Análisis de 25 procedencias de *Pinus* patula Schlect. et Cham para su categorización como fuente semillera en la provincia de Imbabura

Trabajo de grado presentado como requisito para optar por el Título de Ingeniero Forestal.

> AUTOR: GUIDO ARMANDO YÉPEZ SANDOVAL

> > DIRECTOR: Ing. Edgar Vásquez MBA

INTRODUCCIÓN

En el país se hace necesario la aplicación de criterios técnicos para crear y manejar fuentes semilleras que proporcionen al mercado nacional semillas de calidad genéticamente probadas, mismas que servirán para el establecimiento de sistemas agroforestales, plantaciones comerciales e industriales con la finalidad de preservar los bosques nativos e impulsar el desarrollo socio económico y ambiental del país, con miras a mejorar la calidad de vida de los ecuatorianos.

En el Ecuador la investigación forestal y la creación de nuevas fuentes semilleras está limitada a pocas investigaciones de algunas empresas forestales y ONG'S como Fundación Forestal Juan Manuel Durini, ACOSA, Ecociencia, Jatun Sacha, y algunas Universidades que tienen Escuelas de Ingeniería Forestal, de tal manera que se torna indispensable continuar con este proyecto mismo que permitirá a futuro contar con una fuente semillera que proporcione a los usuarios, semillas de calidad que cumplan con las normas de calidad que garanticen el éxito de los planes de forestación, reforestación, sistemas agroforestales, entre otros.

PROBLEMA

Uno de las principales limitaciones en el campo forestal es que no se cuenta con rodales o fuentes semilleras certificadas, debido a la inexistencia de un proceso permanente y sistematizado de monitoreo de ensayos existentes que den información confiable a los actores del sector forestal ecuatoriano con la que se puedan tomar decisiones acertadas.

JUSTIFICACIÓN

Este proyecto pretende determinar las mejores procedencias de *Pinus patula*, para obtener un rodal de calidad intrínseca y así convertirse en una fuente semillera certificada de la especie en el país, a fin de proporcionar al mercado material genético de calidad para programas de forestación y reforestación.

De esta manera se pretende a futuro obtener plantaciones forestales de alta productividad, resistentes a plagas y enfermedades, ya que se sabe de antemano que la semilla empleada, proveniente de rodales certificados es un factor que influye considerablemente en el éxito de una masa forestal.

OBJETIVOS

Objetivo general

Identificar las mejores procedencias de *Pinus* patula para ser calificadas como fuente semillera.

Objetivos específicos:

- Calificar las procedencias mediante las variables dasométricas y forma con el propósito de determinar una fuente semillera.
- Evaluar la probable fuente semillera.
- Determinar los costos de mantenimiento durante el periodo de investigación.

HIPÓTESIS

 Ho: No existen diferencias significativas en el crecimiento entre las procedencias de *Pinus patula* investigadas.

 Ha: Existen diferencias significativas en el crecimiento al menos en una o varias procedencias.

MATERIALES Y MÉTODOS

Este estudio de investigación es la continuación del Proyecto de Mejoramiento Genético Forestal en la República del Ecuador (PMGF) ejecutado por el Ex INEFAN.

En esta fase de investigación (quinta etapa periodo 2010- 2011) se analizó los incrementos alcanzados en un periodo de 12 meses tiempo que duró la investigación, desde los 12,5 a los 13,5 años de edad del rodal

CARACTERÍSTICAS DEL ENSAYO

- El rodal donde se realizó la investigación tiene una extensión de 1,94 Ha con las siguientes dimensiones 231x84 m, está plantado siguiendo las curvas de nivel, con un espaciamiento de 3x3 m, sobre un terreno de textura arenosa, con una topografía que va de suave a ondulado.
- Cuenta con 44 bloques y/o repeticiones. La unidad experimental o parcela está representada por un individuo por procedencia, con un total de 327 árboles.

DESCRIPCIÓN DEL SITIO DE INVESTIGACIÓN

Localización del área de estudio:

PROVINCIA:	Imbabura
CANTÓN:	Cotacachi
PARROQUIA:	El sagrario
LOCALIDAD:	Comunidad de Italqui
ALTITUD:	2.710 m.s.n.m.
AREA DE ESTUDIO:	1,94 ha.

Localización geográfica del área de estudio:

LATITUD	LONGITUD
0º 18' 26" N	78 ⁰ 18' 36" W
0° 18´ 24" N	78° 18´ 40" W

DATOS CLIMÁTICOS

PRECIPITACIÓN MEDIA ANUAL:

1.356mm. No existe ningún mes ecológicamente seco, siendo los de menor precipitación Julio y Agosto.

TEMPERATURA:

Media 10,5 °C (Mín 8 °C Máx 13°C)

CLASIFICACIÓN ECOLÓGICA:

bosque muy húmedo- Montano (bmh-M) (Cañadas)

MATERIALES Y EQUIPOS

Materiales y equipos de campo

- Cámara Fotográfica
- Cinta diamétrica.
- Cinta métrica
- Cinta de marcaje
- Cuerda
- Hipsómetro
- Libreta de campo
- Pintura
- Placas

Equipos y Materiales de oficina

- Computador
- Impresora
- Papel
- Materiales de escritorio.

Materiales de laboratorio

- Desinfectante para el sustrato (Vitavax y formol)
- Fundas
- Desinfectante para semillas (Vitavax)
- Regadera
- Semillas de Pinus patula

Procedencias de Pinus patula.

				P STOCK	
Nº	Código	Procedencia	Localidad	Proveedor	País
1	45-PP-MEX	La Venta	Distrito Federal	INIF	México
2	42-PP-MAL	Seed stand B 54	ZombaPlateau	Danida	México
3	41-PP-SUD	Tweefontein		Danida	Sudáfrica
4	39-PP-ZIM	Penhalonga	Manicaland	Danida	Zimbabwe
5	36-PP-SUD	Bergvliet	E. Transvaal	Danida	Sudáfrica
6	34-PP-KEN	Seed stand 7 (C)	Kinale	Danida	Kenya
7	32-PP-ZIM	Staple Ford		Danida	Zimbabwe
8	30-PP-COL	Transvaal		Germicampo	Sudáfrica
9	28-PP-BOL	Chapare	Coranipamba	Cordeco-Bolivia	Bolivia
10	26-PP-MEX	Veracruz	Las Vegas	Cordeco-Bolivia	México
11	25-PP-SUD	Transvaal	Eleandshoogtu	Cordeco-Bolivia	Sudáfrica
12	24-PP-PER	Cajamarca	Porcón	Cordeco-Bolivia	Perú
13	22-PP-LOJ	Loja	Viv. Predesur	PMGF	Ecuador
14	21-PP-LOJ	Loja	Plaza del Inca	PMGF	Ecuador
15	19-PP-LOJ	Loja	Carboncillo	PMGF	Ecuador
16	18-PP-LOJ	Loja	Carboncillo	PMGF	Ecuador
17	16-PP-LOJ	Loja	Oñacapac	PMGF	Ecuador
18	13-PP-LOJ	Loja	Villonaco	PMGF	Ecuador
19	12-PP-LOJ	Loja	Colaisana	PMGF	Ecuador
20	10-PP-LOJ	Loja	Colaisana	PMGF	Ecuador
21	08-PP-LOJ	Loja	Las Zambas	PMGF	Ecuador
22	07-PP-LOJ	Loja	Las Zambas	PMGF	Ecuador
23	06-PP-LOJ	Loja	Carboncillo	PMGF	Ecuador
24	05-PP-COT	Cotopaxi	Mulaló	PMGF	Ecuador
25	01-PP-COT	Cotonavi	Mulaló	PMGE	Ecuador

ETAPAS DE INVESTIGACIÓN

- Identificación y re delimitación de los bloques.
- Medición de variables: se efectuó en cada tratamiento y/o individuo del ensayo. Se realizó una medición al inicio de esta fase de investigación, luego se efectuó mediciones cada cuatro meses durante un año calendario.
- Implementación del ensayo de progenie.
- Tabulación de los datos, y procesamiento estadístico.
- Análisis de varianza (ADEVA) y pruebas de medias si el caso lo amerita.
- Determinación de costos de manejo del sitio durante los 13 meses de actividades en el campo.

VARIABLES EN ESTUDIO

Ensayo de procedencias Italqui

Sobrevivencia

DAP

Altura total

Altura de fuste

Altura de copa

Diámetro de copa

Rectitud de fuste

Ataque de plagas y/o enfermedades

ENSAYO DE PROGENIE

- Para la recopilación de los datos en el ensayo de progenie se trabajó con semillas de 25 procedencias. Cada procedencia contó con 4 observaciones, cada observación estuvo formada por 10 repeticiones, con un total de 1000 individuos.
- Para la obtención de semillas se recolectó al azar 12 frutos de cada una de las procedencias y de diferentes árboles en estudio, a las cuales se enfundó y etiqueto para evitar confusiones. Las semillas se seleccionaron bajo los criterios de tamaño; escogiendo aquellas semillas de mayor corpulencia, también se aplicó la prueba de flotabilidad eliminando así aquellas semillas muertas e infértiles.

Previo a la siembra se preparó un sustrato constituido de la siguiente manera: tierra negra de páramo con 40%, tierra del sitio 30%, arena 20% y cascarilla de arroz 10%.

Una vez obtenido el sustrato se procedió a desinfectar con una solución de formol y vitavax, el mismo que con la ayuda de una bomba de mochila se aplicó a cada una de las fundas y luego se cubrió con un plástico por el lapso de dos días. A continuación se llevó a cabo la siembra la misma que consistió en colocar una semilla en cada una de las fundas.

VARIABLES EN ESTUDIO

Ensayo de progenie

Porcentaje de germinación

Porcentaje de sobrevivencia

Altura de plántula

Diámetro basal

Estado fitosanitario

TOMA DE DATOS DE VARIABLES PARA EL ENSAYO DE PROCEDENCIAS

- Diámetro a la altura del pecho (DAP).
- Altura total (H).
- Altura de fuste (Hf).
- Altura de copa (Hc) se determinó desde el primer verticilo completo hasta el ápice vegetativo Hc = H – Hf.
- El diámetro de copa (Dc) se midió con una cinta métrica, realizando dos mediciones de la proyección de la copa en sentidos opuestos y se calculó un diámetro promedio de la copa.

Rectitud de fuste (Rf)

Clase mórfica	Descripción
3	Árboles rectos
2	Árboles torcidos
1	Árboles bifurcados

Estado fitosanitario

Clase	Descripción
1	Árboles sanos
2	Árboles con plagas y/o enfermedades

TOMA DE DATOS DE LAS VARIABLES EN EL ENSAYO DE PROGENIE

Porcentaje de germinación.

Sobrevivencia.

Número de semillas sembradas

TOMA DE DATOS DE LAS VARIABLES EN EL ENSAYO DE PROGENIE

Diámetro basal

Altura de la plántula

Estado fitosanitario

Clase	Descripción
1	Plántulas sanas
2	Plántulas con plagas y/o enfermedades

ANÁLISIS DE LA INFORMACIÓN ENSAYO DE ITALQUI

Se mantiene el diseño originalmente usado por Mullo y Sandoval (2005) que fue bloques al azar (DCA); con 44 bloques y/o repeticiones. La unidad experimental o parcela está representada por un individuo por procedencia, con un total de 327 árboles observados y analizados estadísticamente

Análisis de varianza

El cálculo de los datos se lo realizó con la ayuda del programa estadístico INFOSTAT con el siguiente modelo estadístico:

$$Xij = \mu + \tau i + \beta j + \varepsilon ij$$

Donde:

Xij = observación en particular μ = media general τi = efecto de tratamientos βj = efecto de los bloques εij = error experimental

Diseño para el análisis de varianza					
Fuentes de variación Grados de Libertad					
Bloques	(44-19) = 43				
tratamientos	(25-1) = 24				
Error experimental	(43)(24) = 1032				
TOTAL	(44*25) - 1 = 1099				

 Con el propósito de determinar las diferencias de medias entre los individuos de las diferentes procedencias se aplicó la prueba de rango múltiple Duncan al 95%. Esta prueba se aplicó a las siguientes variables:

Ensayo de procedencias Italqui
DAP
Altura total
Altura de fuste
Altura de copa
Diámetro de copa

Análisis de correlación

- •(DAP) Altura total.
- Altura de copa Diámetro de copa.

Análisis de regresión

- De las procedencias cuya correlación fue significativa estadísticamente se aplicaron los modelos de regresión lineal a fin de determinar las curvas de crecimiento. Se procesaron los pares siguientes:
- (DAP) Altura total.
- Altura de copa Diámetro de copa.

ANÁLISIS DE LA INFORMACIÓN ENSAYO DE PROGENIE

El cálculo de los datos se lo realizó con la ayuda del programa estadístico INFOSTAT con el siguiente modelo estadístico:

Modelo estadístico: (Diseño Irrestricto al Azar)

\/					
XI	=	μ	+	τΙ	+ εi

Donde:

Xi = observación en particular

μ = media general

 τi = efecto de tratamientos

εi = error experimental

Fuentes de	Grados				
Variación	de libertad				
Tratamientos	(25-1) = 24				
Error	25*(4-1) = 75				
experimental					
TOTAL	(4*25) -1 = 99				

Prueba de rango múltiple

Se empleó la prueba de Duncan al 95% de probabilidad estadística, con el propósito de determinar las diferencias de crecimiento entre las procedencias. Esta prueba se aplicó a la variable Altura total

COSTOS DE MANTENIMIENTO DEL ENSAYO

Para este periodo de investigación se tomaron en cuenta los costos de una chapia mas el raleo inicial.

RESULTADOS Y DISCUSIÓN

ANÁLISIS DE LAS VARIABLES "ITALQUI"

ANÁLISIS DE VARIANZA
DIÁMETRO A LA ALTURA DE PECHO (DAP)

			13.	5 años			
FUENTE DE VARIACIÓN	GL.	SC	СМ	FC	SIG.	FT 0.05	FT 0.01
Bloque	43	2896,41	41,17	2,67	**	1,53	1,81
Procedencia	24	1126,31	46,93	3,04	**	1,41	1,62
Error experimental	259	3994,62	15,42				
Total	326	6891,03					
CV		13.63					

Prueba de medias de Duncan

Se determinó siete grupos

Barrier Institut	as Medias n Rangos								
Procedencias	Medias	n			Ka	ing	os		
39	37,53	19	Α						
41	36,29	15	Α	В					
10	36,05	19	Α	В	C				
13	35,92	7	Α	В	C				
12	35,7	6	Α	В	С	D			
30	35,46	10	Α	В	С	D			
21	35,29	15	Α	В	С	D	Е		
32	34,79	17	Α	В	С	D	Е	F	
28	34,04	14	Α	В	C	D	Е	F	G
34	33,95	14	Α	В	С	D	Е	F	G
1	33,85	17	Α	В	C	D	Е	F	G
8	33,85	23	Α	В	С	D	Е	F	G
36	33,68	11		В	C	D	Е	F	G
7	33,04	16		В	С	D	Е	F	G
22	32,67	14		В	C	D	Е	F	G
6	32,63	14		В	С	D	Е	F	G
45	32,42	7			С	D	Е	F	G
19	32,4	19			С	D	Е	F	G
5	31,95	13				D	Е	F	G
24	31,58	9					Е	F	G
16	31,47	8					Е	F	G
26	31,32	13						F	G
18	30,8	4							G
25	30,6	7							G
42	30,48	16							G

IMA de DAP para ensayos de Pinus patula

Sitio	Edad	IMA DAP	Fuente	
	(años)	(cm/año)		
San Agustín del Callo	14	1,96	DINICE, (2000).	
Loja	8	0,59	Aguirre y Estévez, (2001).	
Antioquia-Colombia	5	2,18	Atehortúa y Restrepo, (1987).	
La Serrana-Pichincha	9,8	2,16	Vizcaíno y Pupiales, (2008).	
Italquí-Imbabura	9,8	2,4	Vizcaíno y Pupiales, (2008).	
Italquí-Imbabura	10.6	2,59	Valenzuela, (2009).	
Italquí-Imbabura	13,5	2,5	Autor, (2012).	

ALTURA TOTAL (H)

Análisis de varianza

	13,5 años								
FUENTE DE VARIACIÓN	GL.	SC	СМ	FC	SIG.	FT 0.05	FT 0.01		
Bloque	43	304,27	7,08	3,74	**	1,53	1,81		
Procedencia	24	106,87	4,45	2,35	**	1,41	1,62		
Error experimental	259	490,46	1,89						
Total	326	901,60	, -						
CV	8.74								

Prueba de medias de Duncan

Se determinó cuatro grupos

<u>Procedencia</u>		N	Rango			
30	20,45	10	Α			
18	20,44	4	Α			
8	19,87	23	Α	В		
36	19,7	11	Α	В	С	
32	19,65	17	Α	В	С	
6	19,45	14	Α	В	С	
41	19,42	15	Α	В	С	
39	19,38	19	Α	В	С	
21	19,25	15	Α	В	С	
12	19,13	6		В	С	
16	19,06	8		В	С	
34	18,98	14		В	С	
28	18,91	14		В	С	
24	18,89	9		В	С	
5	18,87	13		В	С	
10	18,83	19		В	С	
26	18,83	13		В	С	
42	18,75	16		В	С	
19	18,64	19		В	С	
25	18,64	7		В	С	
22	18,55	14		В	С	
7	18,44	16			С	D
13	18,43	7			С	D
45	18,43	7			С	D
1	17,28	17				D

IMA de altura total para ensayos de *Pinus patula*

Sitio	Edad	IMA Ht.	Fuente
	(años)	(m/año)	
San Agustín del Callo	14	1,11	DINICE 2000
Loja	8	1.10	Aguirre y Estévez, (2001).
Antioquia-Colombia	5	1,48	Atehortúa y Restrepo, (1987).
La Serrana-Pichincha	9,8	1,59	Vizcaíno y Pupiales, (2008).
Italquí-Imbabura	9,8	1,52	Vizcaíno y Pupiales, (2008).
Italquí-Imbabura	10.6	1,54	Valenzuela, (2009).
Italquí-Imbabura	13,5	1,44	Autor, (2012).

ALTURA DE FUSTE

Análisis de varianza

		13,5 AÑOS							
FUENTE DE VARIACIÓN	GL.	SC	СМ	FC	SIG.	FT 0.05	FT 0.01		
Bloque	43	8,26	0,19	2,81	**	1,53	1,81		
Procedencia	24	1,77	0,07	1,08	NS	1,41	1,62		
Error experimental	259	17,69	0,07						
Total	326	27,71							
cv				7.71					

Prueba de medias de Duncan

Se determinó cinco grupos

Procedencia	Medias	N	Rangos				
12	4	6	Α				
5	3,9	13	Α	В			
26	3,9	13	Α	В	С		
36	3,86	11	Α	В	С	D	
39	3,86	19	Α	В	С	D	
32	3,84	17	Α	В	С	D	
8	3,84	23	Α	В	С	D	
24	3,83	9	Α	В	С	D	
41	3,82	15	Α	В	С	D	
1	3,81	17	Α	В	С	D	
34	3,8	14	Α	В	С	D	
30	3,8	10	Α	В	С	D	
7	3,78	16	Α	В	С	D	Ε
42	3,78	16	Α	В	С	D	Ε
28	3,77	14	Α	В	С	D	Е
22	3,77	14	Α	В	С	D	Е
13	3,75	7	Α	В	С	D	Е
10	3,72	19		В	С	D	Е
6	3,71	14		В	С	D	Ε
21	3,7	15		В	С	D	Ε
19	3,68	19		В	С	D	Ε
25	3,64	7			С	D	Ε
18	3,63	4				D	Ε
45	3,61	7				D	Ε
16	3,53	8					Е

Rectitud de fuste

Procedencia	n Total	Procedencia	% Rectos	Procedencia	% Torcidos	Procedencia	% Bifurcados
01-PP-COT	17	13-PP-LOJ	100,0	28-PP-BOL	21,4	07-PP-LOJ	25,0
05-PP-COT	13	18-PP-LOJ	100,0	12-PP-LOJ	16,7	24-PP-PER	22,2
06-PP-LOJ	14	36-PP-SUD	100,0	10-PP-LOJ	15,8	19-PP-LOJ	15,8
07-PP-LOJ	16	41-PP-SUD	93,3	05-PP-COT	15,4	08-PP-LOJ	13,0
08-PP-LOJ	23	30-PP-COL	90,0	06-PP-LOJ	14,3	26-PP-MEX	7,7
10-PP-LOJ	19	39-PP-ZIM	89,5	25-PP-SUD	14,3	06-PP-LOJ	7,1
12-PP-LOJ	6	01-PP-COT	88,2	34-PP-KEN	14,3	22-PP-LOJ	7,1
13-PP-LOJ	7	32-PP-ZIM	88,2	45-PP-MEX	14,3	28-PP-BOL	7,1
16-PP-LOJ	8	16-PP-LOJ	87,5	16-PP-LOJ	12,5	21-PP-LOJ	6,7
18-PP-LOJ	4	42-PP-MAL	87,5	42-PP-MAL	12,5	01-PP-COT	0,0
19-PP-LOJ	19	21-PP-LOJ	86,7	01-PP-COT	11,8	05-PP-COT	0,0
21-PP-LOJ	15	22-PP-LOJ	85,7	32-PP-ZIM	11,8	10-PP-LOJ	0,0
22-PP-LOJ	14	25-PP-SUD	85,7	39-PP-ZIM	10,5	12-PP-LOJ	0,0
24-PP-PER	9	34-PP-KEN	85,7	30-PP-COL	10,0	13-PP-LOJ	0,0
25-PP-SUD	7	45-PP-MEX	85,7	26-PP-MEX	7,7	16-PP-LOJ	0,0
26-PP-MEX	13	05-PP-COT	84,6	22-PP-LOJ	7,1	18-PP-LOJ	0,0
28-PP-BOL	14	26-PP-MEX	84,6	21-PP-LOJ	6,7	25-PP-SUD	0,0
30-PP-COL	10	10-PP-LOJ	84,2	41-PP-SUD	6,7	30-PP-COL	0,0
32-PP-ZIM	17	12-PP-LOJ	83,3	07-PP-LOJ	6,3	32-PP-ZIM	0,0
34-PP-KEN	14	08-PP-LOJ	82,6	19-PP-LOJ	5,3	34-PP-KEN	0,0
36-PP-SUD	11	19-PP-LOJ	78,9	08-PP-LOJ	4,3	36-PP-SUD	0,0
39-PP-ZIM	19	06-PP-LOJ	78,6	13-PP-LOJ	0,0	39-PP-ZIM	0,0
41-PP-SUD	15	24-PP-PER	77,8	18-PP-LOJ	0,0	41-PP-SUD	0,0
42-PP-MAL	16	28-PP-BOL	71,4	24-PP-PER	0,0	42-PP-MAL	0,0
45-PP-MEX	7	07-PP-LOJ	68,8	36-PP-SUD	0,0	45-PP-MEX	0,0
Promedio	327	Promedio	85,9		9,6		4,5

DIÁMETRO DE COPA

Análisis de varianza

		13,5 años								
FUENTE DE VARIACIÓN	GL.	SC	СМ	FC	Sig.	FT 0.05	FT 0.01			
Bloque	43	71,89	1,67	2,28	**	1,53	1,81			
Procedencia	24	24,86	1,04	1,41	NS	1,41	1,62			
Error experimental	259	190,30	0,73							
Total	326	287,05								
CV				10.76						

Prueba de medias de Duncan

Se determinó cuatro grupos.

Procedencias	Medias	N		Ran	gos	
12	9,44	6	Α			
16	9,22	8	Α	В		
13	9,19	7	Α	В		
19	9,03	19	Α	В	С	
30	8,96	10	Α	В	С	
28	8,93	14	Α	В	С	
7	8,87	16	Α	В	С	D
41	8,84	15	Α	В	С	D
10	8,83	19	Α	В	С	D
26	8,8	13	Α	В	С	D
34	8,79	14	Α	В	С	D
1	8,75	17	Α	В	С	D
8	8,72	23	Α	В	C	D
24	8,71	9	Α	В	С	D
22	8,68	14	Α	В	C	D
21	8,68	15	Α	В	С	D
25	8,62	7	Α	В	C	D
42	8,61	16	Α	В	С	D
36	8,56	11		В	С	D
32	8,56	17		В	С	D
5	8,53	13		В	С	D
45	8,39	7		В	С	D
39	8,22	19				D
6	8,21	14				D
18	8,05	4				D

ALTURA DE COPA (Hc)

Análisis de varianza

		13,5 años								
FUENTE DE VARIACIÓN	GL.	SC	CM	FC	Sig.	FT 0.05	FT 0.01			
Bloque	43	271,95	6,32	3,40	**	1,53	1,81			
Procedencia	24	106,68	4,45	2,39	**	1,41	1,62			
Error experimental	259	481,85	1,86							
Total	326	860,48								
CV			1	0.66						

Prueba de medias de Duncan

Se determinó cuatro grupos

Procedencias	Medias	n	F	≀an	go	s
18	16,81	4	Α			
30	16,65	10	Α			
8	16,03	23	Α	В		
36	15,84	11	Α	В	С	
32	15,81	17	Α	В	С	
6	15,73	14	Α	В	С	
41	15,6	15	Α	В	С	
21	15,55	15	Α	В	С	
16	15,53	8	Α	В	С	
39	15,53	19	Α	В	С	
34	15,18	14		В	С	
28	15,14	14		В	С	
12	15,13	6		В	С	
10	15,11	19		В	С	
24	15,06	9		В	С	
25	15	7		В	С	
42	14,97	16		В	С	
5	14,96	13		В	С	
19	14,96	19		В	С	
26	14,92	13		В	С	
45	14,82	7		В	С	
22	14,79	14		В	С	
13	14,68	7		В	С	
7	14,66	16			С	
1	13,47	17				D

Ataque de plagas y enfermedades

Procedencia	Árboles enfermos (%)
12-PP-LOJ	25,0
28-PP-BOL	21,4
06-PP-LOJ	14,3
24-PP-PER	11,1
26-PP-MEX	7,7
41-PP-SUD	6,7
39-PP-ZIM	5,6
01-PP-COT	0,0
05-PP-COT	0,0
07-PP-LOJ	0,0
08-PP-LOJ	0,0
10-PP-LOJ	0,0
13-PP-LOJ	0,0
16-PP-LOJ	0,0
18-PP-LOJ	0,0
19-PP-LOJ	0,0
21-PP-LOJ	0,0
22-PP-LOJ	0,0
25-PP-SUD	0,0
30-PP-COL	0,0
32-PP-ZIM	0,0
34-PP-KEN	0,0
36-PP-SUD	0,0
42-PP-MAL	0,0
45-PP-MEX	0,0
Promedio	3,7

Análisis de correlación diámetro a la altura del pecho-altura total

A los 13, 5 años de edad se determinó que todas las procedencias presentan asociación altamente significativa entre las variables analizadas.

PROCEDENCIA	N	R	SIGNIFICANCIA
01-PP-COT	17	0,996	**
05-PP-COT	13	0,990	**
06-PP-LOJ	14	0,957	**
07-PP-LOJ	16	0,994	**
08-PP-LOJ	23	0,997	**
10-PP-LOJ	19	0,990	**
12-PP-LOJ	6	0,966	**
13-PP-LOJ	7	0,975	**
16-PP-LOJ	8	0,998	**
18-PP-LOJ	4	0,960	**
19-PP-LOJ	19	0,995	**
21-PP-LOJ	15	0,997	**
22-PP-LOJ	14	0,989	**
24-PP-PER	9	0,972	**
25-PP-SUD	7	0,994	**
26-PP-MEX	13	0,986	**
28-PP-BOL	14	0,978	**
30-PP-COL	10	0,987	**
32-PP-ZIM	17	0,994	**
34-PP-KEN	14	0,989	**
36-PP-SUD	11	0,983	**
39-PP-ZIM	19	0,993	**
41-PP-SUD	15	0,986	**
42-PP-MAL	16	0,998	**
45-PP-MEX	7	0,982	**

Análisis de correlación diámetro de copa-altura de

A los 13.5 años de edad se determinó que todas las procedencias presentan asociación altamente significativa entre las variables analizadas.

PROCEDENCIA	N	R	SIGNIFICANCIA
01-PP-COT	17	0,981	**
05-PP-COT	13	0,987	**
06-PP-LOJ	14	0,996	**
07-PP-LOJ	16	0,990	**
08-PP-LOJ	23	0,992	**
10-PP-LOJ	19	0,985	**
12-PP-LOJ	6	0,998	**
13-PP-LOJ	7	0,991	**
16-PP-LOJ	8	0,995	**
18-PP-LOJ	4	0,968	**
19-PP-LOJ	19	0,992	**
21-PP-LOJ	15	1,000	**
22-PP-LOJ	14	0,998	**
24-PP-PER	9	0,984	**
25-PP-SUD	7	0,998	**
26-PP-MEX	13	1,000	**
28-PP-BOL	14	0,947	**
30-PP-COL	10	0,989	**
32-PP-ZIM	17	0,992	**
34-PP-KEN	14	0,990	*
36-PP-SUD	11	0,999	**
39-PP-ZIM	19	0,971	**
41-PP-SUD	15	0,981	**
42-PP-MAL	16	0,980	**
45-PP-MEX	7	0,975	**

Regresión entre DAP y altura total

A los 13.5 años se registran coeficientes de determinación (R²) superiores al 90%, lo que demuestra que todas las procedencias presentan un ajuste casi perfecto a la recta.

Procedencia	Ecuación	R2 (%)
16-PP-LOJ	Ht=0,07+0,60DAP	99,56
42-PP-MAL	Ht=-3,34+0,73DAP	99,52
08-PP-LOJ	Ht=-2,58+0,66DAP	99,40
21-PP-LOJ	Ht=1,45+0,50DAP	99,33
01-PP-COT	Ht=-5,31+0,67DAP	99,14
19-PP-LOJ	Ht=-2,60+0,66DAP	98,91
07-PP-LOJ	Ht=-2,72+0,64DAP	98,88
25-PP-SUD	Ht=-4,68+0,76DAP	98,76
32-PP-ZIM	Ht=0,15+0,56DAP	98,72
39-PP-ZIM	Ht=4,24+0,40DAP	98,70
10-PP-LOJ	Ht=2,27+0,46DAP	98,10
05-PP-COT	Ht=-0,12+0,59DAP	98,05
22-PP-LOJ	Ht=-2,38+0,64DAP	97,88
34-PP-KEN	Ht=1,08+0,53DAP	97,76
30-PP-COL	Ht=3,72+0,47DAP	97,49
26-PP-MEX	Ht=-2,82+0,69DAP	97,26
41-PP-SUD	Ht=0,47+0,52DAP	97,25
36-PP-SUD	Ht=0,93+0,56DAP	96,60
45-PP-MEX	Ht=-2,65+0,65DAP	96,36
28-PP-BOL	Ht=0,35+0,55DAP	95,60
13-PP-LOJ	Ht=1,69+0,46DAP	95,06
24-PP-PER	Ht=-2,63+0,68DAP	94,39
12-PP-LOJ	Ht=-3,21+0,62DAP	93,31
18-PP-LOJ	Ht=-6,79+0,89DAP	92,24
06-PP-LOJ	Ht=-8,81+0,86DAP	91,64

Regresión de altura de copa-diámetro de copa

A los 13,5 años de edad se registran coeficientes de determinación (R²) superiores al 90%, lo que demuestra que todas las procedencias presentan un ajuste casi perfecto a la recta.

Procedencia	Ecuación	R2 (%)
21-PP-LOJ	Hc=4,89+1,23Dc	99,97
26-PP-MEX	Hc=6,80+0,92Dc	99,93
36-PP-SUD	Hc=6,79+1,06Dc	99,89
12-PP-LOJ	Hc=4,70+1,11Dc	99,69
22-PP-LOJ	Hc=3,77+1,27Dc	99,58
25-PP-SUD	Hc=5,18+1,14Dc	99,58
06-PP-LOJ	Hc=3,62+1,48Dc	99,16
16-PP-LOJ	Hc=4,99+1,15Dc	99,01
19-PP-LOJ	Hc=5,92+1,01Dc	98,50
32-PP-ZIM	Hc=3,31+1,46Dc	98,49
08-PP-LOJ	Hc=5,31+0,67Dc	98,46
13-PP-LOJ	Hc=5,67+0,98Dc	98,26
07-PP-LOJ	Hc=3,77+1.23Dc	98,08
34-PP-KEN	Hc=6,75+0,96Dc	97,91
30-PP-COL	Hc=8,55+0,91Dc	97,75
05-PP-COT	Hc=5,43+1,12Dc	97,42
10-PP-LOJ	Hc=3,47+1,32Dc	97,09
24-PP-PER	Hc=5,50+1,10Dc	96,87
41-PP-SUD	Hc=1,94+1,55Dc	96,33
01-PP-COT	Hc=1,80+1,34Dc	96,31
42-PP-MAL	Hc=2,36+1,47Dc	96,04
45-PP-MEX	Hc=2,65+1.44Dc	95,15
39-PP-ZIM	Hc=3,87+1,43Dc	94,27
18-PP-LOJ	Hc=0,67+2,02Dc	93,75
28-PP-BOL	Hc=6,76+0,95Dc	89,61

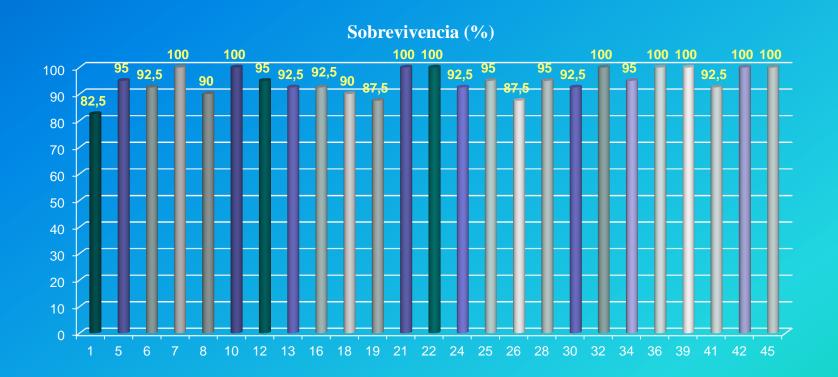
SOBREVIVENCIA

La sobrevivencia de los individuos de cada procedencia desde los 12,5 hasta los 13,5 años de edad, fue del 100%.

ANALISIS DE VARIABLES "ENSAYO DE PROGENIE"

Porcentaje de germinación de las semillas de *Pinus patula*.

El promedio general del ensayo fue del 96,40 %; que está dentro de los límites de confianza; límite inferior de 95 % y el límite superior de 97,79%; Por cuanto las siguientes procedencias quedan fuera de este rango.


Procedencia	% de Germinación
19-PP-LOJ	92,5
21-PP-LOJ	92,5
01-PP-COT	90

t

Comparación de porcentajes de germinación

Sitio/Fuente	% de Germinación
Ibarra-Imbabura Hernández, (1990).	73,96%
México Aguilera, (2001).	85-67%
México Rentería, Jiménez y Alba, (1999).	75-83%
Ecuador Cárdenas, (1998).	60-70%
Desconocido Lamprecht, (1990).	71-85%
Ibarra-Imbabura Vizcaíno y Pupiales, (2008)	61,69
Ibarra-Imbabura Valenzuela, (2009).	93,83
Ibarra-Imbabura Autor, (2012).	96,40%

Porcentaje de sobrevivencia de Pinus patula.

Se obtuvo un 94,70 % de sobrevivencia, que oscila entre los límites inferior de 91,92% y el límite superior de 97.44%. Por cuanto las siguientes procedencias quedan fuera de este rango.

Procedencia	% Sobrevivencia		
08-PP-LOJ	90		
18-PP-LOJ	90		
19-PP-LOJ	87,5		
26-PP-MEX	87,5		
01-PP-COT	82,5		

DIÁMETRO BASAL

Análisis de varianza

El análisis de varianza correspondientes a la altura de la plántula realizada a los 8 meses, muestran que no existen diferencias estadísticas para esta fuente de variación procedencias.

	8 meses						
FUENTE DE VARIACIÓN	GL.	SC	CM	FC	SIG.	FT 0.05	FT 0.01
Procedencia	24	3,43	0,14	1,10	N.S	1.66	2.05
Error							
experimental	75	9,72	1,13				
Total	99	13,16					
CV				11,64			

ALTURA DE PLÁNTULA

Análisis de varianza

El análisis de varianza correspondientes a la altura de la plántula realizada a los 8 meses, muestran que no existen diferencias estadísticas para esta fuente de variación procedencias.

	8 meses						
FUENTE DE VARIACIÓN	GL.	SC	CM	FC	SIG:	FT 0.05	FT 0.01
				1,1			
Procedencia	24	3,43	0,14	0	N.S	1.66	2.05
Error							
experimental	75	9,72	1,13				
Total	99	13,16					
CV	11,64						

Ataque de plagas y enfermedades

Procedencia	n	Plántulas enfermas (%)
36-PP-SUD	39	10,3
26-PP-MEX	35	8,6
08-PP-LOJ	36	8,3
12-PP-LOJ	38	7,9
10-PP-LOJ	39	7,7
32-PP-ZIM	39	7,7
41-PP-SUD	39	7,7
01-PP-COT	33	6,1
18-PP-LOJ	36	5,6
13-PP-LOJ	37	5,4
16-PP-LOJ	37	5,4
19-PP-LOJ	37	5,4
21-PP-LOJ	37	5,4
24-PP-PER	37	5,4
05-PP-COT	38	5,3
25-PP-SUD	38	5,3
34-PP-KEN	38	5,3
22-PP-LOJ	39	5,1
30-PP-COL	39	5,1
39-PP-ZIM	39	5,1
06-PP-LOJ	37	2,7
07-PP-LOJ	38	2,6
28-PP-BOL	39	2,6
42-PP-MAL	38	0,0
45-PP-MEX	37	0,0
Promedio		5,4

Correlación diámetro basalaltura de plántula

En de este ensayo progenie se ha obtenido resultados estadísticos no significativos para las diferentes variables, posiblemente esto se deba a su corta edad la misma que no permite evidenciar la asociación de las variables dasométricas

Procedencia	N	r	Significancia
30	37	0,698	**
24	38	0,683	**
16	38	0,674	**
25	38	0,668	**
19	35	0,642	**
18	36	0,570	**
13	37	0,569	**
7	38	0,568	**
32	39	0,553	**
41	37	0,533	**
36	39	0,523	**
21	37	0,518	**
12	38	0,500	**
10	39	0,498	**
26	37	0,497	**
39	39	0,475	**
42	38	0,459	**
22	39	0,458	**
28	38	0,417	**
34	38	0,399	*
1	35	0,320	ns
6	38	0,289	ns
8	36	0,284	ns
45	38	0,252	ns
5	39	0,210	ns

COSTOS DE MANTENIMIENTO DEL ENSAYO ITALQUÍ

- Los costos de mantenimiento del rodal durante el estudio fue de \$604,90, es decir \$302,45/año/Ha.
- Utilidad = \$146,51

Costos de mantenimiento del ensayo Italquí				
Actividades	Costo Parcial \$			
Raleo	520,20			
Chapia	84,70			
TOTAL	604,90			

Ingresos producidos por el ensayo Italquí							
Actividades	Unidad Cantidad Costo Unitario (\$) Parcial						
Venta de madera	m^3	7.59	99	751.41			
TOTAL				751.41			

CONCLUSIONES

- Al final del estudio realizado en el ensayo de Italquí se obtuvo un porcentaje de sobrevivencia del 100 % debido a que no ha sido afectado de mayor forma por plagas y enfermedades, también probablemente a que posee un efectivo sistema radicular que les permite soportar los fuertes vientos que imperan en el sitio.
- En este estudio se encontraron 14 árboles afectados por hongos, que representan el 4,28 % de la plantación, lo que demuestra que esta especie es altamente resistente a estos organismos y se muestra como una alternativa para sitios cuyas características meteorológicas es la presencia de neblina persistente.

• En el ensayo de progenie tuvo un promedio de germinación de 96.40 %, conjuntamente con los índices de crecimiento del ensayo en Italquí, confirman que el rodal ha llegado a su madurez sexual y se perfila para a futuro convertirse en una fuente semillera.

 Del análisis de 25 procedencias de Pinus patula en Italquí, donde el análisis de correlación entre sus diferentes variables muestran un crecimiento proporcional, evidencia que este ensayo posee excelentes características fenotípicas fue a futuro permitirán calificarla como "fuente semillera". Con los resultados obtenidos por Vizcaíno y Pupiales, (2008) Valenzuela, (2009) y los del presente estudio se concluye que las 25 procedencias analizadas muestran un crecimiento sostenido en las variables DAP y altura total con un incremento medio anual de 2.5 cm/año y 1.5 m/año respectivamente.

 Los costos de mantenimiento del rodal de Italquí fueron de \$604,90.

RECOMENDACIONES

 Continuar la evaluación de las 25 procedencias seleccionadas bajo el rigor investigativo; que permitan corroborar los resultados obtenidos en esta investigación y de esta manera poder calificar a este rodal como "fuente semillera".

 Realizar un raleo con el fin de eliminar ciertos individuos deformes, con daños mecánicos y enfermos, los mismos que pueden infectar a los demás miembros que conforman el ensayo.

- Evaluar las semillas producidas por este rodal ya que éstas han arrojado porcentajes de germinación extremadamente altos en las tres últimas investigaciones, debido quizá a que antes de la siembra no han estado sometidas a un estrés post-cosecha (almacenadas por largos periodos de tiempo).
- Establecer plantaciones con las plántulas obtenidas en los ensayos de progenie a fin de evaluar su comportamiento y de esta forma afianzar y confirmar los resultados obtenidos en la presente investigación.

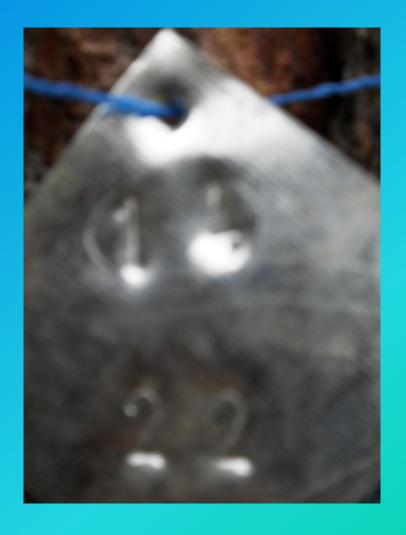
- Establecer plantaciones con las plántulas obtenidas en los ensayos de progenie a fin de evaluar su comportamiento y de esta forma afianzar y confirmar los resultados obtenidos en la presente investigación.
- Evaluar la capacidad productiva en cuanto a semillas con el fin de determinar la rentabilidad del rodal.

Gracias

Ensayo de Italqui

Regeneración natural

Raleo Inicial



Madera producto del raleo inicial

Placas de identificación

Floración

Frutos maduros

Semillas de Pinus patula

Enfundado

Semillas de Pinus patula

Germinación

Plántulas de Pinus patula

Medición de plántulas de Pinus patula

