pi = población inicial; Pf = población final

Se ha anotado que las plantas poseen un mecanismo de acción que impiden en menor o mayor grado el desarrollo del nematodo, mecanismos que probablemente son similares a la resistencia fisiológica que poseen los genotipos hospedantes-no eficientes o resistentes dentro de un cultivo identificado como hospedante, es decir, luego que el nematodo penetra en las raíces, éste no encuentra las condiciones de alimentación favorables o necesarias para su desarrollo y reproducción, haciendo que se interrumpa su ciclo biológico y muera en su interior.

Al respecto, Ortuño *et al* (2005), manifiestan que en los últimos años la investigación se ha concentrado a identificar especies vegetales que puedan estimular la eclosión, invasión y no la reproducción del nematodo; así,

Castiblanco *et al.* (1988), menciona que en diversos cultivos y especies de plantas se identificaron varias plantas que no presentaron síntomas de agallas en la raíz, pero si diversos estados de desarrollo del nematodo, sin llegar a reproducirse.

2.7.2. Resistencia

En términos simples, la resistencia puede ser definida como el carácter o caracteres, de una planta que inhibe la reproducción de un nematodo; sin embargo, es necesario considerar que la respuesta de las plantas varía grandemente incluso dentro de la misma especie.

Algunas plantas pueden mostrar agallamiento extremo del sistema radical y otras no, pero el incremento del nematodo puede ser similar, otras especies de plantas pueden mostrar agallamiento de la raíz pero la reproducción del nematodo puede ser reducida.

De acuerdo con Fassuliotis (1985), la mayoría de investigadores utiliza la respuesta de agallamiento del sistema radical y el índice de reproducción del nematodo para evaluar la resistencia de las plantas. Señala que la escala con índices de 0 a 4 es la más usada y considera la severidad de agallamiento y el grado de reproducción del nematodo, donde: 0 = no agallas ni reproducción; 1 = trazas de agallas o de reproducción (2 a 11% de la raíz afectada); 2 = moderado agallamiento o reproducción (12 a 25% de la raíz afectada); 3 = severo agallamiento o reproducción (26 a 50% de la raíz afectada); 4 = muy severo agallamiento o reproducción (51 a 100% de la raíz afectada). Indica, además, que las plantas calificadas con las categorías 0, 1, 2 y 3, son consideradas inmunes, resistentes y moderadamente resistentes, altamente resistentes, muy respectivamente; sin embargo, en esta escala no se considera el efecto del nematodo en el rendimiento de la planta, por lo que es considerada incompleta.

Al respecto Cook (1974) y Canto-Sáenz (1985) manifiestan que para una evaluación más completa de la respuesta de las plantas al ataque de nematodos, es necesario medir los parámetros reproducción del nematodo y el daño causado a la planta por el nematodo. Señalan que la eficiencia del hospedero u hospedero eficiente, está dada por el grado de reproducción del nematodo que resulta de dividir la población final (Pf) del nematodo para la población inicial (Pi), dando como resultado las siguientes clases de hospederos: hospedero eficiente cuando la relación Pf/Pi > 1 y hospedero no eficiente cuando la relación Pf/Pi < 1. Indican además que la eficiencia del hospedero es expresada por el número de veces que la población inicial (huevos/g de suelo o por g de raíz) es incrementada o reducida. Respecto al rendimiento del hospedero, los anteriores autores manifiestan que esta variable es utilizada para determinar el efecto causado por el nematodo en el sentido de pérdidas (rendimiento menor y estadísticamente significativo) o ningún efecto (rendimiento normal y estadísticamente no significativo), en relación al rendimiento de un testigo (rendimiento de la planta sin nematodos).

Finalmente Cook (1974) y Canto-Sáenz (1985) apuntan que el hecho más importante de la interacción de los dos parámetros, es que el comportamiento del hospedero y el comportamiento del parásito, son tratados conjuntamente en un mismo sistema y recomiendan utilizar los términos que se indican en el Cuadro 3, para describir la respuesta de las plantas al ataque de nematodos.

Cuadro 3. Términos para describir la respuesta de las plantas a nematodos.

Eficiencia del hospedero para la reproducción del nematodo	Daño del nematodo a la planta		
	Significativo	No significativo	
	estadísticamente	estadísticamente	
Eficiente (Pf/Pi > 1)	Susceptible no tolerante	Susceptible tolerante	
No eficiente (Pf/Pi < 1)	Resistente no tolerante	Resistente tolerante	

Pi = población inicial, Pf = población final

En forma detallada estos términos son:

RESISTENTE – TOLERANTE = plantas que presenten escasa reproducción del nematodo (incremento < 1) y rendimiento igual o mayor al testigo.

RESISTENTE – NO TOLERANTE = plantas que presenten escasa reproducción del nematodo (incremento < 1) y rendimiento menor al testigo.

SUSCEPTIBLE – TOLERANTE = plantas que presenten alta reproducción del nematodo (incremento > 1) y rendimiento igual o mayor al testigo.

SUSCEPTIBLE – NO TOLERANTE = plantas que presenten alta reproducción del nematodo (incremento > 1) y rendimiento menor al testigo

2.8. Características de las variedades de tomate de mesa disponibles en los mercados de Ibarra.

En la actualidad, en los mercados de Ibarra se dispone de un número considerable de variedades e híbridos de tomate de mesa con características de resistencia/tolerancia a varios patógenos de importancia económica, en especial al nematodo del nudo de la raíz (*Meloidogyne* spp), como se indica en el Cuadro 4, comportamiento que es necesario verificar y también determinar al parasitismo de *N. aberrans*.

Cuadro 4. Características de las principales variedades de tomate de mesa disponibles en los mercados de Ibarra. 2007.

Variedades	Crecimiento	Ciclo del cultivo (días)	Resistencia o tolerancia ¹
Nemonetta	Indeterminado	90	V, F 1 y 2, TMoV, N
Staccato	Indeterminado	100	V, F 1 y 2, TMoV, N
Sheila	Indeterminado	110 - 120	V, F 1 y 2, TMoV, N
Rocío	Indeterminado	90 - 110	V, F 1 y 2, TMoV, Fr y N
Fortaleza	Indeterminado	100 - 110	N: M. incognita, M. Javanica
Titán	Indeterminado	100	V, F 1 y 2, TMoV, N
Gina	Indeterminado	90 - 110	V, F 1 y 2, Fr, TMoV, N
Thomas	Indeterminado	100 - 115	V 1, F 1 y 2, TMoV, N
Diva	Indeterminado	100 - 110	V, F 1 y 2, Fr, TMoV, N
Victoria	Indeterminado	85 - 100	F 2, TMV, N
Charleston	Indeterminado	100 - 110	V, F 2, TMV, N
E2731642	Indeterminado	100	V, F 2, N
AG 375	Indeterminado	110	V1, F1, 2 y 3, TMV, M. incognita
Don José	Indeterminado	100 - 110	V, F 2, TMV, N
FA 1418	Indeterminado	90 - 110	V, F 2, TMV, N
Paronset	Indeterminado	75 - 90	V, F 1 y 2, TMoV, N
Ikram	Indeterminado	100	V, F 2, TMV, N
E2532067	Indeterminado	100	V, F 2, TMV, N
Sahel	Indeterminado	100	V, F 1 TMV, N
Super Sweet	Indeterminado	100 - 110	V, F 1 y 2, TMoV, N
Milenio	Indeterminado	95	V, F 1 y 2, TMV, N
Presto	Indeterminado	110	V, F, F 2, TMV, N
Vita	Indeterminado	80	V, F 1 y 2, TMV, N
Superman	Indeterminado	90	V, F 1 y 2, ToMV, TSWV, N
Chibli	Determinado	75 - 90	V, F 2, N
Chicago	Determinado	70 - 90	V, F 2, N
Platone	Determinado	80 - 90	V, F 2, N
Miroma	Determinado	75 - 90	V, F 2, N: M. arenaria, javanica
Pericle	Determinado	70 - 90	V, F 2, N
Suncrets	Determinado	80 - 100	V, F 2, TMV, N

V = Verticillium; F1, 2, y 3 = Fusarium razas 1, 2 y 3; Fr = Fusarium radicis; TMoV = virus del mosaico del tabaco; N = nematodos: Meloidogyne incognita, M. javánica, M. arernaria.

CAPITULO III

MATERIALES Y MÉTODOS

3.1. Descripción del área donde se realizó el experimento

El presente estudio se realizó de junio del 2006 a febrero del 2007, en el invernadero de la Universidad Técnica del Norte ubicado en la Granja Experimental "Yuyucocha", de la Parroquia de Caranqui, Cantón Ibarra, Provincia de Imbabura y en el laboratorio de Nematología de la Estación Experimental Santa Catalina del INIAP, localizada en Cutulahua, Cantón Mejía, Provincia de Pichincha.

La Granja Experimental "Yuyucocha" se encuentra ubicada a 0° 21'53"latitud Norte, 78° 06'32" O longitud Oeste y a una altitud de 2228 m.s.n.m. Presenta clima templado seco, con temperatura media anual de 18.4 ° C y precipitación media anual de 589.3 mm; suelo de textura franca-arenosa y drenaje bueno. Con una humedad relativa del 73.9%. Zona ecológica Sub húmedo tropical (Cañadas, 1983)

Para alcanzar los objetivos propuestos, se realizaron dos experimentos:

- Verificación de la resistencia o tolerancia de las variedades e híbridos comerciales de tomate de mesa al parasitismo de *Meloidogyne incognita*
- Determinación del comportamiento de las variedades e híbridos de tomate de mesa al parasitismo de *Nacobbus aberrans*

3.2. Verificar la resistencia o tolerancia de las variedades e híbridos comerciales de tomate de mesa al parasitismo de *Meloidogyne incognita*

3.2.1. Metodología

3.2.1.1. Factores en Estudio

a) Variedades e híbridos de tomate de mesa (20)

Diva Charleston Fortaleza **Suncrets** Chibli Titan Vitoria FA 1418 Gina Super sweet Sahel Paronset Thomas Ikram Rocio Staccato Nemonetta Don Jose E2532067 Sheila

b) Inoculacion del Nematodo (Meloidogyne incognita)

Sin nematodos (no inoculados)n0

Con nematodos (inoculados)n1

3.2.2. Tratamientos

Se evaluaron 40 tratamientos resultantes de la combinación de las 20 variedades e híbridos de tomate de mesa y la aplicación del nematodo *M. incognita* (sin nematodos y con nematodos) (Cuadro 5).

Cuadro 5. Tratamientos evaluados para verificar la resistencia o tolerancia de variedades de tomate de mesa al parasitismo de *M. incognita*.

FACTORES	NIVELES	No	TRATAMIENTOS	DESCRIPCION
	v1	1	v1n0	Nemonetta sin nematodos
Variedades	v2	2	v1n1	Nemonetta con nematodos
	v3	3	v2n0	Staccato sin nematodos
	v4	4	v2n1	Staccato con nematodos
	v5	5	v3n0	Sheila sin nematodos
	v6	6	v3n1	Sheila con nematodos
	v7	7	v4n0	Rocío sin nematodos
	v8	8	v4n1	Rocío con nematodos
	v9	9	v5n0	Fortaleza sin nematodos
	v10	10	v5n1	Fortaleza con nematodos
	v11	11	v6n0	Chicago sin nematodos
	v12	12	v6n1	Chicago con nematodos
	v13	13	v7n0	Gina sin nematodos
	v14	14	v7n1	Gina con nematodos
	v15	15	v8n0	Thomas sin nematodos
	v16	16	v8n1	Thomas con nematodos
	v17	17	v9n0	Diva sin nematodos
	v18	18	v9n1	Diva con nematodos
	v19	19	v10n0	Vitoria sin nematodos
	v20	20	v10n1	Vitoria con nematodos
		21	v11n0	Charleston sin nematodos
NT . 1	0	22	v11n1	Charleston con nematodos
Nematodo	n0	23	v12n0	Suncrets in nematodos
(M. incógnita)	n1	24	v12n1	Suncrets con nematodos
		25	v13n0	Don José sin nematodos
		26	v13n1	Don José con nematodos
		27	v14n0	FA 1418 sin nematodos
		28	v14n1	FA 1418 con nematodos
		29	v15n0	Paronset sin nematodos
		30	v15n1	Paronset con nematodos
		31	v16n0	Ikram sin nematodos
		32	v16n1	Ikram con nematodos
		33	v17n0	E 2532067 sin nematodos
		34	v17n1	E2532067 con nematodos
		35	v18n0	Sahel sin nematodos
		36	v18n1	Sahel con nema todos
		37	v19n0	Sup. Sweet sin nematodos
		38	v19n1	Sup. Sweet con nematodo
		39	v20n0	Chibli sin nematodos
		40	v20n2	Chibli con nematodos

3.3. Determinación del comportamiento de variedades e híbridos de tomate de mesa al parasitismo de *Nacobbus aberrans*

3.3.1. Metodología

3.3.1.1. Factores en Estudio

a) Variedades e híbridos de tomate de mesa (26)

- Nemonetta - Gina - - Don Jose - Super sweet

- Staccato - Thomas - FA 1418 - Chibli

- Sheila - Diva - Paronset - Chicago

- Rocio - Vitoria - Ikram - Platone

- Fortaleza - Charleston - E2532067 - E273164

- Chicago - Suncrets - Sahel - Ag 375

- Miroma - Pericle

b) Nematodo (*Nacobbus aberrans*)

- Sin nematodos (no inoculados) n0

- Con nematodos (inoculados) n1

3.3.2. Tratamientos

Se evaluaron 52 tratamientos resultantes de la combinación de 26 variedades e híbridos de tomate de mesa y la inoculación del nematodo *N. aberrans* (sin nematodos y con nematodos) (Cuadro 6).

Para esto, de cada material se dispusieron 8 plántulas crecidas en macetas (bolsas de plástico conteniendo 7 kg de sustrato suelo de páramo y arena de río en proporción 3:1). A 4 plántulas (15 cm de alto) se inocularon 10 huevos y larvas J2/g de suelo (70 000 huevos y larvas J2/maceta) de *Nacobbus aberrans* y a 4 se dejaron sin inocular.

Cuadro 6. Tratamientos evaluados para determinar la resistencia o tolerancia de las variedades de tomate de mesa al parasitismo de *N. aberrans*.

FACTORES	NIVELES	No	TRATAMIENTOS	DESCRIPCION
	v1	1	v1n0	Nemonetta sin nematodos
Variedades	v2	2	v1n1	Nemonetta con nematodos
	v3	3	v2n0	Staccato sin nematodos
	v4	4	v2n1	Staccato con nematodos
	v5	5	v3n0	Sheila sin nematodos
	v6	6	v3n1	Sheila con nematodos
	v7	7	v4n0	Rocío sin nematodos
	v8	8	v4n1	Rocío con nematodos
	v9	9	v5n0	Fortaleza sin nematodos
	v10	10	v5n1	Fortaleza con nematodos
	v11	11	v6n0	Chicago sin nematodos
	v12	12	v6n1	Chicago con nematodos
	v13	13	v7n0	Gina sin nematodos
	v14	14	v7n1	Gina con nematodos
	v15	15	v8n0	Thomas sin nematodos
	v16	16	v8n1	Thomas con nematodos
	v17	17	v9n0	Diva sin nematodos
	v18	18	v9n1	Diva con nematodos
	v19	19	v10n0	Vitoria sin nematodos
	v20	20	v10n1	Vitoria con nematodos
	v21	21	v11n0	Charleston sin nematodos
	v22	22	v11n0 v11n1	Charleston con nematodos
	v23	23	v12n0	Suncrets in nematodos
	v24	24	v12n0 v12n1	Suncrets on nematodos
	v25	25	v13n0	Don José sin nematodos
	v26	26	v13n0 v13n1	Don José con nematodos
		27	v14n0	FA 1418 sin nematodos
		28	v14n0 v14n1	FA 1418 con nematodos
Nematodo	n0	29	v15n0	Paronset sin nematodos
(N.aberrans)	n1	30	v15n1	Paronset con nematodos
		31	v16n0	Ikram sin nematodos
		32	v16n1	Ikram con nematodos
		33	v17n0	E 2532067 sin nematodos
		34	v17n1	E2532067 con nematodos
		35	v18n0	Sahel sin nematodos
		36	v18n1	Sahel con nema todos
		37	v19n0	Sup. Sweet sin nematodos
		38	v19n1	Sup. Sweet con nematodo
		39	v20n0	Chibli sin nematodos
		40	v20n2	Chibli con nematodos
		41	v21n0	Chicago sin nematodos
		42	v21n1	Chicago con nematodos
		43	v22n0	Platone sin nematodos
		44	v22n1	Platone con nematodos

45	v23n0	E2731642 sin nematodos
46	v23n2	E2731642 con nematodos
47	v24n0	Ag 375 sin nematodos
48	v24n1	Ag 375 con nematodos
49	v25n0	Miroma sin nematodos
50	v25n1	Mirona con nematodos
51	v26n0	Pericle sin nematodos
52	v26n2	Pericle con nematodos

3.4. Unidad experimental en los dos experimentos

La unidad experimental estuvo constituida por una planta (variedad e hibrido) de dos meses de edad de 15 cm de altura, crecida en una maceta (funda de plástico contuvo 7 kg de suelo de páramo y arena de río en proporción 3:1, con 4 repeticiones. La distancia entre unidades experimentales fue de 0,30 m y entre repeticiones de 1,20 m.

3.5. Diseño experimental en los dos experimentos

Se distribuyeron bajo un diseño de bloques completos al azar, en camas del invernadero para controlar la variabilidad y no para analizar estadísticamente las variables; estas fueron utilizadas para determinar el comportamiento de las variedades, mediante los criterios de Cook.

3.6. Variables y métodos de evaluación en los dos experimentos

3.6.1. Incremento de la población del nematodo

Para medir esta variable se utilizó la relación I = Pf/Pi propuesta por Seinhorst (1970), donde: I = Número de veces que se incrementa la población; Pi = Población inicial (la población de 70 000 huevos y larvas J2 que se inocularon por maceta); Pf =.Población final en la planta o maceta al momento de la última cosecha. La población final se determinó en el sistema radical de cada planta

inoculada, para lo cual se extrajo el sistema radical, se lavó, se cortó en trozos de 1 a 2 cm, se pesó, se homogenizó y se procesó una muestra de 10g por el método de Hussey y Barker (1973). El número de nematodos y huevos extraídos de la muestra, se relacionó con el peso total del sistema radicular mediante una regla de tres simple para conocer la población total presente en el sistema radical, de la siguiente forma: en 10 g de raíces = x No. de nematodos, en x g de raíces. ¿Que número de nematodos corresponderá? Finalmente la población extraída se expresó en número de huevos y larvas J2/maceta.

3.6.2. Rendimiento

En cada cosecha se registró el peso en kg. La suma de las cosechas parciales dio el rendimiento total y se expresó en kg/planta. En esta variable, mediante la prueba "t de Student", se comparó la media de los valores registrados en las 4 plantas inoculadas con la media de los valores de las 4 plantas sin inocular, para determinar estadísticamente si el rendimiento observado en las plantas inoculadas era igual o diferente al rendimiento observado en las plantas sin inocular.

Finalmente, la respuesta de los materiales se determinó al relacionar los valores de índice de incremento de la población del nematodo, con el rendimiento (resultado de la prueba "t de Student"), mediante los criterios de Cook (1974) y Canto-Sáenz (1985) indicados en el Cuadro 3.

3.7. Manejo de los dos experimentos

Para germinar la semilla de las variedades, se preparó un sustrato (suelo de páramo y arena de río en proporción 3:1). Este sustrato se colocó en fundas de plástico pequeñas donde se colocó dos semillas de cada variedad y cuando germinaron se dejó la más vigorosa. El sustrato se fertilizó con Nitrofoska 0,5 g/l. Cuando las plántulas tuvieron una altura de 5 cm y dos hojas verdaderas, se trasplantaron a las macetas (fundas conteniendo 7 kg de sustrato).

En el invernadero se establecieron camas de 0,60 m de ancho y 10 m de largo, separados por caminos de 1 m. Las camas se cubrieron con plástico negro para evitar que las macetas se contaminen con población de nematodos presentes en el suelo del invernadero.

El inoculo de *M. incognita* y de *N. aberrans*, se obtuvieron de raíces de tomate infestadas, mediante el método de hipoclorito de sodio de Hussey y Barker (1973). La inoculación se realizó un mes después del transplante, para lo cual la suspensión de nematodos (huevos y larvas J2), se colocó a través de seis agujeros efectuados en el suelo alrededor de la base de la planta, a profundidades de 5 cm, 10 cm y 15 cm, con la ayuda de una pipeta. Esta actividad se realizò en la tarde para evitar que los nematodos mueran y pierdan su movilidad evitando así el fallo del ensayo.

Mediante análisis del sustrato, se estableció el requerimiento de fertilización siguiente: 2 kg de nitrato de amonio, 2 kg de ácido fosfórico, 4 kg de nitrato de potasio, 2 kg de nitrato de calcio, 4 kg de sulfato de potasio y 2kg de cloruro de magnesio, para todas las macetas. Los requerimientos se fraccionaron y se aplicaron cada semana para lo cual se diluyeron en un tanque de 300 l y se adicionaron a las macetas mediante riego por goteo.

Durante el desarrollo del cultivo, se realizaron aplicaciones foliares de los fertilizantes Librel (micronutrientes) en dosis de 200g/20 l; Bayfolan (bioestimulante) y Wuxal calcio, en dosis de 50 ml en 20 l.

Se realizaron riegos diarios con la ayuda del equipo de riego por goteo y una vez al mes se realizó un riego por gravedad en los caminos de todo el invernadero, para evitar el levantamiento de polvo del piso.

Las labores culturales que se realizaron en los ensayos fueron: tutorado de plantas, poda de ejes, poda de brotes, poda de hojas bajeras y controles sanitarios.

La mosca blanca (*Trialeurodes vaporariorum*), se controló mediante aplicaciones alternadas de New Mectin (Avermectina) en dosis de 10ml/20 l, Perfekthion (Dimetoato) en dosis de 30g/20 l de agua; minador de la hoja (*Liriomyza quadrata*) se controló con Cipermetrina (Cipermetrina) 20% en dosis de 25cc/20 l.

Para controlar lancha (*Phytophtora infestans*) se realizaron aplicaciones alternadas de Polyran (Metiram) en dosis 50 g/20 l y Curzate (Cimoxanil + Mancozeb) en dosis de 50 g/20 l, según la incidencia de la enfermedad, cada 7 días.

Para el control de *Botrytis cinerea* se utilizo Rovral (Iprodione) en dosis de 30 g /20 l, Scala(Pyrimethanil) en dosis de 25 ml/20 l, cada 15 y 7 días, respectivamente, en forma alternada.

Cenicilla (*Oidium* sp.) se controló con Pilarben (Benomil) en dosis de 28 g/20 l; Nimrod (Bupirimato) en dosis de 20 ml/20 l.

Las plagas y enfermedades que prevalecieron en los ensayos se controlaron según la incidencia de las mismas, para lo cual se realizaron monitoreos periódicos. Las aplicaciones se realizaron mediante una bomba de mochila.

Fertilizantes foliar: Librel (micronutrientes) en dosis de 200 gr /20 lt de agua; Bayfolan (bioestimulante) y Wuxal calcio (abono verde, mejorador en calcio) en dosis de 50 ml en 20 lt agua.

La cosecha se la realizo a partir de los tres meses y medio luego del trasplante, cuando el fruto tenía una coloración verde-pintón, alcanzando su máximo tamaño; con la ayuda de una balanza se peso y contabilizo el numero de frutos por planta y variedad registrándose su peso en libros de campo, la cosecha se la realizo desde la parte baja hacia la parte apical.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1. Verificación de la resistencia o tolerancia de variedades e híbridos comerciales de tomate de mesa al parasitismo de *Meloidogyne incognita*

De acuerdo con los resultados observados en el Cuadro 6, las variedades: Diva, Fortaleza, Chibli, Victoria, Gina, Sahel, Thomas y Rocío, presentaron un comportamiento resistente tolerante al ataque de *M. incognita*, con incrementos de población menores a 1, en un rango de 0,1 a 0,7 y no ser afectados sus rendimientos, resultados que corroboran lo indicado por las empresas que producen estas variedades; sin embargo, la variedad Sahel que es resistente (0,4 veces de incremento), muestra que su rendimiento es afectado significativamente (2,2 kg/planta sin nematodos y 1,2 kg/planta con nematodos), es decir, no posee tolerancia, por lo cual se presento como resistente no tolerante.

Por su parte, las variedades Nemonetta, E2532067, Charleston, Suncrets, Titán, FA1418, Sweet, Paronset, Don José, Ikram y Stacatto, presentaron un comportamiento susceptible tolerante con incrementos de la población de 1,1 a 5,4 veces y rendimientos que, estadísticamente, no difieren de las plantas con nematodos y las sin nematodos. En cambio la variedad Sheila muestra un comportamiento susceptible no tolerante al ser aniquilada por *M. incognita* (Cuadro 7).

Estos resultados muestran que únicamente al cultivar las variedades Sheila y Sahel, los agricultores experimentarán pérdidas en su cosecha, si no aplican alguna medida de control para *M. incognita*.

Cuadro 7. Comportamiento de las principales variedades de tomate de mesa al parasitismo de *Meloidogyne incognita*. Yuyucocha, Imbabura. 2007.

Materiales		ciones maceta)	Incremento		miento lanta)	Prueba de	Dognwooto	
Materiales	(Pi)	(Pf)	(Pf/Pi)	Sin nemat.	Con nemat.	"t" (0,05) para rend.	Respuesta	
Diva	70000	6682	0,1	1,3	1,2	NS	RT	
Fortaleza	70000	9504	0,1	1,4	1,4	NS	RT	
Chibli	70000	18157	0,3	1,2	1,2	NS	RT	
Victoria	70000	19383	0,3	1,3	1,0	NS	RT	
Gina	70000	22373	0,3	1,3	1,2	NS	RT	
Sahel	70000	29378	0,4	2,2	1,2	S	RNT	
Thomas	70000	38741	0,6	1,5	1,3	NS	RT	
Rocío	70000	49006	0,7	1,5	1,5	NS	RT	
Nemonetta	70000	77073	1,1	1,5	1,3	NS	ST	
E2532067	70000	83716	1,2	1,5	1,3	NS	ST	
Charleston	70000	90753	1,3	1,6	0,9	NS	ST	
Suncrest	70000	91483	1,3	1,0	0,9	NS	ST	
Titan	70000	119134	1,7	1,2	1,1	NS	ST	
FA1418	70000	130910	1,9	1,4	1,0	NS	ST	
Sweet	70000	151999	2,2	0,9	0,6	NS	ST	
Paronset	70000	157810	2,3	1,2	1,1	NS	ST	
Ikram	70000	213399	3,1	1,3	1,0	NS	ST	
Staccato	70000	269405	3,9	1,4	1,1	NS	ST	
Don José	70000	378809	5,4	1,2	1,1	NS	ST	
Sheila	70000	PM^1	-	-	-	-	SNT	

H. y l./maceta = huevos y larvas/maceta; ¹ = plantas muertas por el nematodo y por pudrición del sistema radical; NS = no significativo (0,05); S = significativo (0,05); RT = resistente tolerante; RNT = resistente no tolerante; ST = susceptible tolerante; SNT = susceptible no tolerante

Los resultados permiten aceptar, en gran parte, la hipótesis de que todas las variedades e híbridos comerciales de tomate de mesa, reportados como resistentes o tolerantes a *M. incognita*, se comportan como tales al parasitismo de la población de *M. incognita* del Valle del Chota (Cuadro 8) y alcanzar el primer objetivo.

4.2. Determinación del comportamiento de variedades e híbridos de tomate de mesa al parasitismo de *Nacobbus aberrans*

En cuanto a la respuesta de los materiales de tomate de mesa al parasitismo de *N. berrans*, en el Cuadro 8 se observa que todos se comportan como susceptibles tolerantes, porque incrementan la población del nematodo en un rango de 1,4 a 19,8 veces, sin que sus rendimientos sean afectados significativamente, es más, en varios casos muestran incrementos ligeros.

Según los resultados obtenidos, se acepta parcialmente la hipótesis de que al menos una de las variedades e hibridos comerciales de tomate de mesa, reportados como resistentes o tolerantes a *M .incognita*, se comporta como resistente o tolerante al parasitismo de la población de *N. aberrans* del valle del chota y se alcanza el segundo objetivo.

Además, en el Cuadro 9, donde se compara el comportamiento de las variedades e híbridos al parasitismo de *M. incognita* y de *N. aberrans*, se observa que existe un número importante de materiales resistentes o tolerantes para establecer sistemas de rotación con cultivos no hospederos, para evitar tanto el daño de *N. aberrans* como el de *M. incognita* y la presión de selección de razas.

Cuadro 8. Comportamiento de las principales variedades de tomate de mesa al parasitismo de *Nacobbus aberrans*. Yuyucocha, Imbabura. 2007.

	Poblaciones (h. y l./maceta)		_	Rendimie (kg/planta		Prueba de "t"	
Materiales	(Pi)	(Pf)	Incremento (Pf/Pi)	Sin nemat.	Con nemat.	(0,05) para rendimie.	Respuesta
Chibli	70000	97937	1,4	1,7	1,4	NS	ST
Pericle	70000	176335	2,5	1,4	1,9	NS	ST
Ikram	70000	215540	3,1	1,5	1,8	NS	ST
Suncrest	70000	217637	3,1	2,1	2,0	NS	ST
S. Sweet	70000	224383	3,2	1,5	1,5	NS	ST
Miroma	70000	240033	3,4	1,8	2,0	NS	ST
Platone	70000	241022	3,4	1,2	1,3	NS	ST
Titán	70000	380242	5,4	2,3	2,6	NS	ST
Fortaleza	70000	396115	5,6	2,1	2,3	NS	ST
Thomas	70000	395072	5,6	2,3	1,9	NS	ST
Rocío	70000	457835	6,5	2,4	2,5	NS	ST
Paronset	70000	478320	6,8	2,1	2,2	NS	ST
FA 1418	70000	486090	6,9	2,3	2,2	NS	ST
E2731642	70000	525322	7,5	1,9	1,9	NS	ST
Sheila	70000	534115	7,6	2,5	2,5	NS	ST
Nemonetta	70000	562180	8,0	2,4	2,5	NS	ST
Sahel	70000	593435	8,4	2,9	2,6	NS	ST
E2532067	70000	612392	8,7	2,6	2,2	NS	ST
Don José	70000	839487	12,0	2,9	2,1	NS	ST
AG 375	70000	908713	13,0	2,6	2,41	NS	ST
Victoria	70000	971367	13,9	2,6	2,6	NS	ST
Staccato	70000	1001777	14,3	2,6	2,4	NS	ST
Charleston	70000	1048775	14,9	2,2	2,6	NS	ST
Gina	70000	1264397	18,0	2,5	2,5	NS	ST
Diva	70000	1386092	19,8	2,5	1,9	NS (0.05) ST	ST

H y l/maceta = huevos y larvas/maceta; NS = no significativo (0,05); S = significativo (0,05); ST =susceptible tolerante; SNT = susceptible no tolerante.

Cuadro 9. Comportamiento de variedades e híbridos de tomate de mesa al parasitismo de *Meloidogyne incognita* y *Nacobbus aberrans* Yuyucocha, Imbabura. 2007.

	Respuesta de la	s variedades	
Variedades	Resistencia o tolerancia indicada	Meloidogyne	Nacobbus
	por las casas comerciales a:	incognita	aberrans
Nemonetta	Nematodos	ST	ST
Staccato	Nematodos	ST	ST
Sheila	Nematodos	SNT	ST
Rocío	Nematodos	RT	ST
Fortaleza	M incognita, M. javanica	RT	ST
Titan	Nematodos	ST	ST
Gina	Nematodos	RT	ST
Thomas	Nematodos	RT	ST
Diva	Nematodos	RT	ST
Vitoria	M incognita	RT	ST
Charleston	Nematodos	ST	ST
Suncrets	Nematodos	ST	ST
Don José	Nematodos	ST	ST
FA 1418	Nematodos	ST	ST
Paronset	Nematodos	ST	ST
Ikram	Nematodos	ST	ST
E2532067	Nematodos	ST	ST
Sahel	Nematodos	RNT	ST
Super Sweet	Nematodos	ST	ST
Chibli	Nematodos	ST	ST
Platone	Nematodos		ST
E2731642	Nematodos		ST
AG 375	M. incognita		ST
Miroma	M. arenaria, M. javanica		ST
Pericle	Nematodos		ST

 \overline{RT} = resistente tolerante; \overline{RNT} = resistente no tolerante; \overline{ST} = susceptible tolerante; \overline{SNT} = susceptible no tolerante, -= no evaluada

Los resultados obtenidos explican, en gran parte, lo aseverado por los agricultores que manifiestan conocer los síntomas de los nematodos pero son claros en señalar que no constituyen problema porque siempre obtienen buenas cosechas de tomates en presencia de los mismos.

De igual forma, al relacionar los niveles de población de *M. incognita* detectados en los lotes de los agricultores que fluctúa entre de 20 a 128 nematodos/100 g de suelo o su equivalente de 0,2 a 1,28 nematodos/g de suelo y de 0,2 a 1,2 nematodos/g de suelo para *N. aberrans* (Revelo *et al.*, 2006) y el comportamiento de la mayoría de variedades como resistentes tolerantes y susceptibles tolerantes a *M. incognita* y la respuesta de la mayoría como susceptibles tolerantes a *N. aberrans*, al soportar un nivel de población inicial de al menos 10 nematodos/g de suelo sin afectarse sus rendimientos (Revelo *et al.*, 2006), se puede decir que estos niveles de población son fácilmente soportados por los materiales sin sufrir decremento de su rendimiento. Este hecho permite comprender también lo aseverado por los agricultores quienes señalan obtener cosechas buenas en presencia de nematodos agalladores, observación que debe verificarse mediante experimentación.

CAPITULO V

CONCLUSIONES

Con base en los resultados obtenidos se concluye lo siguiente:

- 1. Las variedades e híbridos comerciales de tomate de mesa, reportados por las casas comerciales como resistentes o tolerantes a *M. incognita*, se comportan como tales al parasitismo de la población de *M. incognita* del Valle del Chota, excepto las variedades Sahel y Sheila, que presentaron un comportamiento resistente no tolerante y susceptible no tolerante, respectivamente.
- Ninguna de las variedades e híbridos comerciales de tomate de mesa reportadas por las casas comerciales como resistentes o tolerantes a M. incognita, presentaron resistencia a N. aberrans, todas se comportaron como susceptibles tolerantes.
- Las variedades evaluadas permitieron establecer sistemas de rotación con cultivos no hospederos en invernadero para evitar las perdidas y el vencimiento de la resistencia.
- 4. Los resultados obtenidos explicaron en gran parte, lo aseverado por los agricultores de las principales zonas tomateras del Valle del Chota que manifestaron conocer los síntomas de los nematodos, pero que no son un problema porque siempre obtienen buenas cosechas de tomates en presencia de los mismos.

CAPITULO VI

RECOMENDACIONES

- 1. Considerar los resultados obtenidos para el desarrollo de sistemas de manejo integrado de *M. incognita* y *N. aberrans* en invernadero, integrando variedades de tomate de mesa resistentes o tolerantes y cultivos no hospederos.
- 2. Se recomienda no sembrar las variedades Sahel y Sheila ya que los agricultores experimentarían perdidas en sus cosechas, sino aplican alguna medida de control para los nematodos

RESUMEN

COMPORTAMIENTO DE VARIEDADES COMERCIALES DE TOMATE DE MESA (Lycopersicum esculentum Mill) AL PARASITISMO DE LOS NEMATODOS DEL NUDO DE LA RAIZ (Meloidogyne incognita) Y DEL ROSARIO DE LA RAIZ (Nacobbus aberrans) EN IBARRA-IMBABURA

La investigación se realizó en la Granja Experimental "Yuyucocha" de la Universidad Técnica del Norte en la Parroquia Caranqui, Cantón Ibarra, Provincia de Imbabura y en el laboratorio de Nematología del Departamento de Protección Vegetal del Instituto Nacional de Investigaciones Agropecuarias (INIAP) Quito-Ecuador. Durante el binario 2006-2007.

Veinte materiales comerciales de tomate de mesa cultivadas en invernadero se evaluaron al parasitismo de *Meloidogyne incognita*, para verificar su resistencia o tolerancia y veinte y seis materiales para determinar su comportamiento al parasitismo de *Nacobbus aberrans*. A cuatro plántulas (variedades e híbridos de tomate de mesa) de cada material crecidas en macetas, se inocularon con 70000 huevos y larvas J2 de cada nematodo y a cuatro no se inocularon.

Las variables consideradas fueron: incremento de la población de nematodos y rendimiento en kg/planta. Para medir el incremento se utilizó la relación I = Pf/Pi propuesta por Seinhorst (1970), donde: I = número de veces que se incrementa la población; Pi = población inicial del nematodo (70 000 huevos y larvas J2 inoculados por maceta); Pf =.población final del nematodo en la planta o maceta, determinada en el sistema radical de cada planta, por el método de Hussey y Barker (1973), al final de la cosecha.

El comportamiento de las variedades se determinó relacionando las variables incremento de la población y el rendimiento mediante los criterios de Cook.

Las variedades Diva, Fortaleza, Chibli, Victoria, Gina, Sahel, Thomas y Rocío, presentaron comportamiento resistente tolerante a *M. incognita*, por registrar incrementos de población de nematodos menores a 1, en un rango de 0,1 a 0,7 y al no ser afectados sus rendimientos. La variedad Sahel se comportó como resistente en un rango de 0,4 incremento menor a uno, pero no tolerante al ser afectado su rendimiento (2,2 kg/planta sin nematodos y 1,2 kg/planta con nematodos). Las variedades Nemonetta, E2532067, Charleston, Suncrest, Titán, FA1418, Sweet,

Paronset, Don José, Ikram y Stacatto, presentaron comportamiento susceptible tolerante con incrementos de población de nematodos en un rango de 1,1 a 5,4 y sus rendimientos no fueron afectados. La variedad Sheila se comportó como susceptible no tolerante al ser aniquilada por *M. incognita*.

Todas las variedades de tomate evaluadas se comportaron como susceptibles tolerantes al parasitismo de *N. aberrans*, porque incrementaron la población del nematodo en un rango de 1,4 a 19,8 veces, sin que sus rendimientos hayan sido afectados.

Estos resultados corroboran lo indicado por las empresas que producen estas variedades de que son resistentes o tolerantes a *Meloidogyne sp.* y también establecen que todas las variedades son susceptibles tolerantes a *Nacobbus aberrans*.

Los resultados obtenidos permitieron orientar el desarrollo de un sistema de manejo integrado de *M. incognita* y *N. aberrans* en invernadero, integrando variedades de tomate de mesa resistentes o tolerantes y cultivos no hospederos, para evitar tanto el daño, como la presión de selección de razas.

SUMMARY

BEHAVIOR OF COMMERCIAL VARIETIES OF TOMATO OF TABLE (Lycopersicon sculentum) TO THE PARASITISM OF THE NEMATODES OF THE KNOT OF THE ROOT (incognito Meloidogyne) AND OF THE ROSARY OF THE ROOT (Nacobbus aberrans) IN IBARRA-IMBABURA

The investigation was carried out in the 2006 in the Experimental Farm "Yuyucocha" of the Universidad Tecnica del Norte in the Parish Caranqui, Canton Ibarra, County of Imbabura and in the laboratory of Nematología of the Departamento de Protección Vegetal del Instituto Nacional de Investigaciones Agropecuarias (INIAP)

•

Twenty commercial materials of tomatoe were evaluated for the rehearsal with *Meloidogyne incognito*, to verify their resistance or tolerance and twenty six materials to determine their behavior to the parasitism of *Nacobbus aberrans*, four plants were evaluated by each one of the (varieties and hybrid of tomatoe) of each material grown in gavels, they were inoculated with 70000 eggs and larvas J2 of each nematode and at four they were not inoculated.

They were considered the variables: yield in kg/ plants and the population's of nematodes increment. To measure the increment you uses the relationship I = Pf/Pi proposed by Seinhorst (1970), where: I = Number of times that the population is increased; Pi = initial Population (the population of 70 000 larvas J2 and eggs that were inoculated by case); Pf = initial population of the nematode in the plant or gavel, determined in the radical system of each plant, by the method of Hussey and Barker (1973), at the end of the crop

The behavior of the varieties was determined relating the population's variables increment and the yield by means of the approaches of Cook.

The obtained results allowed to conclude that not all the commercial varieties of tomato present in the market are resistant to M.Incognita. The varieties Goddess, Strength, Chibli, Gina, Thomas, Rocío presented tolerant resistant behavior for the increment of the population of incognito M. from 0,1 to 0,7 times. As susceptible tolerant the varieties (Nemonetta, E2532067, Charleston, Suncrets, Titan, FA1418,

Super Sweet, Paronset, Ikram, Staccato, Don José) they presented the population's increment from 1,1 to 1,4 times and their yields are not affected.

All the evaluated tomato varieties behaved as susceptible tolerant to the parasitism of N. aberrans, because they increased the population of the nematode in a range from 1,4 to 19,8, without their yields have been affected.

These results corroborate that indicated by the companies that produce these varieties that they are resistant or tolerant to Meloidogyne sp. and they also establish that all the varieties are susceptible tolerant to Nacobbus aberrans.

BIBLIOGRAFÍA

- AGRIOS, G. 1988. Fitopatología. Traducido del Inglés por Manuel Guzmán Ortiz. Editorial Limusa, México. 756 p.
- 2. AGRIPAC S. A. 2000. Producción de tomate bajo invernadero. Quito, Ecuador. 67 p.
- CANTO-SÀENZ, M. 1985. The nature of resistance to *Meloidogyne incognita* (Kofoid y White, 1919) Chitwood, 1949. En: An advance Treatise on *Meloidogyne*, volume I: Biology and Control. Edited by J. N. Sasser and C.C. Carter. Department of plant Pathology, North Caroline State University, U.S.A. pp 255-231.
- CAÑADAS L. 1983. El mapa bioclimático y ecológico del Ecuador.
 MAG-PRONAREG. Quito-Ecuador
- CATIE. 1990. Guía para el manejo integrado de plagas del cultivo de tomate. Programa de Mejoramiento de Cultivos Tropicales. Turrialba, Costa Rica. 138 p.
- 6. COOK, R. 1974. Nature and inheritance of nematode resistance in cereals. Journal of Nematology. Minnesota, USA. 6: 165-17.

- 7. EGUIGUREN, R y DEFAZ, M. 1992. Principales fitonematodos en el Ecuador, su descripción, biología y combate. Quito; INIAP. Manual Nº 21. pp.14, 21.
- 8. EISENBACK, J.; HIRSCHMANN, H.; SASSER, J.; TRIANTAPHYLLOU, A. 1983. Guìa para la identificacion de cuatro especies más comunes del nematodo agallador (*Meloidogyne* especies) con una clave pictórica. Traducida del Ingles Carlos Sosa-Moss. INTERNATIONAL *MELOIDOGYNE* PROYECT. Raleigh, North Carolina, USA. 48 p.
- 9. FASSULIOTS, G .1985. The role of the Nematologist in the development of resistant cultivars. En: An Advance Treatise on *Meloidogyne*, Volume I: Biology and Control. Edited by J.N. Sasser and C. C. Carter. Department of Plant Pathology, North Carolina State University, U.S.A. pp.235-231.
- FORTNUM, B.; J. KVANZ Y N. CONRAD. 1994. Increasing incidence of *M. arenaria* in fluecined tobacco in South Carolina. PL. Dis. 68: 179.
- HUSSEY, R. y BARKER, K. 1973. A comparison of methods of Meloidogyne spp. Including a new technique. Plant. Dis. Rep. 57: 1025-1028
- INSTITUTO NACIONAL DE ESTADÍSTICAS Y CENSOS (INEC).
 1965-1997. Encuesta Nacional de Superficie y Producción Agropecuaria por Muestreo y Área. INEC. Quito. pp. 31-33
- 13. INSTITUTO NACIONAL AUTÓNOMO DE INVESTIGACIONES AGROPECUARIAS (INIAP). 1982. Informe Técnico de la Sección

- de Nematología de la Estación Experimental Santa Catalina. Quito. INIAP. 75 p
- INSTITUTO NACIONAL DE ESTADÍSTICAS Y CENSOS (INEC).
 2002. III Censo Nacional Agropecuario; resultados nacionales incluye resúmenes provinciales. Quito. INEC-MAG-SICA. v.1. pp.107.
- JANO, F. 2006. Cultivo y producción de tomate. Ediciones RIPALME.
 Lima, Perú. 136 pp.
- 16. JATALA, P. 1985. El nematodo falso nodulador de la raíz *Nacobbus* spp. En: Fitonematología Avanzada. I. Marbán, N. e I. J. Thomason. Colegio de Postgraduados, Montecillo, Méjico. 345 p.
- 17. JENSEN, H., ARMSTRONG, J., JATALA, P. 1978. Annotated Bibliography of Nematode Pests of Potato. International Potato Center and Oregon State University Agricultural Experiment Station Corvallis. Lima, Perú. 315 p.
- MAI, W.; BRODIE, B.; HARRISON, M.; JATALA, P. 1981. Nematodos.
 En: Compendium of Potato Diseases. Hooker, W. J (ed). American Phytopathological Society. pp. 93.101.
- MANZANILLA-LOPEZ, R.; COSTILLA, M.;DOUCER, M.; FRANCO, J.; INSERRA, R.; LEHMAN, P.; CID DEL PRADO,I.;SOUZA, R.;EVANS, K. 2002. The genus *Nacobbus* Thome y Allen, 1994(Nematodo:Prathylenchidae): systematics, distribution, biology y management. Nematropica. Vol.32, No. 2. 228 p.

- MINISTERIO DE AGRICULTURA Y GANADERÍA (MAG). 1986.
 Inventario de Plagas, Enfermedades y Malezas del Ecuador. Programa
 Nacional de Sanidad Vegetal del MAG. Quito. MAG. 124-126.
- 21. ORTUÑO, N.; FRANCO, J.; RAMOS, J; OROS, R.; MAIN, G.; MONTECINOS, R. 2005. Desarrollo del manejo integrado del nematodo rosario de la papa *Nacobbus aberrnas* en Bolivia. Documento de trabajo No. 26. Fundación PROINPA-Proyecto PAPA ANDINA. Cochabamba-Bolivia 124pp.
- QUIMI, V. 1979. Studies on the false root-knot nematode *Nacobbus* aberrans .Ph.D. thesis, University of London , Imperial Collage, U.K. 235 p.
- 23. QUIMI, V.H. 1981a. Histopathological study of the parasitism of *Nacobbus aberrans*. Nematropica 11:87.
- 24. RAMOS, J.; FRANCO, J.; ORTUÑO, N.; OROS, R.; MAIN, G. 1998. Incidencia y severidad de *Nacobbus aberrans* y *Globodera* spp. En el cultivo de la papa en Bolivia: Pérdidas en el valor bruto de su producción. Cochabamba, IBTA/PROIMPA, 1998. 201 p.
- REVELO, J. 2002. Nematodos parásitos de las plantas. Apuntes de la Cátedra de Fitopatología.
- 26. REVELO, J.; CAZCO, C.; SANDOVAL, A.; SÁNCHEZ, G.; LOMAS, L; CORRALES, A. 2006. Avances del proyecto "Estudio epidemiológico del "nematodo del rosario" o "falso nematodo del nudo" (*Nacobbus* sp.) en tomate de mesa en el Valle del Chota para optimizar su control". Proyecto INIAP-UTN-SENACYT. Quito. 28 p.

- 27. SEINHORST, J. W. 1970. Dynamics of population of plant parasitic nematodos. Anual review Review of Phytopathology: 131 156.
- 28. SHER, S. A. 1970. Revision of the genus *Nacobbus* Thorne and Allen, 1944. (Nematoda: Tylenchoidea). Journal of Nematology. 2:228-235.
- 29. TAYLOR, J y SASSER, J. 1983. Biología e identificación y control de los nematodos del nudo de la raíz (especies de *Meloidogyne*). Trad. del Inglés por el CIP. Raligh. Universidad Carolina del Norte. 111pp.
- 30. TRIVIÑO, C. Y QUIMI, V.1984. Los nematodos agalladores de raíces del genero *Meloidogyne*. Boletin Divulgativo No . 157. Instituto Nacional de Investigaciones Agropecuarias, Estacion Experimental Boliche. Quito, Ecuador. 8 p.
- 31. RHODE, R. 1972. Expression of resistance in plants to nematodos. Annu. Rev.Phytopathol 10:233-252
- 32. VILLAREAL, F. 1982. Tomates. Trad. Edilberto Camacho. IICA, Serie de Investigación y Desarrollo No. 6. 184 pp.

ANEXOS

Anexo 1. Ubicación geográfica del ensayo

Anexo 2. Esquema del área del experimento

CROQUIS DE CAMPO

	I	II	III	IV
		1.00	1.00	1.00
	0.60	0.60	0.60	0.60
	V20 V7	V23 V18	V17 V25	V24 V15
	V23 V24	V24 V25	V7 V20	V20 V3
	V4 V12	V20 V11	V25 V14	V13 V23
	V19 V16	V13 V8	V22 V19	V17 V19
	V17 V6	V7 V24	V10 V11	V3 V14
	V5 V5	V4 V6	V13 V9	V14 V24
	V6 V19	V19 V20	V23 V1	V10 V11
	V9 V9	V14 V7	V20 V16	V11 V10
	V7 V22	V17 V1	V2 V23	V9 V25
	V13 V1	V3 V10	V1 V7	V25 V7
	V14 V10	V16 V23	V19 V21	V19 V8
22.60	V21 V21	V5 V15	V6 V22	V4 V5
7	V1 V20	V12 V3	V24 V3	V23 V4
	V22 V18	V6 V4	V14 V8	V5 V16
	V16 V8	V18 V9	V4 V12	V2 V18
	V24 V13	V1 V17	V8 V2	V8 V1
	V3 V4	V15 V22	V9 V15	V21 V2
	V10 V11	V8 V14	V5 V13	V1 V12
	V11 V17	V2 V19	V18 V18	V16 V22
	V12 V23	V25 V2	V16 V4	V22 V21
	V15 V2	V11 V12	V21 V6	V7 V13
	V25 V3	V21 V16	V15 V5	V15 V6
	V2 V14	V10 V5	V11 V10	V18 V20
	V18 V25	V9 V13	V12 V17	V12 V9
	V8 V15	V22 V21	V3 V24	V6 V17
	0.60	0.60	0.60	0.60

Anexo 3. Análisis del sustrato utilizado en las macetas y programa de fertilización aplicado en el desarrollo del cultivo en Yuyucocha, Imbabura. 2007

MESES	Septiembre	Octubre	Noviembre	Diciembre	Enero	Febrero	
FUENTES							
Nitrato de amonio (gr)	38-38-38	38-38-38	33-33-33	33-33-33	33-33-33	46-46-46	
		300	4	100		184	
Acido fosfórico(gr)	30-30-30-30	30-30-30-31	24-24-24	24-24-24-25	24-24-24-26	80-80-80-80	
		240	2	290	302		
Nitrato de potasio(gr)	30-30-30-30	30-30-30-31	42-42-42	42-42-43	42-42-44	104-104-104-104	
		230	4	500		414	
Nitrato de calcio(gr)	16-16-16	16-16-16-17	22-22-22	22-22-23	22-22-24	178-178-178	
		130	2	260		710	
Sulfato de potasio(gr)	50-50-50	50-50-50-51	42-42-42	42-42-43	42-42-44	35-35-35	
	400		4	500		140	
Sulfato de magnesio(gr)	55-55-55	55-55-56	37-37-37	37-37-38	37-37-39	56-56-56	
		220	2	140		224	

Anexo 4. Datos de rendimiento (kg/planta) registrados en el experimento "Verificación del comportamiento de variedades de tomate de mesa al parasitismo de *Meloidogyne incognita*" en invernadero. Yuyucocha, Imbabura. 2007.

Variedad	Repeticion	Rendimiento en kg/planta					
, 01220000	210000101011	Sin	Con				
Diva	1	1,26	1,08				
Diva	2	1,04	1,07				
	3	1,11	1,38				
	4	1,57	1,28				
Fortaleza	1	2,17	1,19				
Tortaicza	2	1,39	1,43				
	3	1,01	1,58				
	4	1,14	1,19				
Chibli	1	1,39	0,84				
Cilibii	2	1,41	1,02				
	3	0,91	1,02				
	4	0.97	1.76				
Victorio	1	1,23	1,70				
Victoria	2	1,25	1,33				
	3	1,25	1,52				
		1,02					
Cina	1		1,26				
Gina	-	0,81	1,09				
	2	1.54	1,21				
	3	1.69	1,46				
0.1.1	4	1,2	0,83				
Sahel	1	1.55	1,2				
	2	1.56	1.47				
	3	1.57	1,08				
	4	1.58	0,96				
Thomas	1	1,34	1.17				
	2	1,35	1,32				
	3	1,64	1,09				
	4	1,77	1,71				
Rocio	1	1,38	1,12				
	2	1,11	1,87				
	3	1,41	1,07				
	4	1,92	1,94				
Nemonetta	1	0.71	1,1				
	2	1,73	1,29				
	3	1,46	1,28				
	4	1.95	1,45				
E2532067	1	1.4	1.06				
	2	1,67	1,35				
	3	1,15	1,38				
	4	1,65	1.31				
Charleston	1	1,11	0,66				
	2	2,01	0,64				
	3	1,57	0,89				
	4	1,58	1,38				

Continuación del Anexo 4.

Suncrets	1	0,82	0,69
	2	0,97	0,8
	3	0,95	0,97
	4	1,37	0,93
Titan	1	0,98	1,18
	2	1,43	1,11
	3	1,52	1,1
	4	0,83	1,08
FA 1418	1	1	0.8
	2	0,99	1,15
	3	1,29	0,66
	4	2,22	1,4
Super Sweet	1	1,24	0,65
	2	0,84	0,67
	3	0,93	0,62
	4	0,71	0,54
Paronset	1	1,45	1
	2	1,18	1
	3	1,25	1,18
	4	1,03	1,18
Ikram	1	1,21	1,02
	2	0,83	1,19
	3	1,81	1,04
	4	1,5	0,83
Staccato	1	1,09	1,13
	2	1,68	0,71
	3	1,29	1,17
	4	1,47	1,51
Don José	1	1,33	1,09
	2	1,48	0,92
	3	0,7	1,25
	4	1,39	1,1

Anexo 5. Datos originales de población de *M. incognita* registrados en el experimento "Verificación del comportamiento de variedades de tomate de mesa al parasitismo de *M. incognita*" en invernadero. Yuyucocha, Imbabura. 2007.

	Població		Incremento						
Variedades	R1	R2	R3	R4	Sumatoria	Población Final	Población inicial	(Pf/Pi)	
Diva	7381	9252	8362	1732	26727	6682	70000	0,1	
Fortaleza	3511	1111	6973	26421	38016	9504	70000	0,1	
Chibli	26868	16109	17032	12622	72631	18157	70000	0,3	
Victoria	41660	11962	6758	17153	77533	19383	70000	0,3	
Gina	6070	21528	43009	18886	89493	22373	70000	0,3	
Sahel	31122	64355	10379	11656	117512	29378	70000	0,4	
Thomas	22038	11260	42246	79420	154964	38741	70000	0,6	
Rocio	13676	26608	13618	142124	196026	49006	70000	0,7	
Nemonetta	86731	60120	84370	77073	308294	77073	70000	1,1	
E2532067	85861	79680	95706	73620	334867	83716	70000	1,2	
Charleston	104490	84650	90753	83120	363013	90753	70000	1,3	
Suncrest	96876	93258	71160	104640	365934	91483	70000	1,3	
Titan	122633	150420	57587	145897	476537	119134	70000	1,7	
FA1418	110320	89261	218886	105174	523641	130910	70000	1,9	
Sweet	134722	197200	151999	124075	607996	151999	70000	2,2	
Paronset	247170	152481	115500	116270	631421	157810	70000	2,3	
Ikram	213399	91700	335198	213300	853597	213399	70000	3,1	
Staccato	85296	226986	344797	420542	1077621	269405	70000	3,9	
Don Jose	315201	142267	413698	644071	1515237	378809	70000	5,4	

Anexo 6. Datos de rendimiento (kg/planta) registrados en el experimento "Determinación del comportamiento de variedades de tomate de mesa al parasitismo de *Nacobbus aberrans*" en invernadero. Yuyucocha, Imbabura. 2007.

Variedades	Repeticiones	Rendimiento en kg/planta			
	•	Sin nematodos	Con		
Chibli	1	1,59	0,95		
	2	1,88	1,72		
	3	1,01	2,18		
	4	2,25	1,47		
Pericle	1	1,49	2,63		
	2	2,05	1,44		
	3	1,82	1,58		
	4	1,91	2,11		
Ikram	1	1,50	1,64		
	2	1,45	1,52		
	3	1,65	2,02		
	4	1,39	1,91		
Suncrets	1	2,14	2,44		
~	2	2,41	2,19		
	3	2,37	2,05		
	4	1,54	1,36		
Super sweet	1	1,36	1,26		
Super sweet	2	1,53	1,18		
	3	1,83	1,48		
	4	1,40	2,01		
Miroma	1	2,40	2,12		
MIII OIIIa	2	1,46	2,00		
			1,82		
	4	1,50	2,01		
Platone	1	1,69 1,41	1,07		
Piatone	2	0,91			
	3		0,60 2,13		
	4	1,06			
Titán	1	1,41 2,44	1,28 2,14		
Huan					
	2	2,38	2,79		
	3	2,24	2,90		
E 4.1	4	2,21	2,73		
Fortaleza	1	2,37	2,16		
	2	2,25	2,46		
	3	2,83	2,52		
Th	4	1,03	1,92		
Thomas	1	1,87	2,22		
	2	2,28	1,27		
	3	2,91	1,72		
B 17	4	1,99	2,56		
Roció	1	2,28	2,56		
	2	2,41	2,60		
	3	2,42	2,87		
	4	2,49	2,11		
Paronset	1	2,40	2,66		
	2	1,88	1,87		
	3	1,78	2,43		
	4	2,21	1,79		

Continuación Anexo 6

FA 1418	1	2,40	2,12
	2	2,42	2,45
	3	2,27	2,06
	4	1,99	2,10
E2731692	1	2,62	2,84
	2	2,84	2,44
	3	1,19	2,17
	4	3,14	0,22
Sheila	1	2,58	2,49
Silvina	2	2,47	2,30
	3	2,77	2,64
	4	2,16	2,38
Nemontta	1	2,69	2,38
Nemonita	2	2.04	2,94
	3	l l	
		2,82	1,84
G 1 1	4	2,11	2,74
Sahel	1	2,93	3,56
	2	2,60	2,51
	3	2,73	2,29
	4	3,25	1,89
E2532067	1	2,45	2,24
	2	3,00	2,60
	3	2,34	1,63
	4	2,60	2,24
Don José	1	3,10	2,55
	2	2,60	3,08
	3	3,01	2,31
	4	2,97	2,27
Ag 375	1	3,57	2,99
	2	2,80	2,75
	3	2,31	2,67
	4	1,83	1,21
Victoria	1	3,00	2,44
	2	2,43	3,04
	3	2,85	2,71
	4	2,24	2,33
Staccato	1	2,84	2,07
Staccato	2	1,37	2,54
	3	3,36	2,74
	4	2,75	2,18
Charleston	1	2,15	2,33
Charleston	2	1,75	2,59
	3	1,71	2,93
	4	2,62	2,93
Gina	1	2,10	2,48
Jilia	2	2,10	2,48
	3	2,56	2,80
	4	2,30	2,26
Diva	1	2,57	1,79
Diva	2	2,54	1,62
	3	2,34	2,04
	4	2,49	1,89
	+	۷,47	1,07

Anexo 7. Datos originales de población final de *N. aberrans* registrados en el ensayo comportamiento de variedades e híbridos de tomate de mesa al parasitismo de *N. aberrans*. Yuyucocha-Imbabura, 2006.

		Población en larvas y huevos/maceta								
Tratamientos	R1	R2	R3	R4	Sumatoria	Población Final	Población Inicial	Incremento (Pf/Pi)		
Chibli	7600	282720	62100	39330	391750	97937	70000	1,4		
Pericle	241850	63070	329380	71040	705340	176335	70000	2,5		
Ikram	182160	166500	247970	265530	862160	215540	70000	3,1		
Suncrest	111840	157760	322569	278380	870549	217637	70000	3,1		
S. Sweet	200640	111720	224383	360790	897533	224383	70000	3,2		
Miroma	408780	120500	190820	240033	960133	240033	70000	3,4		
Platone	55250	142000	615480	151360	964090	241022	70000	3,4		
Titán	86210	153640	719100	562020	1520970	380242	70000	5,4		
Fortaleza	296582	238000	405990	643890	1584462	396115	70000	5,6		
Thomas	573870	331520	327600	347300	1580290	395072	70000	5,6		
Rocio	110760	340000	753830	626750	1831340	457835	70000	6,5		
Paronset	510400	430650	873950	98280	1913280	478320	70000	6,8		
FA 1418	867220	318780	79680	678680	1944360	486090	70000	6,9		
E2731642	160020	144020	738150	1059100	2101290	525322	70000	7,5		
Sheila	333750	487190	329420	986100	2136460	534115	70000	7,6		
Nemonetta	475000	417520	410200	946000	2248720	562180	70000	8,0		
Sahel	370400	221540	1014800	767000	2373740	593435	70000	8,4		
E2532067	137340	548800	514150	1249280	2449570	612392	70000	8,7		
Don José	1383160	591660	963900	419230	3357950	839487	70000	12		
AG 375	286580	1881985	1161440	304850	3634855	908713	70000	13,0		
Victoria	560050	1375380	750400	1199640	3885470	971367	70000	13,9		
Staccato	1047500	694860	909000	1355750	4007110	1001777	70000	14,3		
Charleston	2005600	999000	497840	692660	4195100	1048775	70000	14,9		
Gina	833288	1605600	760200	1858500	5057588	1264397	70000	18		
Diva	1152000	1279700	1723870	1388800	5544370	1386092	70000	19,8		

Anexo 8. Fotografías

A. Tamizado de suelo de paramo para preparar sustrato.

B. Llenado de fundas de polietileno con el sustrato

C. Colocación de plástico negro en las camas

D. Transplante de las variedades en macetas para los dos ensayos M. *Incognita y N.aberrans*.

E. Cosecha de la fruta en el ensayo de M.incognita

F. Cosecha de la fruta en el ensayo de Nacobbus aberrans.

G. Registro del peso de la fruta.

H. Enfermedad causada por Botrytis sp.

I. Muestras de las raíces de los ensayos de *M. incognita y N. aberrans* para extracción de la población de huevos y larvas en el laboratorio.

J. Material de Laboratorio para el procesamiento de las muestras.

K. Sistema radical de la variedad Paronset sano y afectado por M. incognita

L. Sistema radical de la variedad Nemonetta sano y afectado por N. aberrans.

Anexo 9. Evaluación de impactos ambientales (matriz de LEOPOLD)

TEMA:

Estudio del impacto ambiental que provocara la implementación del Proyecto de investigación "Comportamiento de variedades comerciales de tomate de mesa (*Lycopersicon sculentum*) al parasitismo del Nematodo del Rosario de la raiz (*Nacobbus aberrans*) en Yuyucocha-Imbabura".

OBJETIVOS:

Objetivo General:

Conocer el comportamiento de las principales variedades e híbridos de tomate de mesa al parasitismo de *Meloidogyne incognita* y de *Nacobbus aberrans*

Objetivos específicos:

- Verificar la resistencia o tolerancia de las principales variedades e híbridos de tomate de mesa al parasitismo de *Meloidogyne incognita*.
- Evaluar el comportamiento fenológico de las principales variedades e híbridos de tomate de mesa al parasitismo de *Nacobbus aberrans*.

CALIFICACION:

Baja 1 1. Magnitud del impacto

Media 2 2. Importancia del impacto

Alta 3

MATRI DE LEOPOLD

Factores	Acciones	Delimitación del terreno	Preparacion del terreno	Siembra	Riego	Labores culturales	Controles fitosanitarios	Cosecha	one Domition	riccolones rosinvas	Afecciones Negativas	Agregación de impactos
Ambientales		Del	negar			oqeT	III)		A food	Doro	Afeco	Αg
	Suelo	1 2	-2 3	3 3	3 3				-	3	1	14
ABIÒTICO	Agua											0
ABIĆ	Clima											0
	Aire											0
	Flora					1/1			1	1	0	1
	Fauna								(0	0	0
ВІОТІСО	Microflora	1	3 2			-1 2	-1 2		2	2	2	3
Щ	Microfauna	-1 1	-3 / 2		-1 1	-1 2	-1 2		()	5	-12
	Cultivos		1	3 3	3 3	2 2	1 3		:	5	0	26
Q	Salud											0
SOCIO	Trabajo	2 /	2 / 3	2/2	2/2	1 2	2/2	2 3		7	0	28
BCO B	Actividad Económica	1 3	2 / 3	3 3	2 3	1 3	1 2	2 3		7	0	35
Afecciones	Afecciones Positivas		4	4	4	4	3	2	CO	MP	ROBA	CION
Afecciones	Negativas	1	2	0	1	2	2	0			83	
Agregación o	le impactos	7	7	31	27	6	5	12			0.5	

Ambientalmente la presente investigación es positiva con un valor + 83

Luego de un análisis del impacto ambiental que provocó el estudio sobre la "Comportamiento de variedades comerciales de tomate de mesa (*Lycopersicon sculentum*) al parasitismo del Nematodo del Rosario de la raiz (*Nacobbus aberrans*) en Yuyucocha-Imbabura".

CONCLUSIONES:

La matriz de Leopold presenta 7 acciones, 12 factores del medio ambiente que están agrupados en 3 componentes (Físico, biótico y socioeconómico), y 34 interacciones.

Como resultado de la calificación de la matriz de Leopold, se obtuvo una agregación de impactos de 83 lo cual indica la presencia de impactos positivos, siendo la investigación ambientalmente positiva, cuyo factor ambiental afectado fue el la microfauna con un valor -12.

MEDIDAS CORRECTIVAS

Para determinar la actividad correctiva, primero se señaló el factor ambiental afectado, el impacto producido (en cursivas) y luego la medida correctiva.

MICROFAUNA (-12)

MEDIDAS DE MITIGACIÓN

En esta investigación todos los insumos de origen químico que se aplicaron fueron en las dosis más bajas recomendadas, con el fin de afectar en menor medida la microfauna, razón por la que se considera que fue bajo el impacto al medio ambiente.