UNIVERSIDAD TECNICA DEL NORTE FACULTAD DE INGENIERIA EN CIENCIAS APLICADAS ESCUELA DE INGENIERIA TEXTIL

TESIS PREVIA LA OBTENCIÓN DEL TITULO DE INGENIEROS TEXTILES

TEMA : <u>MEJORAMIENTO DE LA CALIDAD DE LA FIBRA</u> DE CABUYA Y SU APLICACIÓN.

AUTORES:

CHECA GORDILLO CARLOS MIGUEL
JURADO ARTURO FABER MIGUEL

DIRECTOR DE TESIS:

ING. MARCELO PUENTE

IBARRA- ECUADOR 2001

AGRADECIMIENTO

Presentamos nuestro sincero agradecimiento a la Universidad Técnica del Norte, por habernos dado la oportunidad de realizar este trabajo y al Ing. Marcelo Puente quien con su profesionalismo que le caracteriza, ha sabido darnos un asesoramiento valioso, así como también al Sr. Eduardo Paz Gerente Propietario de la fabrica de cabuya en la ciudad de Pasto, quien en una forma desinteresada nos facilitó la información necesaria para la elaboración de esta tesis.

DEDICATORIA

El presente trabajo dedicamos principalmente a nuestros padres y familias quienes nos han apoyado incondicionalmente, atestiguando nuestros momentos felices y angustiosos durante la vida universitaria, a la vez que nos acompañaron siempre en la realización de nuestra investigación.

RESUMEN

El objetivo del presente trabajo es de someter a la fibra de cabuya a tratamientos químicos como: descrude, blanqueo químico, tintura y suavizado; con el fin de brindar una flexibilidad, mejorar su suavidad y darle un valor agregado a las artesanías.

El capitulo I se refiere al estudio y obtención de la fibra de cabuya, el cual nos servirá de soporte teórico para entender todo el proceso por el que atraviesa la planta de cabuya para ser clasificada de acuerdo a su calidad para posteriormente empacarla.

El capitulo II, analiza y describe los posibles tratamientos químicos y mecánicos que puede someterse la fibra, la cual contiene gran cantidad de celulosa, por tal razón se tomará como pauta los mismo procedimientos empleados en la fibra de algodón como son: descrude, blanqueo químico, tintura y suavizado.

En el capitulo III se detallan todos los procesos, que la fibra de cabuya debe someterse para la obtención del producto terminado que es el hilo. además se analiza las ventajas y desventajas que tiene el proceso artesanal e industrial.

Con respecto a la fase experimental, la fibra de cabuya fue previamente sacudida, con el objetivo de eliminar una gran cantidad de materias extrañas que acompañan a la fibra, con el fin de que estas no interfieran en los diferentes procesos y controles que se somete la fibra.

CABUYA UNA VISION DEL FUTURO TEXTIL

Con respecto al descrude, se llegó a determinar que es el proceso que proporciona mayor suavidad a la fibra, así como también se comprobó que es el proceso donde se pierde gran cantidad de peso y resistencia. Los auxiliares óptimos empleados son NaOH a 3 gr/lt y detergente a 0,5 gr/lt y en un tiempo de dos horas.

El proceso óptimo de blanqueo se obtuvo con la utilización de SiO3Na2 a 3 gr/lt y de H2O2 a 5 gr/lt , cabe indicar que para realizar este proceso la cabuya debe estar descrudada, por tal razón, esta investigación realiza el descrude y blanqueo en un mismo baño, con el fin de ahorrar tiempo, auxiliares y mano de obra.

El proceso de tintura por agotamiento con la utilización de colorantes directos solofeniles, arrojaron excelentes resultados, donde se puede concluir que la fibra de cabuya tiene buena afinidad con el colorante. En el proceso se utiliza como agotador del colorante Cl Na y como fijador CO3Na2.

La fibra de cabuya se encuentra con un grado de suavidad aceptable después de estos dos tratamientos pero mejoró mucho más al someterle al proceso de suavizado, por lo tanto, se realizaron varias pruebas y con diferentes suavizantes, llegando a concluir que la sapamina OC brinda mayor suavidad y se utilizará para fibras tinturadas, mientras que para fibras blanqueadas se utilizará el suavizante CPS.

Los costos de elaboración de artesanías de cabuya son muy convenientes y podría mejorar si aplicamos estos procedimientos con el fin de mejorar la calidad y diseño de los

CABUYA UNA VISION DEL FUTURO TEXTIL

productos, es importante destacar que nuestra artesanía es muy llamativa y que tiene una gran ventaja de ser biodegradable.

Esperando que esta investigación motive a todas las personas en tomar más conciencia sobre la utilización de las fibras naturales, y en especial a los artesanos para que reactiven sus talleres artesanales, y puedan encontrar en esta interesante actividad un beneficio económico.

INDICE

_	AGR	ΔΓ	FC	\mathbf{IM}	FN	TO
_	дШ	ΔL		1171	LLIN	1 ()

- DEDICATIRIA

- RESUMEN	
<u>REVISION LITERARIA</u>	PAG.
<u>INTRODUCCIÓN</u>	1
<u>CAPITULO I</u>	
1. ESTUDIO Y OBTENCION DE LA FIBRA DE CABUYA	3
1.1. ORIGEN	3
1.2. VARIEDADES DE LA FIBRA	4
1.3. CARACTERISTICAS BOTÁNICAS	7
1.3.1. TAXONOMIA	7
1.3.2 MORFOLOGIA	8
1.4. FLUJOGRAMA DE PROCESOS	11
1.5. MANEJO DEL CULTIVO	12
1.5.1. REQUERIMIENTOS DEL SUELO Y CLIMA	12
1.5.2. SIEMBRA	13
1.5.3. COSECHA	15
1.5.3.1. CORTE	16
1.6. RECOLECCION	18
1.7. DESFIBRADO	18
1.7.1. DESFIBRADO MANUAL	19

	1.7.1.1. S ISTEMA DE ENRIADO	19
	1.7.1.2. TALLADO	19
1.7.2.	MAQUINA DESFIBRADORA	20
1.8. CARA	CTERISTICAS FISICAS DE LA FIBRA DE CABUYA	21
1.8.1.	FIBRAS MECANICAS	22
1.8.2.	FIBRAS SUELTAS	23
1.8.3.	FIBRAS DEL XILEMA	23
1.9. COM	POSICION QUIMICA DE LA FIBRA	24
1.10.	RENDIMIENTO POR HECTARIA	25
1.11.	DEMANDA Y PRODUCCION NACIONAL	25
1.12.	LAVADO	27
1.13.	SECADO	28
1.13.1	. SECADO ARTIFICIAL	28
1.13.2	. SECADO NATURAL	29
	1.13.2.1. EL ESTRADO EN TRIANGULO o caballete	29
	1.13.2.2. EL ESTRADO PLANO o barbacoa	30
1.14.	CLASIFICACION	31
1.14.1	. PRIMERA CALIDAD	31
1.14.2	. SEGUNDA CALIDAD	32
1.14.3	.TERCERA CALIDAD	32
1.14.4	. CUARTA CALIDAD	33
1.14.5	. ESTOPAS	33
1.15. E M	IPACADO	33
1.16.BO	DEGA	33

CAPITULO II

2.	PREPARACION Y ACABADO DE LA MATERIA PRIMA	34
	2.1. DESCRUDE	35
	2.1.1. REACCIONES DEL NaOH CON LA CELULOSA DE LA CABUY	/A
		-36
	2.1.1.1. HIDROXIDO DE SODIO	36
	2.1.1.2. DETERGENTE	- 37
	2.2. BLANQUEO	- 37
	2.2.1. REACCION DEL H2O2	39
	2.3. NEUTRALIZADO	40
	2.4. TINTURA	- 40
	2.4.1. FACTORES QUE INFLUYEN EN LA TINTURA	- 41
	2.4.1.1. ABSORCIÓN	41
	2.4.1.1.1. NATURALEZA DEL COLORANTE	41
	2.4.1.1.2. RELACION DE BAÑO	41
	2.4.1.1.3. INFLUENCIA DE LA TEMPERATURA	42
	2.4.2. TIPOS DE COLORANTES PARA FIBRAS CELULOSICAS	42
	2.4.2.1. SELECCIÓN DEL COLORANTE ADECUADO	42
	2.4.2.1.1. COLORANTES DIRECTOS	43
	2.4.2.1.1. COLORANTES DIRECTOS SOLOFENILES	43
	2.4.2.1.2. REACCION DEL COLORANTE DIRECTO CON	LA
	FIBRA	44
	2.5.SUAVIZADO	- 45

	2.5.1. SAPAMINA OC	46
	2.5.2. AVIVAN SFC	46
	2.5.3. SUAVIZANTE CPS LIQUIDO	47
	2.5.4. SUAVIZANTES SINTÉTICOS	48
	2.5.4.1. TEMPORALES	49
	2.5.4.1.1. ANIONACTIVOS	49
	2.5.4.1.2. CATIONICOS	49
	2.5.4.1.3. NO – IÓNICOS	50
	2.5.4.1.4. ANFOTERICOS	51
	2.5.4.1.5. PERMANENTES	52
	<u>CAPITULO III</u>	
3.	PROCESO DE HILATURA	53
	3.1.FLUJOGRAMA DEL PROCESO DE HILATURA ARTESANAL	53
	3.1.1. ENCERADO	53
	3.1.2. ESCARMINADO	55
	3.1.2.1. DESPERDICIO	56
	3.1.3. HILADO	57
	3.1.4. RETORCIDO	58
	3.2. FLUJOGRAMA DEL PROCESO DE HILATURA INDUSTRIAL	60
	3.2.1. PREPARACION DEL MATERIAL	61
	3.2.2. ACEITADO	62
	3.2.3. SACUDIDO	63
	3.2.4. CARDADO I	64

	3.2.5. CARDADO II	65
	3.2.6. ACORDONADORA	66
	3.2.7. HILA	67
	3.2.8. RETORCEDORA	68
	3.2.9. TUNDIDORA	69
	3.2.10. ENCONADORA Y OVILLADORA	70
	3.2.11. PESAJE	73
	3.2.12. EMPACADO	73
	<u>CAPITULO IV</u>	
4.	PROCESO DE TEJEDURIA	74
	4.1. URDIDO	74
	4.1.1. URDIDO ARTESANAL	75
	4.1.2. URDIDO INDUSTRIAL	76
	4.2. CANILLADO	79
	4.2.1. CANILLADO ARTESANAL	79
	4.2.2. CANILLADO INDUSTRIAL	79
	4.3. TEJIDO	81
	4.3.1. PARTES PRINCIPALES DEL TELAR	82
	4.3.2. CARACTERISTICAS DE LOS HILOS	83
	4.3.2.1. LIGAMENTO	84
	4.3.2.2. CLASIFICACION DE LOS LIGAMENTOS SIM	PLES-85
	4.3.2.2.1. TAFETÁN	85
	4.3.2.2.2. SARGA	86

	4.3.2.2.3. SATIN O RASO	86
	4.3.3. ORILLOS	87
	4.3.4. ANCHO DEL TEJIDO	87
	<u>CAPITULO V</u>	
5.	PARTE EXPERIMENTAL	89
	5.1. DESCRUDE	91
	5.1.1. PROCESO PARA ELABORAR LA CURVA DE DESCRUDE	97
	5.1.1.1. CURVA OPTIMA DE DESCRUDE	97
	5.2 . BLANQUEO QUÍMICO	98
	5.2.1. PROCESO PARA ELABORAR LA CURVA DE DESCRUI	ЭЕ Ү
	BLANQUEO QUÍMICO	-104
	5.2.2. CURVA OPTIMA DE DESCRUDE Y BLANQUEO	-104
	5.3 TINTURADO	-105
	5.3.1. TINTURA DE CABUYA SIN DESCRUDAR	-105
	5.3.2. TINTURA DE CABUYA DESCRUDADA	106
	5.3.3. PROCESO DE TINTURA DE CABUYA DESCRUDADA Y	
	BLANQUEADA	-110
	5.3.4. PROCESO PARA ELABORAR LA CURVA DE TINTURA	-114
	5.3.4.1. CURVA DE TINTURA	-115
	5.4. SUAVIZADO	-115
	5.4.1. PROCESO PARA ELABORAR LA CURVA DE SUAVIZAD	O
		-119
	5.4.1.1. CURVA OPTIMA DE SUAVIZADO	-119

CAPITULO VI

6.	APLICACION DE LA FIBRA DE CABUYA EN LA ELABORACION	I Y
	DIVERSIFICACION DE PRODUCTOS ARTESANALES	120
	6.1. ELABORACION DE PRODUCTOS ARTESANALES	-120
	<u>CAPITULO VII</u>	
7.	CALCULOS DE PRODUCCION Y ANALISIS DE COSTO DE 1	LOS
	PRODUCTOS MEDIANTE EL PROCESO ARTESANAL	123
	CAPITULO VIII	
8 C	CONCLUSIONES	133
	<u>CAPITULO IX</u>	
9 R	RECOMENDACIONES	137
	CAPITULO X	
10	BIBLIOGRAFIA	138
	CAPITULO XI	
11	ANEXOS	142

INDICE DE FIGURAS

	Pag. #
Figura N°1 PLANTA FURCRAEA ANDINA	6
Figura N°2 MORFOLOGÍA DE LA PLANTA	10
Figura N°3 MAQUINA DESFIBRADORA	21
Figura N°4 SECADO EN ESTRADO DE TRIANGULO	30
Figura N°5 SECADO EN ESTRADO PLANO	31
Figura N°6 ENCERADO ARTESANAL	54
Figura N°7 ESCARMINADO	56
Figura N°8 MAQUINA DE HILATURA ARTESANAL	59
Figura N°9 FABRICA DE HILATURA INDUSTRIAL	61
Figura N°10 ACEITADO	62
Figura N°11 SACUDIDO	63
Figura N°12 MAQUINA CARDADORA I	64
Figura N°13 MAQUINA CARDADORA II	65
Figura N°14 MAQUINA ACORDONADORA	66
Figura N°15 MAQUINA DE HILATURA INDUSTRIAL	67
Figura N°16 MAQUINA RETORCEDORA	69
Figura N°17 MAQUINA TUNDIDORA	70
Figura N°18 MAQUINA ENCONADORA	71
Figura N°19 MAQUINA OVILLADORA	72
Figura N°20 EMPACADO	73

Figura N°21.- URDIDO ARTESANAL-----76

Figura N°22 URDIDO INDUSTRIAL	78
Figura N°23 CANILLADO ARTESANAL	-79
Figura N°24 CANILLADO INDUSTRIAL	80
Figura N°25 TELAR ARTESANAL	81
Figura N°26 PARTES DEL TELAR	83
Figura N°27 PRODUCTOS DE CABUYA	142

UTN – FICA – EITEX

CABUYA UNA VISION DEL FUTURO TEXTIL