UNIVERSIDAD TÉCNICA DEL NORTE

Facultad de Ingeniería en Ciencias Aplicadas Carrera de Ingeniería en Sistemas Computacionales

EVALUACIÓN DE SEGURIDAD DE LA INFORMACIÓN APLICADO AL SISTEMA DE EVALUACIÓN DE DOCENTES DE LA UNIVERSIDAD TÉCNICA DEL NORTE BASADO EN LA ISO 27002:2017 CON LA METODOLOGÍA MAGERIT V3

Trabajo de grado presentado ante la Universidad Técnica del Norte previo a la obtención del título de Ingeniera en Sistemas Computacionales

Autora:

Verónica Lizeth Guamán Guamán

Directora:

MSc. Daisy Elizabeth Imbaquingo Esparza

Ibarra - Ecuador

2019

UNIVERSIDAD TÉCNICA DEL NORTE

BIBLIOTECA UNIVERSITARIA

AUTORIZACIÓN DE USO Y PUBLICACIÓN A FAVOR DE LA UNIVERSIDAD TÉCNICA DEL NORTE

1. IDENTIFICACIÓN DE LA OBRA

En cumplimiento del Art. 144 de la Ley de Educación Superior, hago la entrega del presente trabajo a la Universidad Técnica del Norte para que sea publicado en el Repositorio Digital Institucional, para lo cual pongo a disposición la siguiente información:

	DATOS DE CONTACTO
CÉDULA DE IDENTIDAD:	100355729-3
APELLIDOS Y NOMBRES:	GUAMÁN GUAMÁN VERÓNICA LIZETH
DIRECCIÓN:	CARANQUI
EMAIL:	veronicalizeth123@gmail.com
TELÉFONO MÓVIL:	0939380652

	DATOS DE LA OBRA
- (EVALUACIÓN DE SEGURIDAD DE LA INFORMACIÓN APLICADO AL SISTEMA DE EVALUACIÓN DE DOCENTES DE LA UNIVERSIDAD TÉCNICA DEL NORTE BASADO EN LA ISO 27002:2017 CON LA METODOLOGÍA MAGERIT V3
AUTOR (ES):	GUAMÁN GUAMÁN VERÓNICA LIZETH
FECHA:	2019-07-08
PROGRAMA:	PREGRADO
, _	INGENIERA EN SISTEMAS COMPUTACIONALES
OPTA:	
ASESOR / DIRECTOR:	MSC. DAISY IMBAQUINGO

2. CONSTANCIAS

La autora manifiesta que la obra objeto de la presente autorización es original y la desarrollo sin violar los derechos de autor de terceros, por lo tanto, la obra es original y que es la titular de los derechos patrimoniales, por lo que asume la responsabilidad sobre el contenido de esta y saldrá en defensa de la Universidad en caso de reclamación por parte de terceros.

Ibarra, a los 10 días del mes de julio de 2019

EL AUTOR:

Verónica Lizeth Guamán Guamán

Cédula: 100355729-3

UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERIA EN CIENCIAS APLICADAS

Ibarra, 10 de julio de 2019

CERTIFICACIÓN DEL DIRECTOR

Por medio del presente, yo MSc. Daisy Imbaquingo, certifico que la Srta. Verónica Lizeth Guamán Guamán, portador de la cédula de identidad Nro. 100355729-3. Ha trabajado en el desarrollo del proyecto de grado "EVALUACIÓN DE SEGURIDAD DE LA INFORMACIÓN APLICADO AL SISTEMA DE EVALUACIÓN DE DOCENTES DE LA UNIVERSIDAD TÉCNICA DEL NORTE BASADO EN LA ISO 27002:2017 CON LA METODOLOGÍA MAGERIT V3", previo a la obtención del título de Ingeniera en Sistemas Computacionales, lo cual ha realizado en su totalidad con responsabilidad.

Es todo cuanto puedo certificar en honor a la verdad.

Atentamente,

Msc. Dalsy Impaquingo

DIRECTORA DE TRABAJO DE GRADO

UNIVERSIDAD TECNICA DEL NORTE

Universidad Acreditada resolución 002-CONEA-2010-129-DC Resolución No. 001-073-CEAACES-2013-13

DIRECCION DE DESARROLLO TECNOLOGICO E INFORMATICO

DIRECTOR DE LA DIRECCIÓN DE DESARROLLO TECNOLÓGICO E INFORMÁTICO

CERTIFICA

QUE: La señorita VERÓNICA LIZETH GUAMÁN GUAMÁN con cédula identidad 1003557293 estudiante de la Facultad de Ingeniería en Ciencias Aplicadas – de la Carrera de Ingeniería en Sistemas Computacionales, ha desarrollado con los datos entregados de la Dirección de Desarrollo Tecnológico e Informático, el Proyecto de Tesis "EVALUACIÓN DE SEGURIDAD DE LA INFORMACIÓN APLICADO AL SISTEMA DE EVALUACIÓN DE DOCENTES DE LA UNIVERSIDAD TÉCNICA DEL NORTE BASADO EN LA ISO 27002:2017 CON LA METODOLOGÍA MAGERIT V3".

QUE: El informe del proyecto fue entregado a la Dirección de Desarrollo Tecnológico e Informático el 2 de julio del 2019.

Es todo cuanto puedo certificar, facultando a la interesada hacer uso de este certificado como estime conveniente, excepto para trámites judiciales.

Ibarra, 8 de julio del 2019

Atentamente
CIENCIA Y TECNICA AL SERVICIO DEL PUEBLO

Ing. Juan Carlos García DIREGTOR

> Av. 17 de Julio 5 – 21 y José María Córdova Ciudadela Universitaria Barrio El Olivo Teléfono: (06) 2997800 ext. 7040 Casilla 199 www.utn.edu.ec Ibarra - Ecuador

Dedicatoria

"Es importante celebrar el éxito, pero es más importante aprender bien de los fracasos."

Bill Gates

Dedico este proyecto de tesis a mis padres, quienes a lo largo de mi vida han velado por mi bienestar y educación siendo mi apoyo en todo momento. Es por ellos que soy lo que soy ahora. Los amo con mi vida.

A mis hermanos, por sus palabras, el apoyo incondicional y compañía que me han ayudado y llevado hasta donde estoy ahora.

También dedico este trabajo a quienes con su conocimiento han colaborado en la ejecución de este trabajo.

Verónica Lizeth

Agradecimientos

A Dios por haberme guiado a lo largo de la carrera, por ser mi fortaleza en los momentos de

debilidad y brindarme una vida llena de aprendizajes.

A la Universidad Técnica del Norte y a mis profesores que cada día formaron en mí una

excelente profesional y ser humano.

A mis padres por apoyarme en todo momento, por los valores que me han inculcado y por

darme la oportunidad de tener una excelente educación en el transcurso de mi vida.

A mi amiga Cinthia, quien ha estado a mi lado desde el inicio de la carrera, gracias por tu

apoyo, por tus esfuerzos por mantener siempre viva la amistad.

A Patricio, por la paciencia, la comprensión y el apoyo constante en mi vida.

Gracias a la vida por este nuevo triunfo, gracias a todas las personas que me apoyaron y

creyeron en la realización de esta tesis.

Verónica Lizeth.

VI

TABLA DE CONTENIDOS

AUTORIZACIÓ	N DE USO Y PUBLICACIÓN A FAVOR DE LA UTN	I
CERTIFICACIÓ	ON DEL DIRECTOR	III
CERTIFICACIO	N DEL DDTI - UTNiError! Marcador r	no definido.
Dedicatoria.		V
Agradecimie	ntos	VI
Resumen		XV
Abstract		XVI
INTRODUC	CIÓN	XVII
Antecedente	S	XVII
Justificación	e Importancia	XVIII
Impacto	Tecnológico	XVIII
Impacto	Social	XVIII
Prospectiva		XIX
Objetivos		XIX
Objetivo	General	XIX
Objetivo	os Específicos	XIX
Alcance		XIX
CAPÌTULO '	1. Marco Teórico	1
1.1 Conce	eptos de Auditoría, tipos de auditoria	1
1.1.1	Auditoria	1
1.1.2	Tipos de Auditoría	1
1.1.3	Clasificación de Auditoria	2
1.2 Introd	ucción a la Seguridad Informática o seguridad de la información	3
1.2.1	¿Qué es Seguridad Informática?	3
1.2.2	¿Qué es Seguridad de la Información?	3

	1.2.3	Requisitos de seguridad de la información	4
	1.2.4	¿Dónde interviene la gestión de seguridad de la información?	5
	1.2.5	Pilares de la Seguridad Informática	5
1.3	Conce	ptos de Vulnerabilidad, Amenaza, Riesgo	7
	1.3.1	Vulnerabilidad	8
	1.3.2	Amenaza	8
	1.3.3	Riesgo	8
1.4	Clasifi	cación de las amenazas informáticas	9
	1.4.1	Tipos de amenazas informáticas	9
	1.4.2	Ataques informáticos	10
1.5	Estáno	dares ISO 27000	11
	1.5.1	¿Qué son los Estándares ISO 27000?	11
	1.5.2	Estándares que conforman la Familia de la ISO 27000	11
1.6	Estáno	dares ISO/IEC 270001 e ISO/IEC 27002	13
	1.6.1	Estándar ISO/IEC 27001	13
	1.6.2	Norma ISO 27002	14
	1.6.3	Antecedentes y Contexto del Estándar ISO/IEC 27002:2017	15
	1.6.4	Ciclo de vida de la Norma ISO 27002	15
	1.6.5	Estructura de la Norma ISO 27002	16
1.7	Metod	ologías para el Análisis de Riesgos	18
	1.7.1	¿Cuáles son las metodologías para el Análisis de Riesgos?	18
1.8	Selec	ción de metodología para análisis de riesgos	19
1.9	Metod	ología de Análisis y Gestión de Riesgos de Información (Magerit)	28
	1.9.1	Introducción	28
	1.9.2	Objetivos de Magerit	30
	1.9.3	Características de Magerit	30
	1.9.4	Estructura MAGERIT	31

CAI	PITULO 2	. Desarrollo	33
2	Marco Co	ontextual	33
2.1	Descri	pción del Sistema Informático Integrado Universitario (SIIU)	33
	2.1.1	Sistema Académico - Universidad Técnica del Norte	34
	2.1.2	Sistema de Evaluación Docentes – Universidad Técnica del Norte	34
2.2	Estruc	tura Organizacional	36
	2.2.1	Organigrama Estructural UTN	36
	2.2.2	Organigrama DDTI - UTN	37
	2.2.3	Misión	37
	2.2.4	Visión	38
2.3	Roles	y Responsabilidades, funciones del personal de DDTI	38
2.4	Técnic	cas de Investigación	39
	2.4.1	Población y Muestra	39
2.5	Fuente	es y técnicas para la recolección de información	41
	2.5.1	Tipos de Investigación	41
	2.5.2	Fuentes y técnicas de recolección de información	41
	2.5.3	Análisis de encuestas	42
2.6	Proced	dimiento Informático Lógico para el Análisis de Riesgos (PILAR)	60
	2.6.1	Determinación de activos	64
	2.6.2	Dependencia entre activos	66
	2.6.3	Valoración de activos	68
	2.6.4	Identificación de amenazas	70
	2.6.5	Valoración de amenazas	71
	2.6.6	Estimación de impacto	73
	2.6.7	Impacto acumulado	73
	2.6.8	Riesgo acumulado	75
	2.6.9	Impacto repercutido	75

	2.6.10	Situación actual del riesgo acumulado	78
CAF	PÍTULO 3	3. Resultados	81
3.1	Inform	ne de Resultados	81
3.2	Evalua	ación del cumplimiento	82
3.3	Inform	ne de No Conformidades ISO 27002:2017	95
3.4	Identif	icación de Vulnerabilidades	105
3.5	Inform	ne de AuditorÍa	113
COI	NCLUSIO	ONES	115
REC	COMEND	ACIONES	116
BIB	LIOGRA	FÍA	117
ANE	Exos		121
Ane	xo 1: End	cuesta aplicada a Docentes y Estudiantes	121
Ane	xo 2: Pre	guntas dirigidas al personal encargado del manejo del sistema	125
Ane	xo 3: End	cuesta de Valoración de Dimensiones	126
GLO	OSARIO.		127

INDICE DE FIGURAS

Figura 1: Fases de la Metodología Magerit	. XX
Figura 2: Seguridad de la información en una empresa.	5
Figura 3: Pilares de la Seguridad Informática	7
Figura 4: Relación de Vulnerabilidad, Amenazas y Sistemas de Información	8
Figura 5: Riesgos globales	10
Figura 6: Serie de Estándares de la familia ISO 27000.	11
Figura 7: Ciclo de Deming PDCA Sistema de Gestión ISO/IEC 27001	14
Figura 8: Estructura Norma ISO/IEC 27002:2017	17
Figura 9: Marco de trabajo para la gestión de riesgos	29
Figura 10: Proceso de evaluación integral	34
Figura 11: Organigrama Estructural UTN (2013)	36
Figura 12: Organigrama Dirección Informática UTN	37
Figura 13: Procesos para aplicar MAGERIT	61
Figura 14: Pantalla principal PILAR- MAGERIT	63
Figura 15: Información del proyecto.	63
Figura 16: Activos del sistema de evaluación docente.	66
Figura 17: Valoración de activos del sistema de evaluación docente	68
Figura 18: Valoración del dominio de seguridad UTN	69
Figura 19: Gráfica de valor/activos	69
Figura 20: Amenazas del sistema de evaluación docente	70
Figura 21: Amenazas del sistema de evaluación docente	72
Figura 22: Tabla de amenazas y porcentaje de probabilidad de ocurrencia	72
Figura 23: Impacto acumulado del sistema de evaluación docente	74
Figura 24: Situación actual del impacto acumulado del sistema de evaluación docentes	74
Figura 25: Riesgo acumulado del sistema de evaluación docente	75

Figura 26: Tabla de Nivel de Riesgo	77
Figura 27: Situación actual del riesgo acumulado del sistema de evaluación docente	78
Figura 28: Riesgo Acumulado/dimensión	79
Figura 29: Cumplimiento de controles ISO 27002:2017	95
Figura 30: Observaciones y recomendaciones de los controles ISO 27002:2017	96
Figura 31: Utilización de la herramienta SiteVerify	106
Figura 32 Escaneo con Nmap	107
Figura 33: Puertos habilitados Nmap	108
Figura 34: Utilizacion de comando –Sv para identificar servicios y versiones	109
Figura 35: Reporte de Vulnerabilidad de OpenSSH en CVE Details	110
Figura 36: Reporte de Vulnerabilidad puerto 80 y 9071 en Exploit Database	111
Figura 37: SqlMap en Kali Linux	112

ÍNDICE DE TABLAS

Tabla 1: Normativa ISO 27000	12
Tabla 2: Comparación Metodologías MAGERIT y CRAMM	21
Tabla 3: Roles y responsabilidades del personal de DDTI-UTN	38
Tabla 4: Usuarios Universidad Técnica del Norte	40
Tabla 5: Primera pregunta encuesta	42
Tabla 6: Segunda pregunta encuesta	43
Tabla 7: Tercera pregunta encuesta	44
Tabla 8: Cuarta pregunta encuesta	45
Tabla 9: Quinta pregunta encuesta	46
Tabla 10: Sexta pregunta encuesta	47
Tabla 11: Séptima pregunta encuesta	48
Tabla 12: Octava pregunta encuesta	49
Tabla 13: Novena pregunta encuesta	50
Tabla 14: Décima pregunta encuesta	51
Tabla 15: Onceava pregunta encuesta	52
Tabla 16: Doceava pregunta encuesta	53
Tabla 17: Treceava pregunta encuesta	54
Tabla 18: Catorceava pregunta encuesta	55
Tabla 19:Quinceava pregunta encuesta	56
Tabla 20: Dieciseisava pregunta encuesta	57
Tabla 21: Diecisieteava pregunta encuesta	58
Tabla 22: Dimensiones de Valoración	59
Tabla 23: Escala de Valoración	60
Tabla 24: Clasificación de Activos	64
Tabla 25: Probabilidad de ocurrencia	71

Tabla 26: Nivel de riesgo	77
Tabla 27: Evaluación de cumplimiento de controles ISO 27002:2017	82
Tabla 29: Identificación de puertos	108

Resumen

La evaluación docente es un proceso importante dentro de las universidades ecuatorianas,

permite mejorar las metodologías empleadas en la enseñanza y los posibles fallos en la

educación y de esta manera lograr la acreditación universitaria exigida actualmente por

organismos de control como el Consejo de Educación Superior del Ecuador (CES).

Con el continuo crecimiento de las tecnologías de la información y el uso de sistemas en

todo tipo de empresas, procesos, productos y servicios, el manejo de las mismas se vuelve

incontrolable por los volúmenes de información generados. La Universidad Técnica del Norte

posee una plataforma tecnológica académica con varios módulos que están a disposición de

docentes, estudiantes y personal administrativo. Uno de ellos es el de evaluación docente en

el que intervienen estudiantes, docentes y personal administrativo.

El sistema de evaluación docente se encuentra alojado en una plataforma web y necesita

cumplir con ciertos requerimientos para preservar el activo más importante que son los datos

obtenidos de la evaluación docente por lo que se realizó un estudio de vulnerabilidades para

conocer la situación actual establecer si cumple con las normas de seguridad de la

información mediante la norma ISO 27002:2017.

Se realizó un análisis de riesgos, siguiendo la metodología MAGERIT. Para ello se han

identificado todos los activos que posee la organización y se han valorado. A continuación,

se han analizado las posibles amenazas a las que está expuesta la organización y se ha

obtenido el impacto y riesgo potencial de cada uno de los activos identificados.

Por último, se realizó una lista de comprobación para evaluar el cumplimiento de la norma

de seguridad de la información de la ISO 27002:2017 con la finalidad de conocer el estado

actual y proponer recomendaciones adecuadas del caso mejorar el funcionamiento del

sistema de evaluación docente.

Palabras clave: evaluación docente, vulnerabilidades, ISO, Magerit, EAR/Pilar

ΧV

Abstract

The teacher evaluation is an important process within Ecuadorian universities, it allows

to improve the methodologies employed in teaching profession and possible failures in

education and in this way achieve the university accreditation currently required by organism

of control as the Higher Education Council of Ecuador (CES).

With the continuous growth of information technologies and the use of systems in all

types of companies, products and services, the management of the same becomes

uncontrollable by the volumes of information generated. Técnica del Norte University has

technological platform academic with several modules that are available to teachers, students

and administrative staff. One of them is the teacher evaluation in which are intervene students,

teachers and administrative staff.

The teacher evaluation system is hosted on a web platform and needs to comply with

certain requirements to preserve the most important assets which are the data obtain from the

teaching evaluation so a vulnerability study was carried out to know the current situation to

establish whether it complies with the safety standards of the information by using the ISO

27002:2017.

A risk analysis was carried out, following the methodology MAGERIT. For it, all the

assets that owns the organization were identified and have been valued. Then there have

been analyzed the possible threats to which the organization is exposed and there have been

obtained the impact and potential risk of each of the identified assets.

Finally, a check list was realized to evaluate the fulfillment of the safety standards of

the information of the ISO 27002:2017 with the purpose of knowing the current state and

proposing appropriate recommendations to improve the functioning of the teacher evaluation

system.

Keywords: Teacher evaluation, vulnerabilities, ISO, MAGERIT, EAR/Pilar

XVI

INTRODUCCIÓN

Antecedentes

El Sistema de Evaluación Docente de la Universidad Técnica del Norte, es parte del Sistema académico el cual permite evaluar a docentes por parte de los estudiantes la calidad de la educación mediante varias actividades como: investigación, docencia o gestión académica, esto se realiza con el fin de fortalecer el proceso de enseñanza conforme a la visión que proyecta la Universidad. Por tal razón los datos que se recopilan de las evaluaciones se encuentran expuestos a riesgos y vulnerabilidades físicas y lógicas, por lo que es necesario realizar la investigación y formular alternativas para resolver los posibles riesgos tomando como referencia la norma ISO/IEC 27002:2017 ¹ y la metodología Magerit V3².

Según (Manuel Muñoz, 2015) "Un SGSI³ es para una organización, el diseño, implantación, mantenimiento de un conjunto de procesos para gestionar eficientemente la accesibilidad de la información, buscando asegurar la confidencialidad, integridad y disponibilidad de los activos de información, minimizando a la vez los riesgos de seguridad de la información".

Como todo proceso de gestión, un SGSI debe seguir siendo eficiente durante un largo tiempo, adaptándose a los cambios internos de la organización, así como los externos del entorno. (Manuel Muñoz, 2015)

Se usará la norma ISO/IEC 27002:2017, esta normativa establece directrices y principios generales para iniciar, implementar, mantener y mejorar una gestión de seguridad de la información en una organización. Los objetivos definidos en esta norma proveen directrices generales sobre las metas generadas para una gestión de la seguridad de la información.

¹ ISO/IEC 27002:2017: Tecnología de la Información. Código de prácticas para los controles de seguridad de la información.

² MAGERIT: Metodología de Análisis de Riegos de los Sistemas de Información.

³ SGSI: Sistema de Gestión de Seguridad de la Información

La metodología Magerit mide la vulnerabilidad por la frecuencia histórica cuantitativa de la materialización de la amenaza sobre el activo, cuando es factible (fiabilidad de un componente hardware, número de fallos de software); o bien por la potencialidad cualitativa de dicha materialización, cuya primera aproximación lleva a emplear una escala vista en las amenazas potenciales (consideradas ahora reales, es decir agresiones). No es posible una aplicación racional de medidas de seguridad sin antes analizar los riesgos para, así implantar las medidas proporcionadas a los riesgos, al estado de la tecnología y a los costes (tanto de la ausencia de seguridad como de las salvaguardas). (Jácome León, Pusdá Chulde, & Imbaquingo Esparza, 2017)

Justificación e Importancia

Impacto Tecnológico

Dentro de la Universidad Técnica del Norte al igual que cualquier organización se usan sistemas informáticos, siendo un activo fundamental la información, que necesita protección ante amenazas que afectan diariamente la disponibilidad e integridad de la organización, para evitar riesgos altos, daños operantes y económicos para la organización.

Por esto, se debe establecer procedimientos y controles de seguridad. Los procedimientos establecidos se obtienen del análisis de riesgos empleado para identificar los riesgos presentes y afrontarlos de manera adecuada. De esta forma se reduce las amenazas, disminuye los costos y asegura el cumplimiento de la normativa. Es importante el apoyo de la institución, para que el estudio tenga el efecto deseado.

Impacto Social

Con la propuesta de esta metodología se espera ofrecer una solución para que las instituciones públicas o privadas dispongan de un método que les permita identificar posibles amenazas que afectan a los activos, además de verificar las vulnerabilidades, con la finalidad de determinar el impacto que tendrá en la institución las posibles amenazas encontradas.

Prospectiva

Con este estudio se pretende mantener y verificar la seguridad de la información del sistema de Evaluación Docentes, mediante las características básicas de disponibilidad, integridad y confiabilidad y el cumplimiento de la norma ISO/IEC 27002:2017, a través de la metodología MAGERIT. Se tomó en cuenta éste sistema ya que facilita la gestión y desempeño de los docentes dentro de las aulas, para mejorar el sistema de educación, siendo principales usuarios los estudiantes que cada semestre evalúa a cada uno de ellos.

Objetivos

Objetivo General

 Evaluar la seguridad de la información al sistema de Evaluación de Docentes de la Universidad Técnica del Norte basado en la ISO 27002:2017 con la metodología Magerit V3.

Objetivos Específicos

- Diagnosticar la situación real con respecto al proceso de análisis de riesgos en el Sistema de Evaluación Docente.
- Evaluar las vulnerabilidades encontradas, de acuerdo con los riesgos y su impacto mediante la Metodología Magerit V3.
- Elaborar un documento con los riesgos encontrados, referente al Sistema de Evaluación de Docentes en base al análisis y aplicación de la metodología.

Alcance

El presente proyecto tiene como finalidad evaluar la seguridad de la información del Sistema de Evaluación de Docentes de la Universidad Técnica del Norte, se iniciará con la recopilación de la información la que permitirá evaluar los controles más importantes de la norma ISO 27002:2017, que contribuyan con la elaboración de un análisis de la situación actual del sistema. Además, se toma en cuenta los parámetros descritos en ella, para establecer soluciones adecuadas a las falencias encontradas, cumpliendo con los requerimientos de la Norma ISO 27002:2017, conjuntamente con la aplicación de la metodología Magerit, en todas sus fases, mismas que se representan en la figura 1.

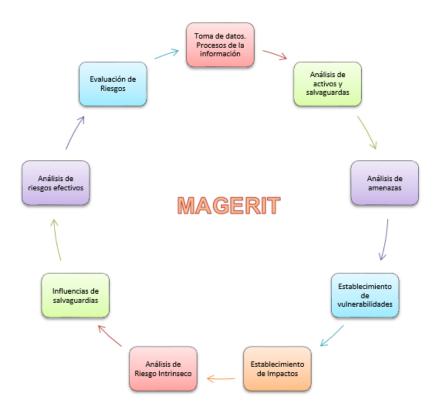


Figura 1: Fases de la Metodología Magerit Fuente: Elaboración Propia

CAPÍTULO 1

Marco Teórico

1.1 CONCEPTOS DE AUDITORÍA, TIPOS DE AUDITORIA

1.1.1 Auditoria

La auditoría se desarrolla basándose en normas, procedimientos y técnicas definidas formalmente por institutos establecidos a nivel nacional e internacional.

Etimológicamente la palabra auditoria proviene del latín audire, que significa 'oir', y tiene su origen en los primeros auditores que ejercían su función juzgando verdad o falsedad. También se dice que viene del verbo en ingles to Audit, que significa 'revisar' o 'intervenir'.

Según la real academia de la lengua española, define auditoria como: "Revisión sistemática de una actividad o de una situación para evaluar el cumplimiento de la sreglas o criterios objetivos a que aquellas deben someterse". (Real Academia de la Lengua Española, 2018)

1.1.2 Tipos de Auditoría

a) Auditoría Fiscal

La auditoría fiscal es realizada por la Administración Tributaria con el fin de denominar las responsabilidades pecuniarias⁴ de los contribuyentes, y a su vez la practicada preprofesionales independientes en orden para dar una opinión sobre la razonabilidad de las cuentas de las entidades públicas por conceptos fiscales. (Miramegias, 2018)

b) Auditoria de Gestión u Operacional

Es el examen crítico, sistemático e imparcial de una identidad de administración, la cual determina la eficacia con que logra los objetivos establecidos en economía, con que se utiliza

⁴ Pecuniarias: denominación de la sanción que consiste en el pago de una multa al Estado como castigo por haber cometido un delito

y obtiene los recursos, con el objetivo de sugerir las recomendaciones, que mejoraran la gestión en el futuro. (Gonzales, 2018)

c) Auditoría Financiera o de Estados Financieros

Esta Auditoria es el examen integral sobre la estructura, las transacciones y el desempeño de una entidad económica para contribuir a la oportuna prevención de riesgos, la productividad en la utilización de los recursos y el acatamiento permanente de los mecanismos de control implantados por la administración. (Curiel, 2006)

d) Auditoria Informática

La auditoría informática se ocupa de la revisión del uso de las TI⁵, en las empresas como factor de ventaja competitiva, cuyo objetivo primordial es emitir una opinión profesional acerca de los estados financieros de una entidad. (Aguirre, 2011)

1.1.3 Clasificación de Auditoria

La filiación del auditor, se clasifican en Auditoría Externa e Interna.

a) Auditoría externa

Se llevan a cabo por partes que tienen un interés en la organización, tal como los clientes o por otras personas en su nombre, está la efectúan profesionales que no dependen de la empresa, ni económicamente ni bajo cualquier otro concepto y a los que se reconoce un juicio imparcial merecedor de la confianza de terceros (Universidad Tecnológica de la Huasteca Hidalquense, 2011).

b) Auditoría interna

Se realizan en nombre de la propia organización, para la revisión por la dirección con otros fines internos, y pueden constituir la base para una auto declaración de conformidad de una

⁵ TI: Tecnología de la información **significado** en inglés, information technology es la aplicación de ordenadores y equipos de telecomunicación para almacenar, recuperar, transmitir y manipular datos, con frecuencia utilizado en el contexto de los negocios u otras empresas

organización; además de ello la desarrollan personas que dependen del negocio y actúan revisando los aspectos que interesan particularmente a la admisión, aun que pueden efectuar revisiones programadas sobre todos los aspectos operativos (Universidad Tecnológica de la Huasteca Hidalguense, 2011).

1.2 INTRODUCCIÓN A LA SEGURIDAD INFORMÁTICA O SEGURIDAD DE LA INFORMACIÓN

Dentro de una organización a diario se genera cantidades enormes de información de diversas fuentes como bases de datos, correos electrónicos documentos en papel, etc. La información cumple un ciclo de vida que tiene un periodo de validez, es decir la información que hoy puede ser critica, con el pasar del tiempo podría dejar de ser importante y necesaria.

1.2.1 ¿Qué es Seguridad Informática?

La seguridad informática se relaciona con procesos, procedimientos y metodologías que ayudan a salvaguardar los datos y la información privada de una organización. Los procesos se van estructurando con el uso de normas, protocolos, estándares y metodologías que servirán para minimizar riesgos en una infraestructura tecnológica.

Según el autor (Gabriel Baca Urbina, 2016) define la seguridad informática como: la disciplina que con base en políticas y normas internas y externas de la empresa, se encarga de proteger la integridad y privacidad de la información que se encuentra almacenada en un sistema informático, contra cualquier tipo de amenazas, minimizando los riesgos tanto físicos como lógicos, a los que está expuesta.

Es decir, en caso de existir una amenaza a la seguridad, se debe buscar la forma de recuperar la información sea que haya sido robada o dañada.

1.2.2 ¿Qué es Seguridad de la Información?

Las organizaciones públicas o privadas, al igual que las personas, dependen de muchas maneras de la tecnología de la información, como un punto esencial para lograr todas sus metas de negocio o para poder desarrollar actividades en su vida cotidiana, todos tienen que

enfrentarse con una amplia gama de amenazas y vulnerabilidades asociadas. (Tarazona, T Cesar H, 2011)

La seguridad de la información debe tener 3 cualidades:

- a) Critica: al momento de operar la información puede correr riesgos.
- b) Valiosa: los datos que se manejan dentro de una organización son confidenciales y no pueden ser divulgados.
- c) Sensible: ya que al sistema solo podrán ingresar personas que estén autorizadas en el manejo.

La Seguridad de la Información tiene como fin la protección de la información y de los sistemas de la información del acceso, uso, divulgación, interrupción o destrucción no autorizada. (Asociación Española para la Calidad, 2012)

1.2.3 Requisitos de seguridad de la información

Es esencial que la organización identifique sus requisitos de seguridad. Según (INEN, 2017) existen tres fuentes principales de requisitos de seguridad:

- a) La evaluación de los riesgos de la organización: teniendo en cuenta los objetivos y estrategia de negocio globales de la organización. A través de una evaluación de los riesgos se identifican las amenazas de los activos, se evalúa la vulnerabilidad y la probabilidad de su ocurrencia y se estima su impacto potencial (INEN, 2017).
- b) El conjunto de requisitos legales, estatutarios, reglamentarios y contractuales que debería satisfacer a la organización, sus socios comerciales, contratistas y proveedores de servicios, así como el entorno sociocultural (INEN, 2017).
- c) El conjunto de principios, objetivos y requisitos de negocio que la organización ha desarrollado para el manejo, procesamiento, almacenamiento, comunicación y archivo de la información que da soporte a sus operaciones (INEN, 2017).

Los recursos utilizados en la implementación de los controles han de estar equilibrados, con el nivel de daños probables que resultarían de problemas de seguridad, en ausencia de dichos controles. Los resultados de una evaluación de riesgos ayudarán a guiar y determinar las acciones de gestión más adecuadas y las prioridades para la gestión de riesgos de seguridad de la información, así como para la implementación de los controles seleccionados para protegerse contra estos riesgos. (INEN, 2017)

1.2.4 ¿Dónde interviene la gestión de seguridad de la información en una entidad?

La seguridad de la información es parte de la gestión global del riesgo de una entidad, los aspectos que se superponen con la ciberseguridad, así mismo con la gestión de la continuidad del negocio y la tecnología de la información.

En la figura 2 se puede apreciar como la gestión del riesgo engloba varios aspectos teniendo en cuenta el riesgo que puede afectar al rendimiento de una empresa.

Figura 2: Seguridad de la información en una empresa.

Fuente: ISO-27000 (International Organization for Standarization, 2017).

La seguridad informática trata de salvaguardar la información que se obtiene mediante los datos de la organización, asignando una persona acreditada para el manejo de la información, el robo de esta información podría causar daños y perjuicios a la organización ya que podría ser mal usada en manos de personas no autorizadas

1.2.5 Pilares de la Seguridad Informática

Según (Romo, Daniel; Valarezo, 2012) la seguridad de la información está apoyada en 3 pilares fundamentales de la seguridad:

a) Confidencialidad

Certifica que solo los usuarios con accesos autorizados puedan acceder a la información. La seguridad que se implementará debe asegurar que solo las personas que tengan acceso a la información fueron autorizadas. Una medida que mitiga este tipo de riesgo es la firma de contratos de confidencialidad o inclusión de este tipo de cláusulas en el contrato de servicio. (Ministerio de Energia, 2017)

b) Integridad

Hace referencia a que la información sea correcta y no se modifique, ni haya errores. La información puede ser corrompida y se puede basar decisiones en torno a la información, lo cual da la alteración malintencionada en los ficheros del sistema informático mediante la explotación de una vulnerabilidad (Hidalguense, 2011).

c) Disponibilidad

Según (Chilán & Williams, 2017) la disponibilidad es cuando se asegura que los usuarios autorizados tienen el acceso debido a la información siendo la característica, cualidad o condición de la información de encontrarse a disposición de quienes deben acceder a ella, ya sean personas, procesos o aplicaciones.

La información es el núcleo dentro de una organización, se indica la relación que existe dentro de la misma, por ello es necesario mantener un nivel aceptable de protección para estos componentes y minimizar los riesgos a los que puede estar expuesta cualquier tipo de entidad.

Es decir, la seguridad de la información tiene como misión principal cuidar del buen funcionamiento de los datos y de la transmisión de los mismos en un entorno seguro utilizando protocolos de seguridad y técnicas para evitar riesgos como se aprecia en la figura 3.

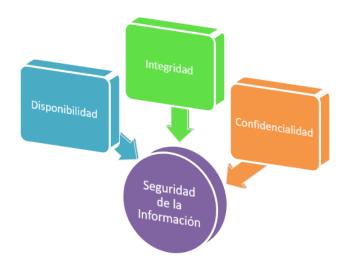


Figura 3: Pilares de la Seguridad Informática

Fuente: Elaboración Propia

Aunque son los principales, existen otros pilares que se detallan a continuación:

d) Autenticidad

Propiedad o característica la cual consiste en que una entidad es quien dice ser, o bien que garantiza la fuente de la que proceden los datos. Contra la autenticidad de la información podemos tener manipulación del origen o el contenido de los datos. Contra la autenticidad de los usuarios de los servicios de acceso, podemos tener suplantación de identidad.

e) Trazabilidad

Aseguramiento de que en todo momento se podrá determinar quién hizo qué y en qué momento. La trazabilidad es esencial para analizar los incidentes, perseguir a los atacantes y aprender de la experiencia. La trazabilidad se materializa en la integridad de los registros de actividad.

Todas estas características pueden ser requeridas o no dependiendo de cada caso.

1.3 Conceptos de Vulnerabilidad, Amenaza, Riesgo

Para poder comprender la seguridad informática es necesario conocer algunos conceptos que son básicos para poder comprender el presente documento.

1.3.1 Vulnerabilidad

Las vulnerabilidades son debilidades que se pueden presentar en los procesos de la información. Los atacantes aprovechan las falencias de los sistemas de información para ingresar de forma no autorizada y robar la información de una organización.

1.3.2 Amenaza

Según el (Instituto Nacional de Ciberseguridad, 2017) Expone que una amenaza es toda acción que aprovecha una vulnerabilidad para atentar contra la seguridad de un sistema de información. Es decir, las amenazas podrían ocasionar pérdidas dentro de la organización, las amenazas pueden ser ataques, fraudes, de efecto natural (incendios, inundaciones), mal manejo de contraseñas, etc.

1.3.3 Riesgo

Según (Voutssas M., 2010) define el riesgo como la probabilidad de que un evento nocivo ocurra combinando con su impacto en la organización.

En la Figura 4 se puede apreciar la relación de las amenazas, vulnerabilidades y los sistemas de información los cuales se encuentran expuestos y causan riesgos a la organización.

Figura 4: Relación de Vulnerabilidad, Amenazas y Sistemas de Información

Fuente: Elaboración Propia

1.4 Clasificación de las amenazas informáticas

De forma general se puede clasificar las amenazas informáticas en dos grupos principales:

- Amenazas Físicas
- Amenazas Lógicas

Estas amenazas, tanto físicas como lógicas son realizadas básicamente por:

- Personas
- Programas o aplicaciones especificas
- Catástrofes naturales

1.4.1 Tipos de amenazas informáticas.

Hay muchas amenazas informáticas en el mundo, como lo describe. (Tarazona, 2007)

Algunas de estas amenazas son:

- Virus informáticos
- Uso no autorizado de los sistemas informáticos.
- Robo de información
- Suplantación de identidad
- Divulgación de la información
- Desastres naturales

A continuación, se detallan algunas de las principales amenazas:

- **Spyware:** Código malicioso cuyo principal objetivo es recoger información sobre las actividades en cualquier ordenador.
- Troyanos, virus y gusanos: Son programas maliciosos, que se posicionan en los ordenadores con el propósito de permitir el acceso no autorizado a un atacante.
- Phishing: Es un ataque del tipo de ingeniería social, en la cual cumple con el objetivo de obtener de manera fraudulenta datos confidenciales de un usuario, especialmente financieros.
- **Spam:** Estos llegan a través de correo electrónico, el cuales difundir grandes cantidades de mensajes comerciales o propagandísticos.
- **Botnets**: Es una amenaza que controla los ordenadores de forma remota, quedando incorporadas en redes distribuidas de ordenadores llamadas robot.

 Trashing: Este nombre hace referencia al manejo de la basura, estos se manejan también por ingeniería social, el objetivo de ello es recopilar información desechada para robar su identidad.

1.4.2 Ataques informáticos

Los ataques informáticos aprovechan las debilidades en el software, en el hardware, y en el personal humano que son parte de un ambiente informático. Para obtener un beneficio, por lo general de índole económico, afectando a la seguridad del ordenador, que a su vez repercute a los activos de la organización.

Para evadir estos ataques es necesario emplear varios procedimientos, es decir las mejores prácticas que facilitan la lucha contra las actividades delictivas y que reduzcan notablemente el campo de acción de las mismas. (Mieres, 2011)

En la siguiente figura se puede apreciar según el informe de riesgos globales del año 2019 los riesgos globales siendo los principales los riesgos ambientales, aunque estos se desarrollaran a largo plazo (Cecilia Reyes, 2017)

En la figura 5 se puede apreciar los riesgos y el incremento en el 2019.

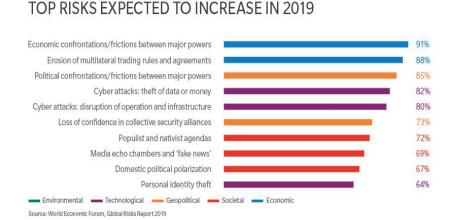


Figura 5: Riesgos globales

Fuente: https://www.marsh.com/ar/es/insights/research/informe-riesgos-globales-2019.html

1.5 Estándares ISO 27000

1.5.1 ¿Qué son los Estándares ISO 27000?

Las normas ISO 27000 son un conjunto de estándares desarrollados en fase de desarrollo por ISO (International Organization for Standardization), e IEC (International Electrotechnical Commission). Estas proporcionan un marco de gestión de seguridad de la información utilizando Organización pública, privada, grande y pequeño. (International Organization for Standarization, 2017)

1.5.2 Estándares que conforman la Familia de la ISO 27000

La familia ISO 27000 tiene una serie de estándares certificables de seguridad como se muestra en la Figura 6.

La serie contiene las mejores prácticas recomendadas en seguridad de la información para desarrollar, implementar y mantener especificaciones para los Sistemas de Gestión de la Información (SGSI).

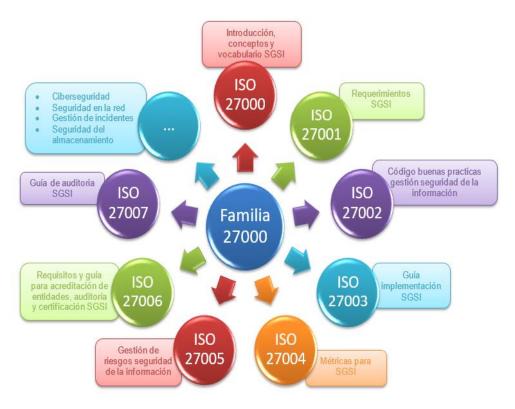


Figura 6: Serie de Estándares de la familia ISO 27000.

Fuente: Elaboración Propia

La Organización Internacional de Estandarización (ISO) contiene una serie de normas que conforman la familia de ISO 27000, la cual contiene una serie de definiciones y términos y que pueden ser usados dependiendo el caso, para mayor explicación se ha resumido cada estándar como se detalla en la tabla 1.

Tabla 1: Normativa ISO 27000

NORMA	DESCRIPCION
ISO/IEC	
ISO 27000:	Es una norma internacional que proporciona una visión de los sistemas de gestión
	de seguridad de la información y los términos de uso en la familia de normas de
	SGSI. Esta norma se puede aplicar a todo tipo y tamaño de organización.
ISO 27001:	Detalla los requisitos para establecer, implementar, monitorear, operar, revisar y
	mejorar los sistemas de gestión de seguridad, determinando los riesgos globales
	de negocio, de igual manera específica los requisitos para la aplicación de
	controles de seguridad de la información.
ISO 27002:	Provee una lista de objetivos de control de las mejores prácticas para ser utilizadas
	como una guía de implementación en la selección y la aplicación de control para la
	seguridad de la información.
ISO 27003	Proporciona una guía práctica de implementación y proporciona información para
	implementar, establecer, operar, revisar y mejorar un SGSI basándose en la
	ISO/IEC 27001
ISO 27004	Especifica las métricas y las técnicas de medida aplicables para determinar la
	eficacia de un SGSI y de los controles relacionados. Estas métricas se usan
	fundamentalmente para la medición de los componentes de la fase "Do"
	(Implementar y Utilizar) del ciclo PDCA. (International Organization for
	Standarization, 2017)
ISO 27005	Establece las directrices para la gestión del riesgo en la seguridad de la
	información. Apoya los conceptos generales especificados en la norma ISO/IEC
	27001 y está diseñada para ayudar a la aplicación satisfactoria de la seguridad de
	la información basada en un enfoque de gestión de riesgos. (International
	Organization for Standarization, 2017)

ISO 27006:	Especifica requisitos y proporciona una guía para los organismos que realizan la	
	auditoria y la certificación del SGSI según IS/IEC 27001. Se basa en apoyar la	
	acreditación de organismos de certificación.	
ISO 27007:	Es una guía sobre la realización de auditorías de SGSI, así como la orientación	
	sobre la competencia de los auditores de sistemas de gestión de seguridad de la	
	información.	

Fuente: Propia

1.6 Estándares ISO/IEC 270001 e ISO/IEC 27002

1.6.1 Estándar ISO/IEC 27001

Es la norma internacional que permite la seguridad, la confidencialidad e integridad de los datos, así como de los sistemas que la procesan, además proporciona la aplicación de los controles necesarios para mitigarlos o eliminarlos. (International Organization for Standarization, 2017)

Esta norma puede ser aplicada por cualquier tipo de organización, con o sin fines de lucro, está redactada por profesionales en el tema y proporciona varios controles para implementar la gestión de la seguridad de la información en una organización. Esta norma es usada a nivel mundial para salvaguardar la información de cualquier entidad ya sea esta pública o privada.

Con la implementación de esta norma de puede obtener una ventaja comercial con menores costos y una mejor organización en las empresas. (International Organization for Standarization, 2017)

Este estándar emplea un ciclo continuo PDCA (Plan-Do-Check-Act) para obtener mejoras en 4 pasos como se puede apreciar en la figura 7 la cual se basa en los sistemas de seguridad de la información.

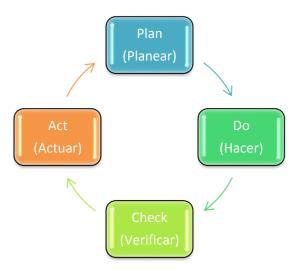


Figura 7: Ciclo de Deming PDCA Sistema de Gestión ISO/IEC 27001

Fuente: Elaboración Propia

1.6.2 Norma ISO 27002

Este es un estándar para la seguridad de la información creada por la organización internacional de normalización y comisión electrotecnia internacional. La versión más reciente de la norma ISO 27002:2017, brinda diferentes recomendaciones de las mejores prácticas en la gestión de la seguridad de la información a todos los interesados y responsables para iniciar, implementar o mantener sistemas de gestión de la seguridad de la información.

Esta norma internacional establece directrices para la seguridad de la información en las organizaciones y las prácticas de gestión de seguridad de la información incluyendo la selección, la implantación, y la gestión de los controles. Además, considera el entorno de los riesgos de seguridad de la información de la organización. (INEN, 2017)

El valor de esta información se propaga por palabras escritas, números e imágenes, por ejemplo: el conocimiento, conceptos son formas intangibles de información. La información y sus procesos relacionados, los sistemas, las redes y el personal implicado en la operación y manejo de la información y protección. Estos son los activos que resultan valiosos para el negocio de las organizaciones y en consecuencia requieren protección contra diversos peligros.

La seguridad de la información se consigue mediante la implantación de un conjunto adecuado de controles, lo que incluye políticas, procesos, estructuras organizativas y funciones de hardware y software. Estos controles se deben establecer, implementar, supervisar, revisar y mejorar cuando sea necesario para asegurar que se cumplan los objetivos específicos de seguridad y de negocio de la organización.

1.6.3 Antecedentes y Contexto del Estándar ISO/IEC 27002:2017

Esta norma está diseñada para que las organizaciones la usen como referencia para seleccionar controles dentro del proceso de implementación de un Sistema de Gestión de Seguridad de la Información (SGSI) basado en ISO/IEC 27001. También sirve como documento guía para organizaciones que necesiten implementar controles de seguridad de la información comúnmente aceptados. (INEN, 2017)

Las organizaciones de todo tipo y tamaño (incluyendo sector público y privado, comercial y sin ánimo de lucro) recogen, procesan, almacenan y transmiten información de muchas formas que incluyen medios electrónicos, físicos y verbales (por ejemplo, conversaciones y presentaciones). (INEN, 2017)

Los activos están expuestos ante amenazas deliberadas como accidentales, mientras que los procesos relacionados, los sistemas, las redes y las personas tienen vulnerabilidades inherentes. Los cambios en los procesos y sistemas de negocio u otros cambios externos (por ejemplo, nuevas leyes y reglamentos) pueden crear nuevos riesgos de seguridad de la información. Por lo tanto, debido a las múltiples amenazas que existen en la actualidad, podrían aprovecharse de las vulnerabilidades para dañar a la organización y los riesgos de seguridad de la información siempre están presentes. Un ejemplo de seguridad de la información eficaz reduce estos riesgos protegiendo a la organización frente amenazas y vulnerabilidades, en consecuencia reduce el impacto en sus activos. (INEN, 2017)

1.6.4 Ciclo de vida de la Norma ISO 27002

La información tiene un ciclo de vida natural, desde la creación y el origen de esta, pasando por el almacenamiento, tratamiento, utilización y transmisión hasta su deterioro. El valor y los riesgos para los activos puede variar durante su tiempo de vida, pero la seguridad de la información continúa siendo importante hasta cierto punto en todas las etapas.

Los sistemas de información tienen ciclos de vida en los cuales son creados, especificados, diseñados, desarrollados, probados, implantados, utilizados y finalmente retirados del servicio y eliminados. Los nuevos desarrollos del sistema y los cambios en los sistemas actuales presentan oportunidades para que las organizaciones actualicen y mejoren los controles de seguridad, teniendo en cuenta tanto los incidentes reales como los riesgos de seguridad asociados a incidentes actuales y futuros. (INEN, 2017)

1.6.5 Estructura de la Norma ISO 27002

La Norma ISO 27002:2017 está compuesta de 14 capítulos de controles de seguridad que en conjunto proporcionan un total de 35 categorías principales y 114 controles.

En la figura 8 se mencionan los 14 capítulos que posee la norma ISO 27002:2017.

Figura 8: Estructura Norma ISO/IEC 27002:2017

Fuente: Elaboración Propia

1.7 Metodologías para el Análisis de Riesgos

1.7.1 ¿Cuáles son las metodologías para el Análisis de Riesgos?

El análisis de riesgos informáticos es una parte fundamental en la administración de la seguridad, tiene algunos beneficios como son: identificar los puntos débiles de la estructura de TI la cual se encarga de dar soporte a los procesos críticos de la organización, es una guía de selección de medidas de protección de costo adecuado, y ayuda a determinar donde es necesario contar con esquemas de desastres y recuperación de desastres y continuidad del negocio mediante la realización de políticas de seguridad que mejor se adapten a las necesidades de la organización (Guitián, 2014).

Las metodologías de análisis de riesgos conforman una disciplina que permite realizar importantes escaneos de vulnerabilidades, mediante el uso de modelos y procesos para proponer una forma segura de cuidar la información y los recursos de TI. (Helena Alemán Novoa, 2015)

Los objetivos de las metodologías de análisis de riesgos tocan puntos importantes como: planificación de la reducción de accidentes, visualización y detección de las debilidades existentes en los sistemas. (Helena Alemán Novoa, 2015)

En la seguridad de la información existen diversas metodologías de análisis de riesgos dentro de las cuales tenemos:

- a) Octave: (Operational Critical Threat, Asset and Vulnerability Evaluation): Es una Metodología muy usada por las empresas, evalúa los riesgos de seguridad de la información y propone un plan de mitigación dentro de la organización. Esta metodología realiza procesos de evaluación de activos relacionados con la información, analiza y estudia la infraestructura de la información. La metodología Octave tiene como finalidad orientar a la organización para que dirija y gestione sus evaluaciones de riesgo, proteja activos críticos de información, ya que es un método operativo orientado a resultados. (Huerta, 2012)
- b) Magerit: Es una metodología de gestión de riesgos de la información, la que permite estudiar los riesgos que soporta un sistema de información y el entorno asociado al mismo, la metodología detalla desde tres perspectivas: describir los paso para realizar un análisis del estado del riesgo y gestionar su mitigación, describe tareas básicas para realizar un proyecto de análisis y gestión de riesgos.

Permite descubrir y planificar las medidas oportunas para mantener los riesgos bajo control y apoyar en la preparación de la organización para procesos de evaluación y los resultados se expresan en valores económicos (Helena Alemán Novoa, 2015).

- c) Mehari: Método Armonizado de Análisis de Riesgos: es la metodología de análisis y gestión de riesgos desarrollada por la CLUSIF (Club de la Sécurité de l'Information Français) en 1995 y deriva de las metodologías previas Melissa y Marion. La metodología ha evolucionado proporcionando una guía de implantación de la seguridad en una entidad a lo largo del ciclo de vida. Del mismo modo, evalúa riesgos en base a los criterios de disponibilidad, integridad y confidencialidad (Helena Alemán Novoa, 2015).
- d) NIST SP 800-30: Es una guía que propone un conjunto de recomendaciones y actividades para una adecuada gestión de riesgos como parte de la seguridad de la información, necesita el apoyo de la organización para que los objetivos y alcance de la gestión de riesgos concluyan con éxito. (Universitaria, Castellanos, & Ingeniería, 2018)
- e) Coras: la misión de esta metodología, consiste en proporcionar un marco de trabajo encaminado a sistemas en los que la seguridad es crítica, la aplicación de esta metodología permite la detección de fallas de seguridad, inconsistencias, redundancia y el descubrimiento de vulnerabilidades de seguridad mediante las etapas que contempla la metodología. (Universitaria et al., 2018)

1.8 Selección de metodología para análisis de riesgos.

Para elegir una de las metodologías para el análisis de riesgos de la información se basó en un estudio realizado de una comparación entre la metodología CRAMM y MAGERIT que según (Cordero Torres & Crespo, 2016) realizó con la normativa ISO 31000 la cual ofrece directrices y principios para gestionar el riesgo de las organizaciones, esta normativa recomienda que las organizaciones desarrollen, implanten y mejoren continuamente el marco de trabajo teniendo el objetivo de integrar el proceso de gestión de riesgos en cada una de las actividades.

Según (ISOTools, 2016) el proceso técnico de la gestión del riesgo, se encuentra estructurado mediante una secuencia, cuyas fases se ordenan de la siguiente forma:

- Establecer el contexto estratégico: Consiste en la definición de parámetros básicos para la gestión del riesgo, alcance y criterios para los procesos, se debe hacer de manera necesaria desde el conocimiento de todos los aspectos que se engloban en la actividad que se lleva a cabo en la organización (ISOTools, 2016).
- Identificar los riesgos: la empresa tiene que identificar los riesgos de forma sistémica, las causas y los posibles efectos que tendría su materialización. Se encuentran recogidas las acciones que se relacionan con la clasificación del riesgo, dependiendo de su tipología (ISOTools, 2016).
- Analizar el riesgo: en esta fase se establece la probabilidad de que suceda un riesgo y el impacto que generan sus consecuencias, mediante una calificación y evaluación con el fin de establecer el nivel de riesgo y acciones correctoras. El éxito de este proceso depende en gran medida de la calidad de la información que se haya tenido en la fase de identificación y tipo de método que se haya escogido para realizar el análisis (ISOTools, 2016).
- Valoración de riesgos: se deberán confrontar los resultados obtenidos a raíz del análisis del riesgo, con las medidas de control que han sido especificadas se establece prioridades en el tratamiento de los riesgos y fijar políticas de gestión adecuadas (ISOTools, 2016).
- Políticas de administración de riesgos: constituye la fase final, una vez que se tenga identificado, clasificado y valorado los riesgos es el momento de establecer las políticas de gestión del riego, las cuales se encuentran en 4 ejes diferentes que son: transferencia del riesgo, retención del riesgo, reducción del riesgo o evitar el riesgo (ISOTools, 2016).
- Monitorización y revisión: teniendo en cuenta que es difícil que lo riesgos detectados dejen de suponer una amenaza para la organización es necesario estableces indicadores de seguimiento sobre medidas que se establecen para la gestión de riegos (ISOTools, 2016).

Una vez que se ha explicado los parámetros que componen la ISO 31000, se procede a realizar comparación de la metodología MAGERIT y CRAMM.

Esta comparativa permitirá verificar porque se escogió MAGERIT como metodología de análisis de riesgos para el presente trabajo.

Tabla 2: Comparación Metodologías MAGERIT y CRAMM

PARAMETROS	MAGERIT	CRAMM	CUMPLE
ISO 31000			
Comunicación	Permite tener un contacto con:	Permite tener contactos con los actores de la	MAGERIT
	 Miembros de gobierno y la toma de decisiones. 	organización.	
	 Usuarios y técnicos del sistema. 		
Establecer el	Magerit lleva a una determinación de los parámetros y	CRAMM determina los alcances de la	MAGERIT
contexto	condicionantes externos e internos que permiten	organización.	
	encuadrar la política que seguirá para la gestión de		
	riesgos mediante:		
	Alcance del análisis.		
	 Obligaciones propias y contraídas. 		
	Relaciones con otras organizaciones (intercambio		
	de información y servicio)		
	Permite documentar el entorno en el que opera la		
	organización.		

Establecer el	Identifica las obligaciones legales y reglamentos	CRAMM determina los alcances de la MAGERIT						
contexto	contractuales.	organización.						
	Identifica el contexto interno en el que se desenvuelve las							
	actividades de la organización como:							
	 Políticas de seguridad y normas. 							
	Requisitos de cumplimiento normativo.							
	Obligaciones contractuales.							
	Roles y funciones.							
	 Criterios de valoración de información y servicios. 							
	 Criterios de valoración de riesgos. 							
	 Criterios de aceptación de riesgos. 							
	 Contingencias o riesgos de los activos. 							
	Contexto de riesgos:							
	Arboles de ataques: permite modelar las							
	diferentes formas de alcanzar un mismo objetivo							
	dentro de la organización.							
dentificación	Magerit identifica los activos de acuerdo a la función	CRAMM identifica los activos: tres tipos de MAGERIT						
	dentro de la organización por medio de levantamiento de	activos que componen la información:						
	procesos e identificando cada activo relevante a cada	• Físicos						

departamento, tomando en cuenta la criticidad y se categorizan de la siguiente manera:

- Activos fundamentales: Información
- Activos secundarios: servicios, aplicaciones informáticas, hardware, redes, instalaciones, personas.

También utiliza métodos de identificación como:

- Modelo de apéndice: activos con código, nombres descriptivos.
- Modelo cuantitativo: cierta dimensión es un número mayor a 0.
- Modelo cualitativo: asigna a cada activo un valor con una dimensión, identifica las dependencias del activo, valor acumulado.

Riesgos:

- Situación: activo tiempo amenaza.
- Riesgo acumulado.
- Riesgo repercutido.

• Software (aplicaciones)

 Datos (toda la información obtenida de los sistemas) **MAGERIT**

Identificación

Análisis	Riesgos cualitativos: permite saber que hay, sin CRAMM no realiza este procedimiento	MAGERIT
	cuantificar con precisión trabajando sobre una	
	escala discreta de valores basada en impacto y	
	probabilidad.	
	Riesgo cuantitativo: identifica que hay	
	cuantificando con precisión, trabajando en	
	números reales.	
	Modelo escalonado: determina una serie	
	ordenada de escalones de valoración.	
	Se basa en: impacto, probabilidad y nivel de necesidad de	
	salvaguardas.	
T \$!		MAGERIT
Técnicas	Dentro de la metodología MAGERIT se aplican las CRAMM no realiza este procedimiento	MAGERIT
específicas	siguientes técnicas:	
para el análisis	 Tablas: no son muy precisas, pero aciertan con la 	
de riesgos	identificación utilizando una escala de valores que	
	permiten calificar a los activos:	
	MB: muy bajo	
	B: bajo	
	M: medio	
	A: alto	
	MA: muy alto.	

Técnicas	La metodología MAGERIT permite varias técnicas como:	CRAMM no realiza este procedimiento	MAGERIT
generales	• Técnicas gráficas: se centra en representaciones		
	graficas ara apoyar la toma de decisiones todo		
	depende de la obtención de información.		
Evaluación	 Riesgo Intrínseco: medida del daño probable 	CRAMM no realiza este procedimiento	MAGERIT
	sobre un sistema sin considerar las salvaguardas.		
	 Riesgo residual: media del da		
	hayan considerado las salvaguardas.		
	 Riesgo efectivo: medida del da ño probable al que 		
	está sometido el activo tras la valoración de las		
	salvaguardas y tomando en cuenta el valor propio		
	de cada activo.		
	 Las salvaguardas son evaluadas según su 		
	eficacia, reduciendo el riesgo de cada activo que		
	protege.		
Tratamiento	Eliminación: se pueden eliminar varias cosas	CRAM no realiza este procedimiento	MAGERIT
	siempre y cuando no se altere la esencia de la		
	organización.		

•	Mitigación:	reducir	la	degradación	causada	por
	una amena	za, redu	cir	la probabilida	d de que	una
	amenaza s	e materi	alic	e.		

- Compartición del riesgo: riesgo cualitativo mediante la externalización de componentes del sistema, riesgo cualitativo por medio de la contratación de seguros.
- Financiación: una vez que se hayan aceptado los riesgos la organización destinara un fondo económico en caso de que el riesgo llegue a concretarse.

or CRAM no realiza este procedimiento

MAGERIT

Fuente: Elaboración Propia

A considerar:

- Magerit es la metodología más usada a nivel de Latinoamérica.
- El beneficio que presenta la metodología MAGERIT es que está en idioma español e inglés.
- Las dos metodologías son de gestión de riesgos en caso de CRAMM tiene dos herramientas que son CRAMM Expert, CRAMM Express son comerciales y están en inglés, el caso de MAGERIT usa la herramienta EAR es comercial pero la herramienta PILAR es gratuita.
- Las metodologías se adaptan para trabajar con estándares internacionales.
 MAGERIT adopta prácticas de las ISO 27001⁶, 27002⁷, 15408⁸ y 13335⁹. La metodología CRAMM tiene un enfoque práctico en referencia a la ISO 27002, también contempla fundamentos de la ISO 27005 e ISO 31000.
- El ciclo de vida de la metodología CRAMM se basa en identificar primero los riesgos y luego estimar la frecuencia de presentación, mientras que MAGERIT empieza con la identificación de activos, luego identifica amenazas lógicas y de entorno, establece frecuencias e impacto para poder identificar salvaguardas y gestionar el riesgo residual.
- MAGERIT considera activos de información al hardware, software, información electrónica, personas, instalaciones, medios de soporte y elementos de comunicación de datos. La metodología CRAMM considera como activos de información solamente a los datos.
- Para la identificación de activos la metodología CRAMM identifica riesgos y amenazas utilizando solamente métodos cualitativos y cuantitativos, además de valorar los activos en términos de costo de reemplazo y en dimensiones de disponibilidad, integridad y confidencialidad. La metodología MAGERIT además de los dos métodos ya explicados utiliza el método mixto, determina los valores de los activos considerando la dimensión de la disponibilidad, integridad,

⁶ ISO 27001: Sistemas de Gestión.

⁷ ISO 27002: Buenas prácticas para la gestión de la seguridad de la información.

⁸ ISO 15408: Evaluación de los criterios Comunes de la Seguridad en la Tecnología de la Información.

⁹ ISO 13335: Guía para la gestión de seguridad TI.

confidencialidad, trazabilidad y autenticidad, estableciendo escala de valoración en diferentes niveles: muy alto, alto, medio, bajo, muy bajo y despreciable, ésta metodología utiliza el impacto determinando el valor de los activos, el impacto acumulado se calcula mediante el valor acumulado del activo y las amenazas a las que afronta, y el impacto repercutido se considera el valor propio y las amenazas.

 La metodología MAGERIT se desarrollada para organizaciones públicas gubernamentales, mientras de CRAMM puede ser usada en cualquier organización.

Con respecto a lo establecido se escoge a la metodología MAGERIT por ser la más completa y evaluar todos los pilares de la seguridad informática, y tener un software de complemento como lo es el EAR/PILAR.

1.9 Metodología de Análisis y Gestión de Riesgos de Información (Magerit)

1.9.1 Introducción

Siguiendo la terminología de la normativa ISO 31000, Magerit responde a lo que se denomina "Proceso de Gestión de los Riesgos", fue elaborada por el Consejo Superior de Administración de España, actualizada en 2012 su versión 3, Brinda un método sistemático para analizar los riesgos del uso de las tecnologías de la información y la comunicación. En otras palabras, MAGERIT implementa el Proceso de Gestión de Riesgos dentro de un marco de trabajo para que los órganos de gobierno tomen decisiones teniendo en cuenta los riesgos derivados el uso de tecnologías de la información. (Ministerio de Hacienda y Administraciones Publicas de España, 2012)

En la Figura 9 se puede apreciar cómo se encuentra estructurada la Metodología de análisis y riesgos de los sistemas informáticos.

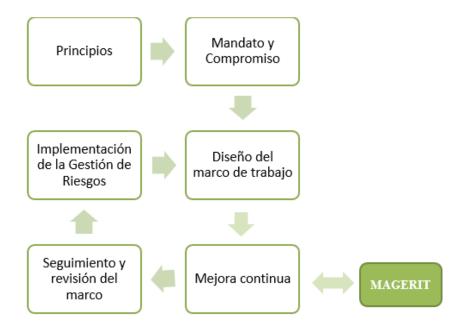


Figura 9: Marco de trabajo para la gestión de riesgos Fuente: (Ministerio de Hacienda y Administraciones Publicas de España, 2012)

Hay varias aproximaciones al problema de analizar los riesgos soportados por los sistemas TIC: guías informales, aproximaciones metódicas y herramientas de soporte.

Todas buscan realizar el análisis de riesgos para saber cuán seguros (o inseguros) son los sistemas. El gran reto de todas estas aproximaciones es la complejidad del problema al que se enfrentan; complejidad en el sentido de que hay muchos elementos que considerar y que, si no se es riguroso, las conclusiones serán de poco fiar. Es por lo que en Magerit se persigue una aproximación metódica que no deje lugar a la improvisación, ni dependa de la arbitrariedad del analista.

1.9.2 Objetivos de Magerit

Magerit persigue los siguientes objetivos:

Directos:

- Concienciar a los responsables de las organizaciones de información de la existencia de riesgos y de la necesidad de gestionarlos
- Ofrecer un método sistemático para analizar los riesgos derivados del uso de tecnologías de la información y comunicaciones Tics¹⁰
- Ayudar a descubrir y planificar el tratamiento oportuno para mantener los riesgos bajo control.

Indirectos:

 Preparar a la Organización para procesos de evaluación, auditoría, certificación o acreditación, según corresponda en cada caso.

1.9.3 Características de Magerit

Magerit tiene las siguientes características:

- Mantiene en gran medida la estructura de la versión 2
- Actualizada para un mejor alineamiento con la norma ISO
- Integración dentro del marco organizacional de la gestión de riesgos dirigido desde los órganos de gobierno.
- Eliminación de partes poco importantes.
- Mejora la normalización de actividades.

¹⁰ Tics: Tecnologías de la Información y las comunicaciones.

1.9.4 Estructura MAGERIT

La metodología consta de 3 libros: método, catálogo de elementos y guía de técnicas. Estos libros presentan pasos para analizar y tratar los riesgos, ofrecen elementos que ayudan a la organización a realizar los análisis y el conjunto de técnicas para llevar a cabo los proyectos de análisis de riesgos y la gestión de los mismos.

- Libro I Método: trata sobre las actividades de análisis y tratamiento dentro de un proceso integral de gestión de riesgos. De igual manera describe opciones y criterios para el tratamiento adecuado de los riesgos.
- Libro II Catálogo de Elementos: Presenta una clasificación de los activos, distintas dimensiones y criterios para realizar la valoración. También se plantean las amenazas típicas sobre los sistemas de información y las salvaguardas para proteger.
- Libro III Guía de Técnicas: En este libro se describe las técnicas utilizadas en análisis y gestión de riesgos, se explica el objetivo que se persigue al utilizarla, los elementos básicos asociados, los principios fundamentales de la elaboración.

CAPÍTULO 2

Desarrollo

2 Marco Contextual

Para determinar la importancia de estos riesgos es necesario realizar una evaluación de riesgos, mediante el análisis se establecerá si la información está expuesta de forma interna o externa, el éxito será que se apliquen las políticas de seguridad que existan dentro del Departamento de Desarrollo Tecnológico e Informático de la Universidad Técnica del Norte.

2.1 Descripción del Sistema Informático Integrado Universitario (SIIU)

La Universidad Técnica del Norte en la actualidad ofrece servicios en línea a todos los estudiantes y empleados en general, esto aumentó significativamente el volumen de accesos al Sistema Informático Integrado Universitario (SIIU), mismo que abarca a los diferentes sistemas que posee la Universidad, por lo que se buscó soluciones tecnológicas asequibles, eficientes y seguras. La Universidad eligió la solución que mejor se adaptaba a las necesidades y preparó el entorno para la implementación de Oracle Cloud Infrastructure, siendo la única Universidad en el país que gestiona sus servicios Tic en plataformas cloud (DATTA BUSINESS INNOVATION, 2019).

Con la implementación de Oracle IaaS y Oracle PaaS se alcanzó un 99.9% de disponibilidad, se redujo la latencia al aumentar el rendimiento de SIIU en 500 % ya que Oracle Cloud Infrastructure Compute Classic ofrece procesadores más rápidos y eficientes, resolviendo problemas de baja velocidad debido a cargas de big data, incrementó la capacidad de almacenamiento de forma inmediata y facilitó la futura expansión de la capacidad, pues las funciones elásticas de Oracle Database Cloud Service permiten que se agregue o elimine memoria y capacidad de almacenamiento según sea necesario, Aumentó la seguridad, ya que Oracle Cloud Infrastructure Compute Classic y Oracle Cloud Infrastructure Dedicated Compute Classic – SPARC aseguraron un entorno confiable de respaldo y recuperación de información ante desastres, y un firewall dinámico que controla el tráfico de red entre individuos y entre grupos (DATTA BUSINESS INNOVATION, 2019).

2.1.1 Sistema Académico - Universidad Técnica del Norte

Dentro del Sistema Informático Integrado Universitario (SIIU), consta el sistema académico, mismo que gestiona el proceso de matrículas, calendario académico, gestión de horarios, gestión docente, portafolio estudiantil y docentes, evaluación docente, entre otras, con el fin de brindar información de calidad a la Universidad optimizando tiempos de respuesta en reportes que ayuden en la toma de decisiones a las respectivas autoridades.

Dentro de este sistema académico se encuentra el sistema de evaluación docentes, el cual permite calificar el desempeño de los docentes y a las autoridades de cada carrera y facultad facilitando los procedimientos.

2.1.2 Sistema de Evaluación Docentes – Universidad Técnica del Norte

La evaluación del desempeño docente es importante para todas las instituciones educativas que buscan la calidad, en donde el producto final son los profesionales puestos al servicio de la sociedad. Los cuales deberán responder con solvencia a las necesidades del entorno y de esta manera garantizar los procesos académicos de la institución. ((CEIDPA), 2018)

La ejecución del proceso de evaluación docentes está basada en la aplicación de varios instrumentos como la autoevaluación, coevaluación y heteroevaluación para de esta manera obtener un diagnostico real de los datos evaluados.

El DDTI es el encargado de recopilar los datos que se obtengan mediante el sistema de evaluación docentes, ya que este proceso consta de 4 fases como se detalla en la siguiente figura 10.

Figura 10: Proceso de evaluación integral Fuente: ((CEIDPA), 2018)

- En la primera fase la planificación del proyecto consiste en cargar la información de las comisiones de coevaluación, y el departamento de DDTI generará claves y usuarios para poder ingresar se socializará a docentes de la actividad a realizar.
- La segunda fase de ejecución se realizará la evaluación de los docentes y directivos conforme lo registrado en cada distributivo aplicando las 4 evaluaciones correspondientes, estas evidencias serán verificadas en el portafolio docente del SIIU¹¹.
- La tercera Fase de resultados consiste en generar reportes los cuales se extiende al CEIDPA¹² y el comité encargado elaborará el informe correspondiente.
- La última fase consiste en el seguimiento al plan de perfeccionamiento en el periodo académico posterior al periodo evaluado.

¹¹ SIIU: Sistema Informático Integrado Universitario

¹² CEIDPA: Comisión Institucional de Evaluación Interna del Desempeño del Personal Académico

2.2 Estructura Organizacional

La estructura organizacional de la Universidad Técnica del Norte (UTN), está constituida por autoridades, funcionarios y organismos consultivos.

2.2.1 Organigrama Estructural UTN

La Universidad Técnica del Norte se encuentra constituida por los siguientes niveles administrativos como se detalla en la siguiente figura 11.

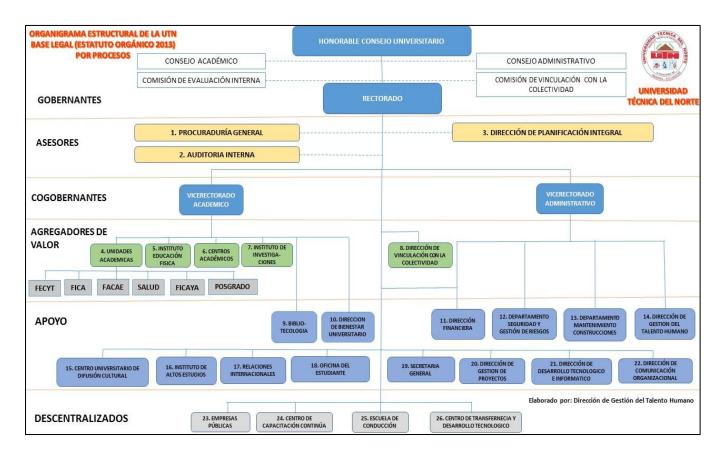


Figura 11: Organigrama Estructural UTN (2013)

Fuente: https://www.utn.edu.ec/web/uniportal/?page_id=2171

2.2.2 Organigrama Departamento de Desarrollo Tecnológico e Informático UTN

Dentro del Departamento de Desarrollo Tecnológico e Informático (DDTI) se maneja un nivel administrativo que cumple con un orden jerárquico como se puede apreciar en la figura 12.

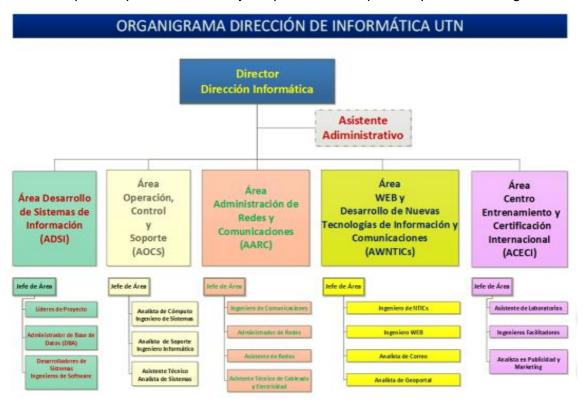


Figura 12: Organigrama Dirección Informática UTN

Fuente: (Departamento de Desarrollo Tecnológico e Informático - UTN, 2013)

2.2.3 Misión

"A la Dirección de Desarrollo Tecnológico e Informático de la Universidad Técnica del Norte, se encarga de administrar los servicios de informática, computación y comunicaciones; sin afectar a las demás funciones que se le recomiende. Ser el ente regulador de las políticas y normativas de carácter institucional; que deben ser llevadas a cabo con rigor, manteniendo el alto espíritu de calidad en todos los funcionarios, con el fin de lograr las expectativas encomendadas al departamento". (Departamento de Desarrollo Tecnológico e Informático - UTN, 2013)

2.2.4 Visión

"Establecer el rumbo estratégico del departamento y ejercer el liderazgo a nivel institucional, regional y nacional en el campo de la informática, computación y comunicaciones" (Departamento de Desarrollo Tecnológico e Informático - UTN, 2013)

2.3 Roles y Responsabilidades, funciones del personal de DDTI

En la siguiente tabla se detalla la función que realiza el personal dentro del DDTI.

Tabla 3: Roles y responsabilidades del personal de DDTI-UTN

DUESTO	RESPONSABILIDADES Y FUNCIONES		
PUESTO	KESPUNSABILIDADES I FUNCIONES		
Jefe de Proyecto	Es el encargado de asignar recursos, gestionar prioridades,		
	coordinar las interacciones con los clientes, usuarios. Mantener a		
	equipo del proyecto enfocado en los objetivos institucionales.		
	Debe establecer y coordinar un conjunto de prácticas que		
	aseguran la integridad y calidad del proyecto a efectuarse.		
	Debe impulsar y desarrollar proyectos de tecnologías de		
	información y comunicación que la Universidad requiera.		
	Corroborar el buen funcionamiento y brindar mejores servicios		
	para todos los usuarios.		
Analista de	Su principal función es capturar, especificar y validar los requisitos,		
Sistemas	interactuando con el cliente y los usuarios mediante entrevistas,		
	para satisfacer sus necesidades e inquietudes.		
	Colaborar en la elaboración de las pruebas funcionales y modelos		
	de datos mediante un sistema amigable fácil y tractivo al usuario.		
Programador	Es el encargado de construir prototipos, elaborar las pruebas		
	funcionales, modelos de datos y las validaciones con el usuario.		
Ingeniero de	Se encarga de la gestión de requisitos, la configuración y		
Software	elaboración del modelo de datos, prepara las pruebas funcionales		
	y la elaboración de la documentación.		

Administrador de la	Su responsabilidad es realizar la adquisición de paquetes de			
Red	software, licencias y hardware que permitan dar solución a las			
	necesidades tecnológicas en el momento y situación oportuna.			
	Tener una red monitoreada las 24 horas y operando al 100%.			
	Disponer de equipos para el monitoreo permanente de la red de la			
	Universidad.			
Web master	Su principal función es la de fortalecer la investigación,			
	implementación de nuevas tecnologías para la administración del			
	Geo portal.			
	Su rol es ser participe en dar soporte y soluciones informáticas de			
	los diferentes planes y proyectos en las áreas de la institución que			
	buscan mejorar las condiciones de procesos.			
Ingeniero de	Gestiona y direcciona la adquisición de los insumos de software y			
Hardware	hardware necesarios.			
	Establece políticas de operación y control informático.			
	Elabora y establece un plan de contingencia para asegurar la			
	protección del hardware y la información ante algún desastre			
	protección del hardware y la información ante algún desastre			
	protección del hardware y la información ante algún desastre natural o provocado.			
	natural o provocado.			

Fuente: Elaboración Propia

2.4 Técnicas de Investigación

2.4.1 Población y Muestra

Para calcular el tamaño de la muestra se utilizó el método de muestreo, para poder establecer el número de encuestados y determinar los servicios y seguridades del sistema de Evaluación Docentes de la Universidad Técnica del Norte.

El tamaño está determinado por 3 factores:

- Proporción estimada de la variable considerada
- Nivel deseado de fiabilidad
- Margen de error aceptable

El tamaño de la muestra está basado en una muestra aleatoria simple y que puede calcularse con la siguiente formula.

$$n = \frac{z^2 * (p * q)}{e^2 + (\frac{z^2(p * q)}{N})}$$

En donde:

n= tamaño de la muestra

z= nivel de confianza deseado

p= proporción de la población con la característica deseada (éxito)

q= proporción de la población sin la característica deseada (fracaso)

e= nivel de erros dispuesto a cometer

N= tamaño de la población

Para este proyecto se dividió la población en: docentes, estudiantes y personal encargado del manejo del sistema de evaluación docentes.

Tabla 4: Usuarios Universidad Técnica del Norte

Usuarios	Cantidad
Estudiantes	9000
Docentes	770
Personal DDTI	17
То	tal 9785

Fuente: (Departamento de Desarrollo Tecnológico e Informático - UTN, 2013)

Con la fórmula aplicada se obtuvo una muestra de 343 estudiantes, 33 docentes y 3 personas encargadas del manejo del sistema de evaluación docentes a las cuales se aplicó las encuestas que se encuentran en el anexo 1 y anexo 2.

2.5 Fuentes y técnicas para la recolección de información

2.5.1 Tipos de Investigación

Para realizar el proceso de evaluación de amenazas y vulnerabilidades de la seguridad de la información se averiguo sobre la infraestructura tecnológica que posee la Universidad Técnica del Norte mediante dos tipos de investigación que son:

- Descriptiva: Se realizó este tipo de investigación para poder trabajar con las actividades, procedimientos y características fundamentales que tiene la universidad; de esta manera evaluar los riesgos relacionados con la seguridad de la información del sistema de evaluación docentes.
- Mixta: se aplica este método de investigación para verificar las políticas existentes en la Universidad y el departamento de Informática relacionadas con la seguridad de la información mediante encuestas a los usuarios del sistema de evaluación docente.

2.5.2 Fuentes y técnicas de recolección de información

Para la obtención de la información se tomará en cuenta las siguientes técnicas de recolección de información:

- Encuestas: Esta herramienta facilitó la recolección de información para poder identificar el nivel conocimiento que tienen los usuarios acerca del funcionamiento del sistema de evaluación docentes, esta encuesta fue aplicada a docentes, estudiantes y el encargado del manejo del sistema.
- Revisión de documentación: se realizó la técnica de revisión de documentación de los siguientes documentos:
 - a) Políticas, estándares, normas y procedimientos dentro del departamento de tecnologías.
 - b) Planes de seguridad y continuidad del departamento.
 - c) Organigrama departamental y manual de funciones de todo el personal.
 - d) Registros de información perteneciente a los módulos.
 - e) Documento de Proyecto CEIDPA

 Check List: Se realizó un Check List con los controles de la norma ISO 27002:2017 después de haber usado la Metodología y ver qué resultados arroja para poder hacer una correcta recomendación al DDTI.

2.5.3 Análisis de encuestas

Para el desarrollo de la evaluación del sistema de docentes, se recopilo información de los usuarios que usan el sistema de evaluación docente de la Universidad Técnica del Norte. Con la finalidad de evaluar la seguridad que brinda el sistema al momento de realizar la evaluación docente. A continuación, se detallan las preguntas realizadas al número de usuarios resultantes de la muestra calculada.

1) ¿Usted conoce el funcionamiento del sistema de evaluación docente de la Universidad Técnica del Norte?

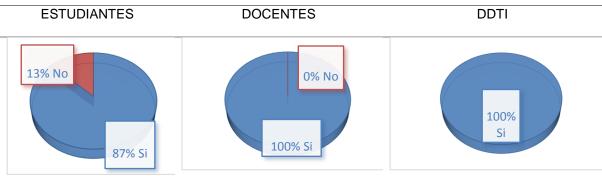


Tabla 5: Primera pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 5 se puede apreciar los resultados obtenidos de la primera pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. Se observa que todos los docentes y los miembros del DDTI conocen el funcionamiento del sistema de evaluación docente. Por otro lado, el 87% de los estudiantes encuestados conoce el funcionamiento del sistema, mientras que el 13 % no tiene conocimiento sobre el funcionamiento de este. En base a los resultados obtenidos es posible concluir que la mayoría de los usuarios conocen el funcionamiento del sistema de evaluación docente.

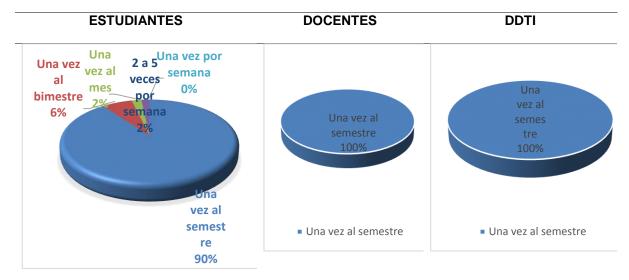
2) ¿Desde qué dispositivos se puede acceder al sistema de evaluación docente?

Tabla 6: Segunda pregunta encuesta

Dispositivo	Estudiantes	Docentes	DDTI
Laboratorios	150	20	2
Laptops personales	166	10	1
Móviles	27	3	0
Otros	0	0	0

ESTUDIANTES DOCENTES DDTI 13% 33% 48% ■ Laboratorios ■ Laptops per Laboratorios ■ Laptops per Laboratorios ■ Laptops per Móviles Otros Móviles Otros ■ Móviles Otros

Fuente: Elaboración Propia


Análisis de resultados

En la tabla 6 se puede apreciar los resultados obtenidos de la segunda pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. Se observa que la mayor parte de usuarios ingresa al sistema de evaluación docente mediante los laboratorios, es decir accede desde las computadoras que se encuentra en los laboratorios de la Universidad, las respuestas se encuentran distribuidas de la siguiente forma: 44% estudiantes, 78% docentes y 67% miembros DTI. También es posible afirmar que un 48% de estudiantes ingresa desde laptops personales, al igual que un 13% de docentes y 33% de los miembros de DDTI. Además, existe un 8% de estudiantes, 9% de docentes y 0% de miembros del DTI que ingresan al sistema de evaluación docente mediante móviles. Por otro lado, no existe evidencia que los usuarios usen otro tipo de dispositivos además de los ya mencionados para ingresar al sistema de evaluación docente.

3) ¿Con que frecuencia usted utiliza el sistema de evaluación docente?

Tabla 7: Tercera pregunta encuesta

Frecuencia	Estudiantes	Docentes	DDTI
Una vez al semestre	308	33	3
Una vez al bimestre	22	0	0
Una vez al mes	7	0	0
2 a 5 veces por semana	6	0	0
Una vez por semana	0	0	0

Fuente: Elaboración Propia

Análisis de resultados

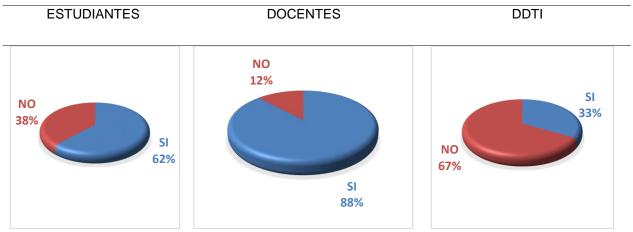
En la tabla 7 se puede apreciar los resultados obtenidos de la tercera pregunta realizada tanto a estudiantes, docentes y a miembros del DDTI. Los docentes como los miembros del DDTI ingresan al sistema una sola vez al semestre, lo cual es una cantidad muy baja. Por otro lado, el 90 % de los estudiantes ingresan una vez al semestre, el 6% ingresan una vez al bimestre, el 2% ingresa una sola vez al mes y un 2% ingresa de 2 a 5 veces a la semana, cabe recalcar que este último porcentaje es de estudiantes que no tenían el conocimiento del sistema. Es posible decir que los usuarios que ingresan con mayor frecuencia al sistema de evaluación docentes son los estudiantes.

4) ¿Cree usted que existe algún control de acceso al sistema de evaluación docente?

Tabla 8: Cuarta pregunta encuesta

ESTUDIANTES DOCENTES DDTI

NO
21%
SI
79%
SI
100%


Fuente: Elaboración Propia

Análisis de resultados

En la tabla 8 se puede apreciar los resultados obtenidos de la cuarta pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI respondió que existe un control en el sistema de evaluación docente. Por otra parte, el 76% de los docentes creen que, si existe un control del sistema de evaluación, mientras que el 24% restante piensa que no. Por último, el 79% de los estudiantes creen que existe algún tipo de control para el ingreso al sistema de evaluación docente, mientras que el 21% cree que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente creen que existe control en el acceso al sistema de evaluación docente.

5) ¿La contraseña que usted emplea para acceder al sistema de evaluación docente cuenta con requerimientos de seguridad?

Tabla 9: Quinta pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 9 se puede observar los resultados obtenidos de la quinta pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 67% de los miembros del DDTI cree que no tiene una contraseña segura para acceder al sistema de evaluación de docente, mientras que el 33% cree que la contraseña es segura. Por otra parte, el 88% de los docentes creen que tiene una contraseña segura para acceder al sistema de evaluación de docente, mientras que el 12% restante piensa que no. Por último, el 62% de los estudiantes creen que tiene una contraseña segura para acceder al sistema de evaluación de docente, mientras que el 38% cree que no, la razón es que siguen conservando la contraseña que se les fue asignada. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente creen que tiene una contraseña segura para acceder al sistema de evaluación de docente creen que tiene una contraseña segura para acceder al sistema de evaluación de docente creen que tiene una contraseña segura para acceder al sistema de evaluación de docente.

6) ¿El sistema de evaluación docente tiene una política de bloqueo sesiones o de computadores después de un tiempo determinado?

ESTUDIANTES DOCENTES DDTI

NO
12%
SI
88%

Tabla 10: Sexta pregunta encuesta

Fuente: Elaboración Propia

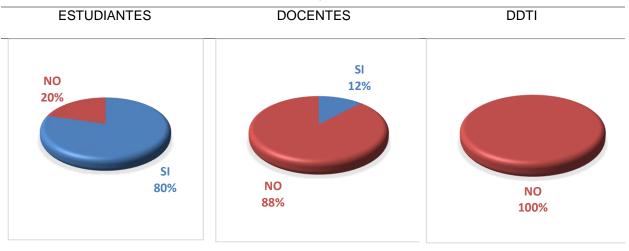
Análisis de resultados

En la tabla 10 se puede apreciar los resultados obtenidos de la sexta pregunta realizada tanto a estudiantes, docentes y a miembros del DDTI. El 100% de los miembros del DDTI cree que tiene el sistema de evaluación docente tiene una política de bloqueo sesiones o de computadores después de un tiempo determinado. Por otra parte, el 91% de los docentes cree que el sistema de evaluación docente tiene una política de bloqueo sesiones o de computadores después de un tiempo determinado, mientras que el 9% restante piensa que no. Por último, el 88% de los estudiantes cree que el sistema de evaluación docente tiene una política de bloqueo sesiones o de computadores después de un tiempo determinado, mientras que el 12% cree que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente cree que tiene una política de bloqueo sesiones o de computadores después de un tiempo determinado.

7) ¿Cuál es el nivel de facilidad de uso del sistema de evaluación docente?

ESTUDIANTES DOCENTES DDTI Regula Excele r 20. 103, nte 6% . 120, 30% 31% Buena 35% 30% 30. Muy buena 20% 100% Muy buena 30% ■ Excelente
■ Muy buena ■ Excelente Muy buena ■ Muy buena Excelente Buena ■ Regular ■ Buena ■ Regular Buena ■ Regular ■ Muy mala Mala Mala ■ Muy mala Mala ■ Muy mala

Tabla 11: Séptima pregunta encuesta


Fuente: Elaboración Propia

Análisis de resultados

En la tabla 11 se puede apreciar los resultados obtenidos de la séptima pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI cree que el sistema de evaluación docente tiene un nivel de facilidad de uso muy bueno. Por otra parte, el 31% de los docentes cree que el sistema de evaluación docente tiene un nivel de facilidad de uso excelente, el 30% cree que tiene un nivel de facilidad de uso muy bueno, mientras que el 9% restante piensa que la facilidad de uso es regular. Por último, el 30% de los estudiantes cree que el sistema de evaluación docente tiene un nivel de facilidad de uso excelente, el 9% cree que tiene un nivel de facilidad de uso muy bueno, el 20% cree que tiene un nivel de facilidad de uso regular, mientras que el 6% cree que el nivel de facilidad de uso es malo. Es posible decir que el promedio de opiniones sobre la facilidad de uso del sistema de evaluación docente es intermedio.

8) ¿Usted ha tenido inconvenientes con el servicio de evaluación docente?

Tabla 12: Octava pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 12 se puede apreciar los resultados obtenidos de la octava pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI afirma que no ha tenido inconvenientes con el servicio de evaluación docente. Por otra parte, el 88% de los docentes afirma que no ha tenido inconvenientes con el servicio de evaluación docente, mientras que el 12% restante afirma que sí. Por último, el 80% de los estudiantes afirma que ha tenido inconvenientes con el servicio de evaluación docente, mientras que el 20% afirma que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente afirman que han tenido inconvenientes con el servicio de evaluación docente.

9) ¿Usted ha tenido inconvenientes con la información ingresada en el sistema de evaluación docente?

ESTUDIANTES DOCENTES DDTI SI SI 9% 22% NO 78% NO NO 91% 100%

Tabla 13: Novena pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 13 se puede apreciar los resultados obtenidos de la novena pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI afirman que han tenido inconvenientes con la información ingresada en el sistema de evaluación docente. Por otra parte, el 91% de los docentes afirman que han tenido inconvenientes con la información ingresada en el sistema de evaluación docente, mientras que el 9% restante afirma que no. Por último, el 78% de los estudiantes afirman que han tenido inconvenientes con la información ingresada en el sistema de evaluación docente, mientras que el 22% afirman que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente afirman que ha tenido inconvenientes con la información ingresada en el sistema de evaluación docente, esto se debería a una falta de socialización hacia los usuarios, sobre el manejo del mismo.

10) ¿Existe algún responsable del sistema de evaluación docente que brinde atención cuando sea necesario?

ESTUDIANTES DOCENTES DDTI

NO
15%
SI
26%
SI
85%
SI
100%

Tabla 14: Décima pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 14 se puede apreciar los resultados obtenidos de la décima pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI piensan que existe algún responsable del sistema de evaluación docente que brinde atención cuando sea necesario. Por otra parte, el 85% de los docentes piensan que existe algún responsable del sistema de evaluación docente que brinde atención cuando sea necesario, mientras que el 15% restante piensa que no. Por último, el 74% de los estudiantes piensan que no existe algún responsable del sistema de evaluación docente que brinde atención cuando sea necesario, mientras que el 26% piensa que sí. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente piensa que existe algún responsable del sistema de evaluación docente que brinde atención cuando sea necesario.

11) ¿Usted cree que la información que ingresa al sistema de evaluación docente es confidencial?

ESTUDIANTES DOCENTES DDTI

Tabla 15: Onceava pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 15 se puede apreciar los resultados obtenidos de la décimo primera pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI cree que la información que ingresa al sistema de evaluación docente es confidencial. Por otra parte, el 100% de los docentes cree que la información que ingresa al sistema de evaluación docente es confidencial. Por último, el 54% de los estudiantes cree que la información que ingresa al sistema de evaluación docente no es confidencial, mientras que el 46% cree que sí. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente creen que la información que ingresa al sistema de evaluación docente es confidencial.

12) ¿En qué porcentaje usted considera que el sistema de evaluación docente satisface sus necesidades?

ESTUDIANTES DOCENTES DDTI Entre **Entre** Enu. 40-Entre 80-40-80-60% 80-100% **Entre** 60% 100% 24% 100% 33% 50-11% 44% 38% 80% 80% **45%** Entre 50-■ Entre 80-100% ■ Entre 50-80% ■ Entre 80-100% ■ Entre 50-80% 80% 38% ■ Entre 40-60% ■ Entre 40-60% ■ Entre 80-100% ■ Entre 50-80% ■ Entre 40-60%

Tabla 16: Doceava pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 16 se puede apreciar los resultados obtenidos de la décima segunda pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 67% de los miembros del DTI creen que el sistema de evaluación docente satisface sus necesidades, mientras que, el 33% cree que no. Por otra parte, el 38% de los docentes creen que el sistema de evaluación docente satisface sus necesidades, mientras que, el 24% cree que no. Por último, el 45% de los estudiantes creen que el sistema de evaluación docente satisface sus necesidades, mientras que, el 33% cree que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente cree que este satisface sus necesidades.

13) Si el porcentaje escogido en la pregunta anterior es entre 40-60% indique el motivo de su respuesta.

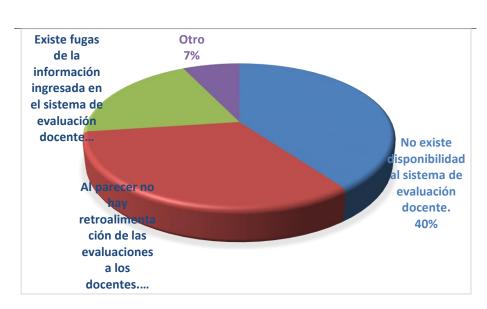


Tabla 17: Treceava pregunta encuesta

Fuente: Elaboración Propia

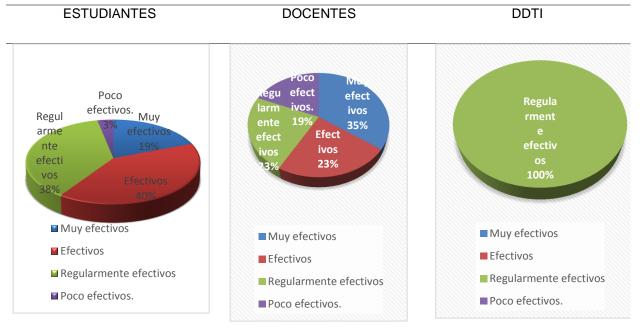
Análisis de resultados

En la tabla 17 se puede apreciar los resultados obtenidos de la décima tercera pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 40 % de los usuarios afirma que no existe disponibilidad al sistema de evaluación docente. El 33% de los usuarios afirma que no existe retroalimentación de las evaluaciones realizadas en el sistema. Por último, el 20 % afirma que existen fugas de información en el sistema de evaluación docente mientras que el 7% dio otra razón diferente a las expuestas. Se concluye que la mayor parte de usuarios afirman que el sistema de evaluación docente no satisface sus necesidades debido a que no existe retroalimentación de las evaluaciones realizadas.

14) ¿Tiene la confianza suficiente para presentar que jas sobre las fallas del sistema de evaluación docente?

ESTUDIANTES DOCENTES DDTI

Tabla 18: Catorceava pregunta encuesta


Fuente: Elaboración Propia

Análisis de Resultados

En la tabla 18 se puede apreciar los resultados obtenidos de la décimo cuarta pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI tienen la confianza suficiente para presentar quejas sobre fallas del sistema de evaluación docente. Por otra parte, el 85% de los docentes tienen la confianza suficiente para presentar quejas sobre fallas del sistema de evaluación docente, mientras que el 15% restante no tiene confianza para reportar fallas en el sistema. Por último, el 79% de los estudiantes no tienen la confianza suficiente para presentar quejas sobre las fallas del sistema de evaluación docente, mientras que el 21% afirmo tienen confianza para reportar fallos del sistema de evaluación docente. Es posible decir que la mayoría de los usuarios docentes y DDTI tienen la confianza suficiente para presentar quejas sobre las fallas del sistema de evaluación docente, mientras que los estudiantes no tienen la confianza suficiente para presentar quejas sobre fallas al sistema.

15) ¿Qué tan efectivos son los técnicos para resolver problemas del sistema de evaluación docente?

Tabla 19:Quinceava pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 19 se puede apreciar los resultados obtenidos de la décima quinta pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 100% de los miembros del DDTI considera que son regularmente efectivos los técnicos para resolver problemas del sistema de evaluación docente. Por otra parte, el 35% de los docentes considera que los técnicos son muy efectivos para resolver problemas del sistema de evaluación docente, el 23% restante piensa que los técnicos son efectivos para resolver problemas del sistema de evaluación docente, el 23% considera los técnicos son regularmente efectivos para resolver problemas del sistema de evaluación docente y el 19% considera que los técnicos son poco efectivos para resolver problemas del sistema de evaluación docente. Por último, el 40% de los estudiantes considera que los técnicos son efectivos para resolver problemas del sistema de evaluación docente, el 38% considera que los técnicos son regularmente efectivos para resolver problemas del sistema de evaluación docente, el 38% considera que los técnicos son regularmente efectivos para resolver problemas del sistema de evaluación

docente, el 19% considera que los técnicos son muy efectivos para resolver problemas del sistema de evaluación docente y el 3% considera que los técnicos son poco efectivos para resolver problemas del sistema de evaluación docente. Es posible concluir que la mayoría de los usuarios del sistema de evaluación docente creen los técnicos son regularmente efectivos para resolver problemas del sistema de evaluación docente.

16) ¿Cómo califica el sistema de evaluación docente de la Universidad Técnica del Norte?

Tabla 20: Dieciseisava pregunta encuesta **ESTUDIANTES DOCENTES** DDTI Regula ₹egul MB#simExcele Exce ente Regul Bueno nte 52% Buen 21% 18% **Buen** ■ Excelente ■ Bueno ■ Regular ■ Excelente ■ Bueno ■ Excelente ■ Bueno Malo Pésimo Regular ■ Malo Regular Malo Pésimo Pésimo

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 20 se puede apreciar los resultados obtenidos de la décima sexta pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 67% de los miembros del DDTI califica como bueno el sistema de evaluación docente de la UTN., mientras que, el 33% cree que es regular. Por otra parte, el 52% de los docentes considera que el sistema de evaluación docente de la UTN es excelente, el 30% piensa que es regular y el 18% considera que es bueno. Por último, el 47% de los estudiantes cree el sistema de

evaluación docente es bueno, el 26% considera que es regular, el 21% considera que es excelente, el 4% considera que es malo y el 2% opina que es pésimo. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente considera que el sistema de evaluación docente de la UTN es bueno.

17) ¿Usted considera que el servicio de evaluación docente debe estar disponible a cualquier hora y para cualquier usuario?

ESTUDIANTES DOCENTES DDTI

NO
21%
SI
79%
SI
91%

Tabla 21: Diecisieteava pregunta encuesta

Fuente: Elaboración Propia

Análisis de resultados

En la tabla 21 se puede apreciar los resultados obtenidos de la décimo séptima pregunta realizada tanto a estudiantes como a docentes y a miembros del DDTI. El 67% de los miembros del DDTI piensa que el servicio de evaluación docente no debe estar disponible a cualquier hora y para cualquier usuario, mientras que el 33% piensa que sí. Por otra parte, el 91% de los docentes piensan que el servicio de evaluación docente debe estar disponible a cualquier hora y para cualquier usuario, mientras que el 9% restante piensa que no. Por último, el 79% de los estudiantes piensan que el servicio de evaluación docente debe estar disponible a cualquier hora y para cualquier usuario, mientras que el 21% cree que no. Es posible decir que la mayoría de los usuarios del sistema de evaluación docente creen que el

servicio de evaluación docente debe estar disponible a cualquier hora y para cualquier usuario, pero la realidad es que como el sistema se encuentra solo habilitado al final del semestre para que cada usuario pueda evaluar no puede estar disponible a cualquier hora, porque no se podría obtener datos reales de la evaluación.

PREGUNTAS ADICIONALES PARA LOS TÉCNICOS DEL DDTI

Para poder responder a estas preguntas se realizó el análisis que dicta la metodología Magerit la cual es determinación de activos críticos, teniendo en cuenta las dimensiones establecidas según (Ministerio de Hacienda y Administraciones Publicas de España, 2012), como "las características o atributos que hacen valioso un activo". La valoración que recibe un activo en una cierta dimensión es la medida del perjuicio para la organización si el activo se ve dañado en dicha dimensión, se encuentran propuestas en el libro II de Magerit, en el cual se establecen las dimensiones de disponibilidad, integridad de datos, confidencialidad de la información, autenticidad y trazabilidad para poder determinar el valor que representa cada activo para la Universidad.

Mediante las dimensiones de valoración que establece la metodología MAGERIT se realizó las siguientes preguntas que se detallan en la siguiente tabla:

Tabla 22: Dimensiones de Valoración

DIMENSIONES DE VALORACIÓN	DESCRIPCIÓN	VALORACION
Disponibilidad	¿Qué Nivel de daño representaría para la	
	Universidad si el servicio no estuviera disponible?	
Integridad	¿Qué nivel de daño representaría para la	
	universidad que los datos del sistema de	
	evaluación docente fueran total o parcialmente	
	falsos, modificados, o faltaran datos?	
Confidencialidad	¿Qué nivel de daño representaría para la	
	universidad que los datos que se obtienen en el	
	sistema de evaluación docentes fuera conocido	
	por personas no autorizadas?	

Autenticidad	¿Qué nivel de daño representaría para la
	Universidad que la persona que acceda a la
	información no sea realmente quien se cree?
Trazabilidad	¿Qué nivel de daño representaría para la
	universidad que no quedara constancia del uso del
	servicio o el acceso a los datos?

Fuente: Elaboración Propia

Para poder evaluar estas preguntas se estableció una escala de valoración en la cual 1 representa un daño muy bajo a presentarse al sistema de evaluación docente y 5 un daño muy alto, estos valores fueron representados en la siguiente tabla.

Tabla 23: Escala de Valoración

ÍTEM	DESCRIPCIÓN
1	Daño muy bajo
2	Daño bajo
3	Daño medio
4	Daño alto
5	Daño muy alto

Fuente: Elaboración Propia

Aplicando la encuesta al personal encargado del manejo del sistema de evaluación docente se determinó que el daño que ocasionaría a la Universidad sería un daño muy alto ya que no se cumpliría con los parámetros de disponibilidad, integridad, confidencialidad, autenticidad, trazabilidad, la encuesta realizada se encuentra en el anexo 3.

2.6 Procedimiento Informático Lógico para el Análisis de Riesgos (PILAR)

PILAR, es un acrónimo de "Procedimiento Informático Lógico para el Análisis de Riesgos" es una herramienta desarrollada bajo especificación del Centro Nacional de Inteligencia para soportar el análisis de riesgos de sistemas de información siguiendo la metodología Magerit (Ministerio de Hacienda y Administraciones Publicas de España, 2012).

La herramienta soporta todas las fases del método Magerit:

 Caracterización de los activos: identificación, clasificación, dependencias y valoración

- Caracterización de las amenazas
- Evaluación de las salvaguardas

La herramienta incorpora los inventarios del "Catálogo de Elementos" permitiendo una homogeneidad en los resultados del análisis:

- tipos de activos
- dimensiones de valoración
- criterios de valoración
- catálogo de amenazas

Una vez realizado el análisis con MAGERIT, se procedió a ingresar los datos en la herramienta PILAR, la misma que ayudó a evaluar la situación actual y de esta manera poder proponer soluciones eventuales en el Departamento de Desarrollo Tecnológico e Informático (DDTI) de la Universidad Técnica del Norte de la Universidad Técnica del Norte.

Para aplicar la metodología MAGERIT, se tiene que llevar a cabo el proceso que se describe en la Figura 13.

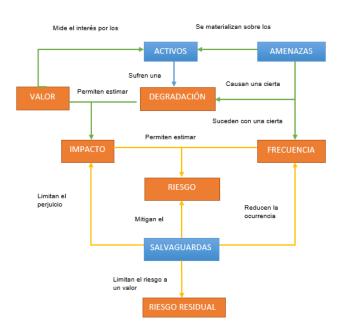


Figura 13: Procesos para aplicar MAGERIT

Para aplicar la metodología MAGERIT se deben seguir los siguientes pasos:

- a) Identificación de Activos: Son todos los activos que posee la organización, clasificados de acuerdo a su función.
- b) Valoración de Activos: Esta valoración asignada al activo de acuerdo a la criticidad.
- c) Identificación de amenazas: Son eventos que degradarían el valor que tiene los activos.
- d) Frecuencia: Se refiere a los eventos que suceden en un tiempo determinado.
- e) Degradación: Es cuan perjudicado resultaría el activo al materializarse las amenazas.
- f) Impacto: Consecuencia que sobre un activo tiene la materialización de una amenaza.
- g) Riesgo: Es la probabilidad de materialización de amenazas sobre el activo.
- h) Identificación y Valoración de Salvaguardas: Son las medidas precisas a tomar para reducir el riesgo.
- i) Riesgo Residual: Es el riesgo permanente después de aplicar las salvaguardas.

Para complementar el análisis de gestión de riesgos fue necesario usar PILAR es un software que utiliza la metodología MAGERIT, y posee una biblioteca que permite evaluar con puntajes a la seguridad informática.

El software EAR/PILAR permite realizar un análisis de riesgo sobre varias dimensiones importantes para la seguridad de la información, estas son:

- Confidencialidad
- Integridad
- Disponibilidad
- Autenticidad
- Trazabilidad

A partir de los parámetros establecidos, es posible calcular el impacto y el riesgo acumulado, potencial, y residual.

En la situación actual y lo establecido en la norma ISO 27002:2017 el software establece posibles salvaguardas. Las salvaguardas se califican por fases, además es posibles implementarlas en cualquier fase del proyecto. Pilar permite realizar un análisis cuantitativo y cualitativo.

En la figura 14 se observa la pantalla principal de EAR/PILAR donde vamos a escoger la opción de análisis cualitativo

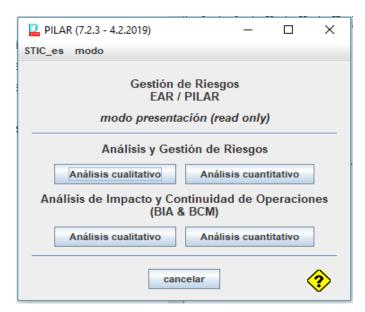


Figura 14: Pantalla principal PILAR- MAGERIT

Fuente: Elaboración Propia

Completando los datos del proyecto figura 15 describiendo que se va a realizar en el departamento de tecnologías informáticas.

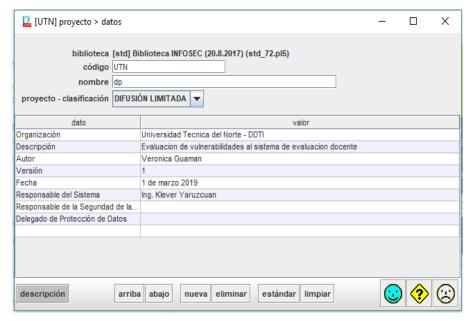


Figura 15: Información del proyecto.

2.6.1 Determinación de activos

Un activo es algo que es valioso o de utilidad para la organización. La finalidad de los activos es brindar protección para asegurar de alguna forma la operación del negocio y la continuidad.

Los activos según la norma ISO 17799:2005 se clasifican en:

- Activos de información: dentro de este grupo se encuentran bases de datos, documentación del sistema, manuales de usuario, procedimientos operativos, procedimientos de apoyo, planes de continuidad y manuales de entrenamiento.
- Documentos impresos: dentro de este grupo se encuentran documentos impresos, lineamientos, contratos de la compañía, documentos con información importante del negocio y contratos.
- Activos de software: dentro de este grupo se encuentran los softwares de aplicación, herramientas de desarrollo y software de sistemas.
- Activos físicos: dentro de este grupo se encuentran equipos informáticos, dispositivos de comunicación y diversos equipos tecnológicos.
- **Activo humano:** dentro de este grupo se encuentran los clientes, suscriptores y personal afín al negocio.
- Imagen y reputación de la compañía.
- **Servicios**: en este grupo se encuentran los servicios técnicos, tales como servicios de computación entre otros.

Dentro de la organización a evaluar, cada trabajador que forma parte de la organización es designado para manejar uno o varios activos de la institución según el cargo que ocupe. Pero todos los activos no tienen la misma importancia dentro de la organización; por lo tanto, los mecanismos de seguridad que se empleen dependen de las amenazas existentes para cada activo.

Tabla 24: Clasificación de Activos

TIPO DE ACTIVO	ACTIVO			
Datos y/o información	Bases de Datos de estudiantes y personal académico.			
Software	Licencia GNU Oracle Linux 6			
	Licenciamiento Campus Agreement Microsoft			
	Licencia perpetua Oracle 11g Database and Aplications			

	Licenciamiento Adobe Creative Cloud MLP Ed Subscription
	Multi Latin American Languagues
	Licenciamiento Eset NOd 32 Antivirus
	Licencia ToolBook
	Licencia GNU Linux Centus
	Software libre licencia GNU para el Geoportal
	Licencia de ESRI Arcgis 10.1
	Licencia GNU Dbspace para Repositorio Digital
	Licencia GNU Moodle para aula virtual
Equipamiento Informático	Servidores HP Blade System
 (Hardware)	Equipos Informáticos PC
,	Laptop's
	Call Manager
	Gateway de voz
	IVR (contestadora automática)
	Tape Backup
	Switchs Core
	Switchs de acceso
	Cisco ASA
	Firewall
	lpx
	Router
	Antenas y radio enlaces
	Access point
	Torres
	Racks
	Cableado estructurado
	Cabicado Con dotal ado
Redes de Comunicaciones	Red telefónica
	Red de datos
	Red inalámbrica
	Internet
Soportes de Información	Nube Oracle Apex
Equipamiento Auxiliar	Ups
-4arkannerne vaxman	Fibra Óptica
Instalaciones	Departamento de DDTI - UTN
Personal	Miembros del Área de DDTI
- Coolidi	MICHIDIO GOLATIO GOLD II

Fuente: (Departamento de Desarrollo Tecnológico e Informático - UTN, 2013)

A continuación, se clasifican los activos por función en el sistema de evaluación docente.

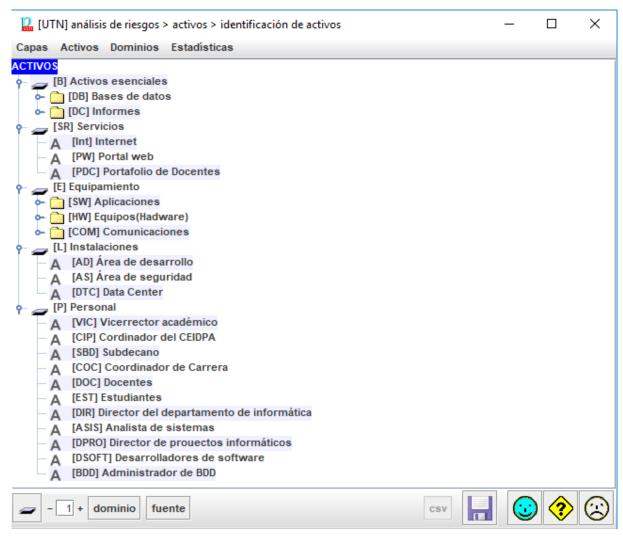


Figura 16: Activos del sistema de evaluación docente.

Fuente: Elaboración Propia

2.6.2 Dependencia entre activos

En una organización existen activos que dependen de otros más significativos, entre ellos puede estar involucrados equipos, comunicaciones, personal entre otros. Es importante identificar si existe dependencia entre activos, puesto que tal vez exista un activo importante que se vea afectado materializarse una amenaza en un activo de inferior importancia. Si existe dependencia entre los activos se formaría un árbol de dependencias.

Es posible decir que los activos de inferior grado son la base para los activos de un grado mayor, pero si la dependencia entre activos se vuelve muy fuerte es necesario diseñar prevenciones más efectivas, de lo contrario al ocurrir un fallo en un activo de menor grado y este a su vez ser dependiente de un activo mayor y este a su vez ser dependiente de otro, el fallo puede resultar muy perjudicial para toda la organización.

a) Capa 1: El entorno: son activos esenciales para precisar las siguientes capas.

Dentro de esta capa se encuentra:

- Equipamiento y suministros de energía, sistemas de comunicación y climatización.
- Personal de desarrollo, operación, directivo, entre otros.
- Edificios, mobiliario, entre otros.

b) Capa 2 Sistema de información.

Dentro de esta capa se encuentran elementos como:

- Equipos informáticos en cuanto a hardware.
- Software
- Comunicaciones.
- Respaldos de información.

c) Capa 3 Información.

Dentro de esta capa se encuentran todos los datos relacionados a la organización.

d) Capa 4 Funciones de la organización.

Dentro de esta capa se describen el objetivo y la misión, además de los servicios producidos.

e) Capa 5 Otros activos.

Dentro de esta capa se encuentran activos como la credibilidad y solvencia.

2.6.3 Valoración de activos

La valoración del activo se lo puede hacer de forma cuantitativa, es decir asignando una cantidad numérica, también es posible valorar el activo de forma cualitativa, es decir asignado niveles.

Para que la valoración de activos sea lo más precisa posible es necesario conocer con gran profundidad el proceso a evaluar, para lograrlo es necesario revisar toda la documentación de relevancia a la organización, además de establecer contacto con las personas que están dentro del proceso o sistema a evaluar.

A continuación, en la figura 17 se muestra la valoración entre activos del sistema de evaluación docente con su respectiva valoración en parámetros de disponibilidad, integridad, confidencialidad, autenticidad y trazabilidad.

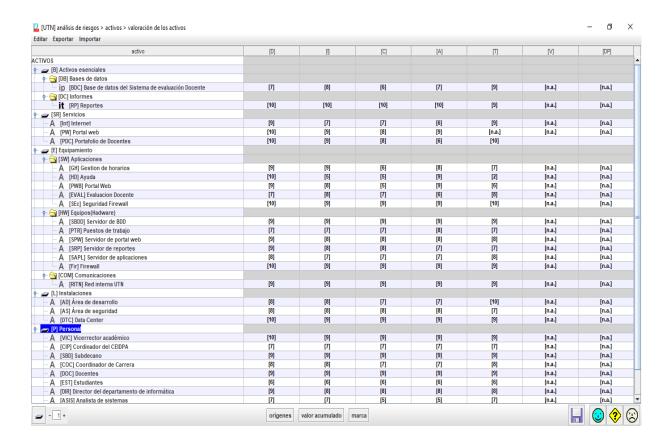


Figura 17: Valoración de activos del sistema de evaluación docente.

En esta gráfica se puede apreciar el valor del dominio de seguridad del sistema de evaluación docente.

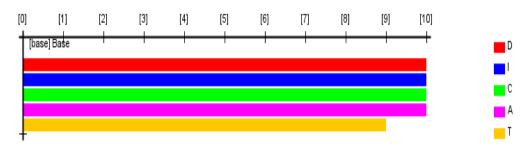


Figura 18: Valoración del dominio de seguridad UTN

Fuente: Elaboración Propia

La siguiente figura 19 se realizó con la información ingresada de los activos que posee el Departamento de Desarrollo Tecnológico e Informático (DDTI – UTN) con los diferentes niveles de valor asignado a cada activo.

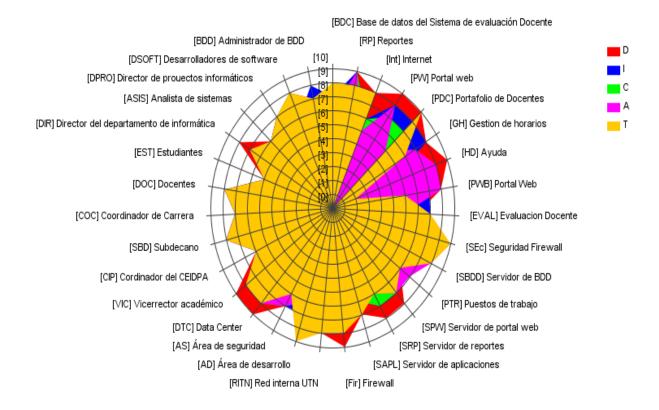


Figura 19: Gráfica de valor/activos **Fuente:** Elaboración Propia

69

2.6.4 Identificación de amenazas

La identificación de amenazas consiste en identificar posibles amenazas que pueden afectar a cada uno de los activos. Para ello fue necesario revisar documentación acerca de políticas de seguridad del sistema a evaluar, por ejemplo, verificar si existe políticas para el acceso al sistema de evaluación docente.

Es posible identificar dos tipos de amenazas.

- **Deliberadas**: Este tipo de amenazas con las que están previamente planificadas para causar daño a la organización.
- Accidentales: Este tipo de amenazas son las que no están planificadas por ningún actor, sin embargo, generan daños a la organización.

Una vez valorados los activos Pilar asocia a cada uno de los activos del sistema de evaluación docente, amenazas posibles para dicho activo. A continuación, en la figura 20 se presentan las amenazas asociadas a los activos del sistema de evaluación docente.

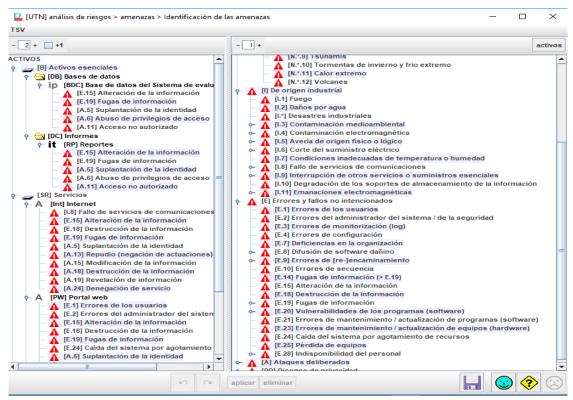


Figura 20: Amenazas del sistema de evaluación docente.

2.6.5 Valoración de amenazas

Para la valoración de amenazas se toma en cuenta dos factores importantes:

- **Probabilidad de ocurrencia:** es el registro de ocurrencia de una amenaza cuando se materializa una amenaza.
- Porcentaje de degradación: es el daño que causo el incidente ocurrido.

Para evaluar la ocurrencia se lo hace mediante los parámetros presentados en la tabla 26.

Tabla 25: Probabilidad de ocurrencia.

MA	100	Muy frecuente	A Diario
Α	10	Frecuente	Mensualmente
M	1	Normal	Una vez al año
В	1/10	Poco frecuente	Cada varios años
MB	1/100	Muy poco frecuente	Siglos

Fuente: Elaboración Propia

Para valorar de forma adecuada las amenazas es necesario diferenciar entre amenazas accidentales e intencionadas. El porcentaje de degradación es la relación entre la amenaza y dimensión, esta se mide entre 0% y 100%.

A continuación, en la figura 21 se presentan los porcentajes recomendados por Pilar para el sistema de evaluación docente.

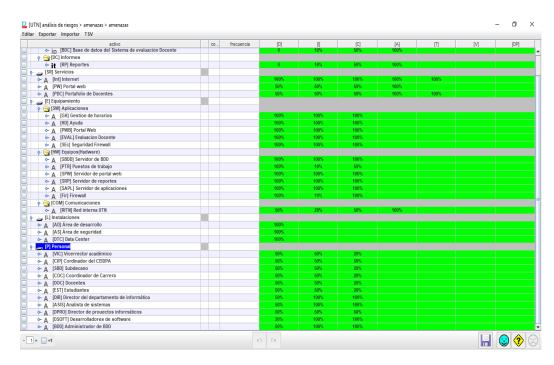


Figura 21: Amenazas del sistema de evaluación docente.

Fuente: Elaboración Propia

En la figura 22 de acuerdo a la tabla 26 la probabilidad de ocurrencia en el sistema podemos evidenciar en la columna de frecuencia.

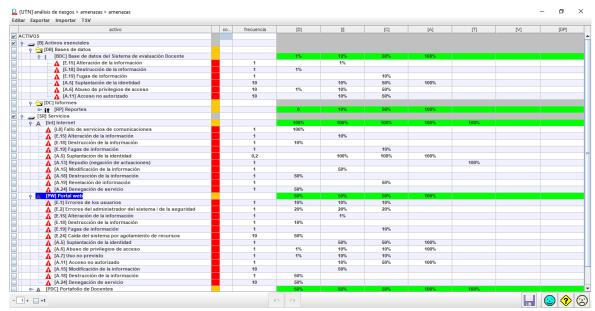


Figura 22: Tabla de amenazas y porcentaje de probabilidad de ocurrencia

2.6.6 Estimación de impacto

El impacto es el daño que se originó en los activos una vez que las amenazas se materializaron. Para la estimación de impacto se lo hace mediante los siguientes factores:

- La materialización de una amenaza puede afectar a todo un recurso informático o solo a una parte de este.
- La materialización de una amenaza puede afectar a partes claves de información o a partes independientes.
- Una vez materializada la amenaza es temporal o permanente.

Los impactos pueden traer consigo impactos cualitativos o cuantitativos, por ejemplo, perdidas económicas, mala imagen de los clientes hacia la empresa entre muchas otras.

Es posible establecer una relación entre la consecuencia de los riesgos materializados y las salvaguardas necesarias. También se debe tomar en cuenta la frecuencia de ocurrencia de las amenazas, debido muchas amenazas materializándose al mismo tiempo puede causar considerables pérdidas y daños a la organización.

2.6.7 Impacto acumulado

Es posible conocer el impacto acumulado, su cálculo es para cada activo, cada amenaza y la dimensión de valoración, el resultado está descrito en función de la degradación y el valor acumulado; por lo tanto, mientras más grande sea la degradación, mayor será el impacto acumulado.

El impacto acumulado es de mucha utilidad para saber que salvaguardas se deben aplicar en la organización para mitigar los riesgos.

A continuación, en la figura 23 se presenta el impacto acumulado en los activos del sistema de Evaluación docente.

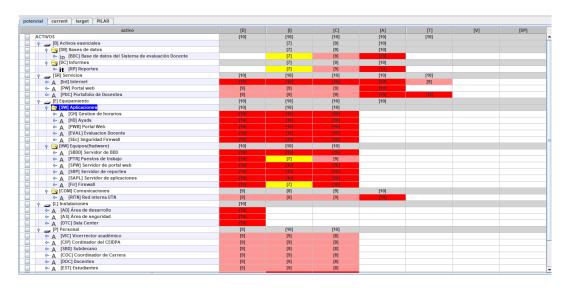


Figura 23: Impacto acumulado del sistema de evaluación docente.

Fuente: Elaboración Propia

En la figura 24 se muestra un gráfico en que se detalla el riesgo acumulado del sistema de evaluación docente.

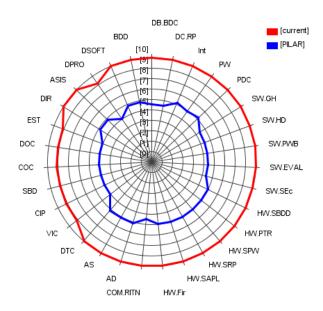


Figura 24: Situación actual del impacto acumulado del sistema de evaluación docentes.

En la figura 24 se evidencia el gráfico del impacto acumulado al sistema de evaluación docente, el gráfico en rojo es el porcentaje en el que se encuentra la Universidad, mientras que lo azul es lo recomendable por Pilar.

2.6.8 Riesgo acumulado

A continuación, en la figura 26 se presenta el riesgo acumulado en los activos del sistema de Evaluación docente.

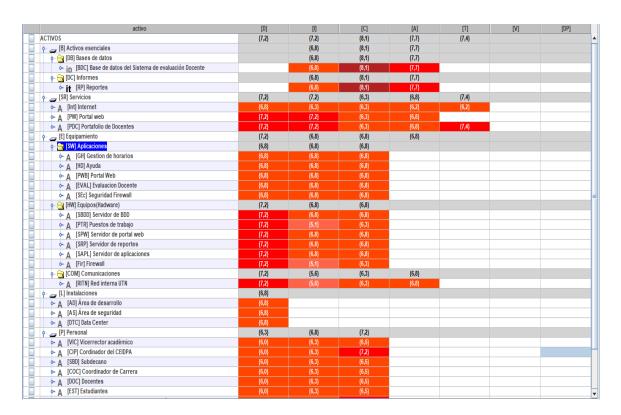


Figura 25: Riesgo acumulado del sistema de evaluación docente.

Fuente: Elaboración Propia

2.6.9 Impacto repercutido

El valor repercutido se calcula en base al valor del activo, permite conocer las consecuencias que tendría la ocurrencia de accidentes técnicos en el sistema de información.

Calculo de nivel de riesgo

Para calcular en nivel de riesgo es necesario identificar los riesgos. Para la identificación de riesgos existen varios métodos entre los cuales destacan:

- Método Delphi.
- Arboles de fallos.
- Arboles de eventos.
- Análisis probabilístico.
- Entrevistas.
- Encuestas.
- FODA.

Valoración de riesgos.

La valoración de riesgos es un proceso secuencia, es decir se tiene que seguir la siguiente secuencia, identificación de activos, identificación de amenazas y la estimación de vulnerabilidades de amenazas sobre cada activo.

Para la valoración de riesgos existe cuatro zonas:

- Bajo: Indica que el riesgo es bajo; por lo tanto, no es necesario emplear salvaguardas adicionales.
- Medio: Indica que el riesgo es medio; por lo tanto, se debe considerar la implementación de salvaguardas.
- Alto: Indica que el riesgo es alto; por lo tanto; es obligatorio emplear salvaguardas para mitigar riesgos.
- Crítico: Indica que el riesgo es crítico; por lo tanto, es obligatorio emplear salvaguardas adicionales para minimizar el riesgo.

La moderación para el riesgo se presenta en la tabla 26

Tabla 26: Nivel de riesgo

0	<	Nivel de riesgo bajo	<	3
3	<	Nivel de riesgo medio	<	6
6	<	Nivel de riesgo alto	<	9
9	<	Nivel de riesgo critico	<	12

Fuente: Elaboración Propia

Los datos presentados en la figura 27 son el resultado del producto entre la probabilidad de ocurrencia y la importancia del riesgo.

Probabili De Ocurre		Importan del riesg		Nivel de r	iesgo
Bajo	1	Bajo	1	Вајо	1
Medio	2	Normal	2	Вајо	2
Alto	3	Alto	3	Вајо	3
		Critico	4	Medio Medio	4 5
				Medio Alto	6 7
				Alto Alto	8 9
				Crítico	10
				Crítico	11
				Crítico	12

Figura 26: Tabla de Nivel de Riesgo

Fuente: Elaboración Propia

Para determinar el nivel de riesgo se aplica la siguiente expresión.

Nivel de riesgo =
$$\frac{\sum_{i=1}^{n} Probabilidad de ocurrencia del riesgo (i) * importancia del riesgo (i)}{m}$$

Donde

N es la cantidad total de riesgos.

Independiente de la metodología que se emplee es muy importante determinar una lista de riesgos para cada activo, así como también el impacto que implicaría que dicho riesgo se materialice.

Es importante mencionar que el riesgo más peligroso será aquel que no se ha previsto y para el cual no se ha preparado, por ello no independientemente de la prioridad no se debe omitir la existencia de ningún riesgo.

2.6.10 Situación actual del riesgo acumulado

En la figura 28 se muestra un gráfico en que se detalla el riesgo acumulado del sistema de evaluación docente, la gráfica en verde es el riesgo que actualmente posee el sistema de evaluación docentes, el rosa es lo recomendado por Pilar.

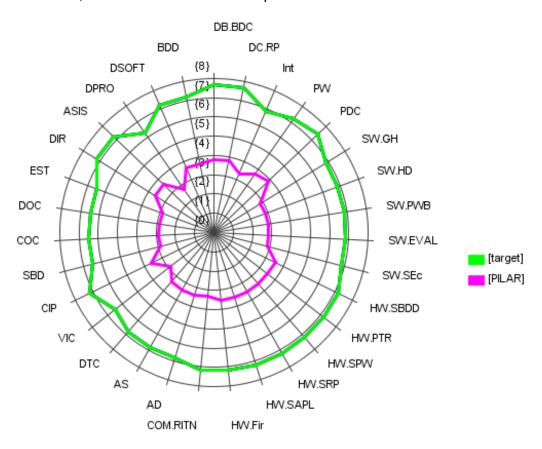


Figura 27: Situación actual del riesgo acumulado del sistema de evaluación docente.

En la figura 29 se puede apreciar el riesgo acumulado/ dimensión cabe mencionar que lo recomendado por la metodología es más bajo a lo que actualmente se encuentra.

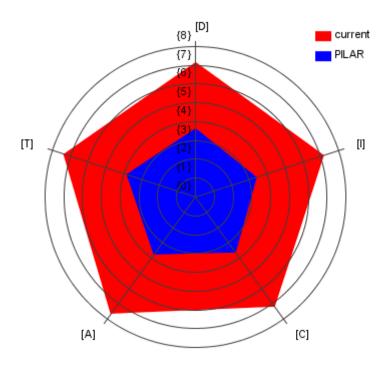


Figura 28: Riesgo Acumulado/dimensión

Fuente: Elaboración Propia

Con los resultados que se obtenidos mediante el análisis es necesario amenorar los riesgos existentes ya que le valor que se encontró es muy alto a diferencia de lo recomendado por la metodología, de esta manera se estaría preservando la seguridad de la información.

Capítulo 3

Resultados

3.1 Informe de Resultados

En esta sección se evalúa el cumplimiento del sistema de evaluación docente en cuanto a seguridad de la información de la Universidad Técnica del Norte, como base para la evaluación se toma en cuenta la norma ISO/IEC 27002:2017, misma que establece un estándar de control de seguridad de la información.

Se ha revisado la documentación existente acerca del sistema de Evaluación docente, para conocer la situación actual del mismo, lo que contribuye a la identificación de vulnerabilidades y amenazas.

El sistema de Evaluación docente es parte de un sistema más grande que abarca todos los servicios de la plataforma virtual de la UTN.

El sistema de Evaluación docente posee varios niveles, en cada nivel existe un actor para la evaluación docente.

Los actores por niveles son los siguientes:

- 1) Vicerrector académico
- 2) CEIDPA
- 3) Subdecano
- 4) Coordinador de carrera
- 5) Docentes
- 6) Estudiantes

3.2 Evaluación del cumplimiento

Para evaluar el cumplimiento de los controles del sistema de Evaluación docente, se tomó como referencia los controles de la norma ISO/IEC 27002:2017.

Se elaboró un Check List de los controles más relevantes para el sistema, mismos que se presentan en la tabla 27.

Tabla 27: Evaluación de cumplimiento de controles ISO 27002:2017

Aspecto general	Objetivo de control	Control	Observación	Cumplimiento
Políticas de	Dirección de gestión de	Políticas de	Existe un plan de desarrollo informático de la UTN	SI
seguridad de la	la seguridad de la	seguridad de la	2018-2022 en donde establece políticas para la	
información	información	información	seguridad de la información. Este se basa en el plan	
			de desarrollo informático de la UTN 2013-2017.	
		Revisión de las	No existe procedimientos para la revisión de políticas	NO
		políticas para la	de seguridad de la información del sistema de	
		seguridad de la	evaluación docente.	
		información		
Organización de la	Organización interna	Roles y	El personal del área de informática da la UTN	NO
seguridad		responsabilidades de	desarrolla varias actividades de manera esporádica.	
informática		seguridad de la	No sigue las instrucciones del manual de funciones	
		información	definido en el plan de desarrollo.	

		Separación de	Los miembros del departamento de informática tienen	SI
		funciones	funciones específicas de acuerdo a la planificación de	
			desarrollo de la UTN.	
		Contacto con las	En caso de algún inconveniente es posible el contacto	SI
		autoridades	con las autoridades mediante la plataforma QUIPUX.	
Organización de la		Contacto con los	La UTN mantiene relaciones con proveedores	NO
seguridad		grupos de interés	nacionales y extranjeros, de los cuales ninguno es	
informática		especial	representativo en cuanto a seguridad de la	
			información.	
	Dispositivos móviles y	Política de	No existe una política de soporte para la gestión de	NO
	teletrabajo	dispositivos móviles	riesgos por el uso de dispositivos móvil para ingresar	
			al sistema de evaluación docente.	
	Antes del empleo	Investigación de	LA UTN para integrar un nuevo miembro a su equipo	SI
		antecedentes	de trabajo solicita las hojas de vida con sus	
Seguridad en			respectivos documentos habilitantes.	
recursos humanos		Términos y	La UTN no dispone de documentos en donde se	NO
		condiciones de	describe las funciones y responsabilidades para la	
		empleo	seguridad de la información. Debido a que existe un	
			llamamiento a concurso.	

	Durante el empleo	Responsabilidades	Existe un manual de funciones, en donde se define	SI
Seguridad en		de dirección	las responsabilidades referentes a la seguridad de la	
recursos humanos			información, así como la confidencialidad.	
		Conciencia,	No existe una capacitación planificada relacionado	NO
		educación y	con la seguridad de la información	
		formación en		
		seguridad de la		
		información.		
		Proceso disciplinario	La UTN no dispone de un proceso disciplinario	NO
			definido, para sancionar a empleados que hayan	
			violado la seguridad de la información.	
•	Finalización o cambio	Responsabilidades	La UTN no posee documentación oficial acerca de la	NO
Seguridad en	de empleo	ante la finalización o	confidencialidad de la información, una vez terminado	
recursos humanos		cambio de empleo	el contrato de un empleado.	
Gestión de activos	Responsabilidad de los	Inventario de activos	En el plan estratégico informático existe un inventario	SI
	activos		de los equipos, servidores y todos los dispositivos	
			empleados en los diferentes módulos.	

		Propiedad de activos	Existe responsables de los activos del sistema de	SI
			evaluación docente, pero no existe un propietario	
			específico.	
		Uso adaptable de	Existen encargados y responsables del manejo	SI
Gestión de activos		activos	información exclusiva	
		Devolución de activos	No existe un procedimiento definido para el registro	SI
			de activos devueltos por parte de los empleados que	
			terminan su contrato. Pero los activos son registrados	
			de forma directa en la lista de activos fijos.	
Control de acceso	Requisito de negocio	Política de control de	La UTN no dispone de políticas para el acceso al	NO
	para el control de	acceso	sistema de evaluación docente,	
	acceso	Acceso a redes y	La UTN no dispone de políticas para el acceso de	NO
		servicios de red	redes, pero existe un monitoreo continuo.	
	Gestión de acceso de	Registro y retiro de	La UTN emplea el módulo de personal involucrado	SI
	los usuarios	usuario	para la revisión permanente de usuarios.	
		Provisión de acceso a	No existe un procedimiento definido para asignar o	NO
		usuarios	revocar los derechos de acceso a usuarios. Es	
			gestionado por el módulo de seguridad	

		Gestión de la	No existe políticas de confidencialidad de las claves	NO
		información secreta	de acceso de los usuarios	
		de autentificación de		
		los usuarios		
Control de acceso		Revisión de los	Existe un seguimiento del acceso de los miembros	NO
		derechos de acceso	que ya no son parte de la UTN. También se verifica el	
		de usuario	usuario cuando se identifica una anomalía.	
		Retiro y ajuste de los	No existe una eliminación de acceso cuando un	NO
		derechos de acceso	estudiante ya no es parte de la UTN	
	Responsabilidades del	Uso de la información	No existe un procedimiento definido para el acceso a	NO
	usuario	secreta de	la plataforma y las debidas seguridades. Las claves	
		autentificación	son administradas por la base de datos.	
	Control de acceso a	Procedimientos	No existe una política de acceso seguro. Únicamente	NO
	sistemas y aplicaciones	seguros de inicio de	se trabaja con el bloque por contraseña	
Control de acceso		sesión		
		Sistema de gestión	No existe políticas para la asignación de contraseñas.	NO
		de contraseñas	Las contraseñas son asignadas por la base de datos	

		Control de acceso al	No existe documentación acerca del acceso al código	SI
		código fuente del	fuente. Solo los usuarios autorizados ingresan al	
Control de acceso		programa	código fuente dependiendo de rango	
	Controles criptográficos	Política de uso de los	Existe documentado en el sistema de gestión de	SI
		controles	procesos	
Criptografía		criptográficos		
		Gestión de llaves	No existe políticas para la gestión de llaves. Las llaves	NO
			se gestionan directamente desde la base de datos en	
			base a su configuración.	
	Áreas seguras	Perímetro de	La UTN cuenta con un área exclusiva para el área de	SI
		seguridad física	desarrollo debidamente señalizada.	
Seguridad física y		Controles físicos de	El ingreso es mediante un biométrico	SI
del entorno		entrada		
		Protección contra	No existe procedimientos definidos contra	NO
		amenazas externas y	eventualidades externas.	
		ambientales.		
	Equipos	Ubicación y	No existe políticas para el consumo de alimentos o	NO
		protección de equipos	cualquier líquido que dañe los equipos o documentos.	

		Instalaciones de	No existe suministro redundante que garantice la	NO
		suministro	continuidad operativa.	
		Seguridad del	El cableado de voz, datos y eléctrico está protegido	SI
Seguridad física y		cableado	contra daños	
del entorno	l entorno Mantenimiento de los Existe un plan de mantenimiento adecuado para			
		equipos	Data Center, lo cual garantiza la continuidad del	
			servicio de la plataforma. Además, existe contratos	
			con proveedores externos para la reparación en caso	
			de posibles fallas.	
	Procedimientos y	Documentación de	En base a trabajos de pregrado, la universidad posee	SI
	responsabilidades	procedimientos de	procesos que son contradictorios.	
Seguridad de las	operacionales	operación		
operaciones		Gestión de cambios	Los cambio son posibles mediante la plataforma	SI
			Quipux	
		Gestión de	Las funciones del departamento de informática son	SI
		capacidades	designadas de tal forma que se evitan modificaciones	
			significativas.	

		Separación de	Existe áreas de desarrollo y de producción	SI
Seguridad de las		ambientes de	debidamente separadas, además el ambiente de	
operaciones		desarrollo, pruebas y	prueba es el mismo entorno de desarrollo de cada	
		producción	programador.	
	Protección contra un	Controles contra un	Todos los terminales del DDTI cuenta con Eset-	SI
	malware	malware	EndPoint corporativo. Además, se cuenta con un	
			firewall para el acceso a internet,	
	Copias de seguridad	Copias de seguridad	Existen copias de seguridad realizadas a diario. La	SI
		de la información	documentación física es respaldada cada semestre	
Seguridad de las	Registro y monitoreo	Registro de eventos	No existe procesos de registro de eventos.	NO
operaciones		Protección de la	Los registros se encuentran protegidos de los	SI
		información de	accesos no autorizados.	
		registro		
	Control del software	Instalación del	Todo software implementado en los dispositivos	SI
	operacional	software en los	cuenta con licencias.	
		sistemas operativos		
	Gestión de la	Gestión de las	No existe procedimientos definidos para las	NO
	vulnerabilidad técnica	vulnerabilidades	vulnerabilidades técnicas. En caso de algún fallo no	
		técnicas	existe herramientas de backup,	

		información.		
	información	seguridad de la	procedimiento en el área de desarrollo.	
	de los sistemas de	y especificaciones de	encuentran documentados en los manuales de	
	Requisitos de seguridad	Análisis de requisitos	Los requisitos de seguridad de la información se	SI
		redes	VLAN. Existe documentación de ello.	
		Separación en las	La red de la UTN se encuentra segmentada en varias	SI
		servicios de red	ASA.	
elecomunicaciones.		Seguridad de los	La UTN cuenta con mecanismos de seguridad Cisco	SI
Seguridad en las			filtrado MAC	
	de redes		estudiantes, docentes y administrativos mediante	
	Gestión de la seguridad	Controles de red	Existe control mediante el portal cautivo para	SI
operaciones			módulo de gestión académica.	
Seguridad de las			una tesis, la cual la describe como una aplicación del	
	de información	información	Toda la documentación del proceso se encuentra en	
	la auditoria de sistemas	de sistemas de	docente está gestionado por el sistema de auditoria.	
	Consideraciones sobre	Controles de auditoria	El control de la auditoria del sistema de evaluación	SI
		software		
		instalación del	instale software no adecuado.	
		Restricciones en la	No existe normas para la sanción del personal que	NO

Adquisición.	Seguridad en el	Política de desarrollo	Para el desarrollo del sistema de evaluación docente	SI
Desarrollo y	desarrollo y en los	seguro	la UTN hace empleo de una metodología RUP.	
mantenimiento del	procesos de soporte	Procedimientos de	El control de cambios se realiza mediante el módulo	SI
sistema		control de cambios en		OI.
			de Planificación del Sistema Integra Informático.	
		el sistema		
	Datos de prueba	Protección de datos	Las pruebas de software se realizan en el puesto de	NO
		de prueba	trabajo de los programadores. No existe directrices	
			para el uso de datos reales para pruebas.	
	Gestión de la provisión	Monitoreo y revisión	La UTN mantiene relaciones con proveedores	NO
Relaciones con	de servicios del	de los servicios de	externos, pero no existe procesos de seguimiento.	
proveedores	proveedor	proveedores		
		Gestión de cambios	Los contratos con proveedores externos se	SI
Relaciones con		en los servicios de	encuentran en proveeduría.	

	Gestión de los	Responsabilidades y	La UTN no cuenta con un software Help Desk, pero	NO
	incidentes de seguridad	procedimientos	no lo tiene implementado.	
	de la información y			
	mejoras			
		Informe de los	No existe un proceso definido para la recopilación de	NO
Gestión de		eventos de seguridad	errores del sistema de evaluación docente.	
incidentes de		de la información		
seguridad de la		Informe de	no existe un procedimiento definido, para la	NO
información		debilidades de	recopilación de errores por parte de proveedores.	
		seguridad de la		
		información		
		Respuesta a	La respuesta ante incidentes de seguridad se realiza	SI
		incidentes de	mediante registros de Quipux, los registros son	
		seguridad de la	autorizados por la dirección de informática.	
		información		
		Aprendizaje de los	No existe un manual de evaluación de incidentes que	NO
		incidentes de	permita mejorar los errores cometidos en cuanto a la	
Gestión de		seguridad de la	seguridad de la información.	
incidentes de		información		

seguridad de la		Recopilación de	La recopilación de incidentes se lo realiza mediante la	SI	
información		evidencias	plataforma Quipux.		
Aspectos de	Continuidad de	Planificación de la	El departamento de informática cuenta con un plan de	NO	
seguridad de la seguridad de la		continuidad de	continuidad a baja escala, el plan no toma en cuenta		
nformación para la información		seguridad de la	daños ni catástrofes y no incluyen en la seguridad de		
gestión de la		información	la información.		
continuidad del					
negocio.	Redundancias	Disponibilidad de las	El departamento de informática no dispone de la	NO	
		instalaciones de	infraestructura necesaria para brindar un servicio de		
		procesamiento de la	alta disponibilidad.		
		información			
	Cumplimiento de los	Identificación de la	Se aplica la Ley de Educación Superior y el	SI	
	requisitos legales	legislación aplicable	Reglamento Interno de la UTN		
Cumplimiento	contractuales	de los requisitos			
		contractuales.			
		Derechos de	Cada trabajo de titulación y desarrollo de software	SI	
		propiedad intelectual	cuenta con derechos de autor.		

	Protección de los	La información proporcionada de la evaluación	SI
	registros	docente es almacenada en una base de datos	
		especifica	
	Protección y	El DDTI no cuenta con algún documento sobre	NO
Cumplimiento	privacidad de la	confidencialidad de la información	
	información de		
	carácter personal		

Fuente: Elaboración Propia

Después de haber realizado el Check List de la norma ISO 27002 se observó que dentro del Departamento de Desarrollo Tecnológico e Informático (DDTI) no se cumple con ciertos controles y este resultado se ve reflejado en la figura 30 el porcentaje de cumplimiento mediante la norma ISO 27002:2017

Figura 29: Cumplimiento de controles ISO 27002:2017

Fuente: Elaboración Propia

Mediante este resultado es necesario elaborar un listado de observaciones y recomendaciones en base a la normativa para que esta pueda ser puesta en marcha dentro del Departamento de Desarrollo Tecnológico e Informático (DDTI).

3.3 Informe de No Conformidades ISO 27002:2017

La siguiente tabla es un resumen de los controles que no se cumplen según recomendación de la Norma ISO 27002:2017 dentro del Departamento de Desarrollo Tecnológico e Informático (DDTI), ante esta situación se realiza las recomendaciones necesarias para que dicho control pueda ser aplicado y lograr un cumplimiento a un mediano plazo de la Normativa. La siguiente información se detalla en la Tabla 30.

Figura 30: Observaciones y recomendaciones de los controles ISO 27002:2017

Aspecto	Objetivo de	Control	Observación	Cumplimient	Recomendación
general	control			0	
	Dirección de	Revisión de las	No existe procedimientos para la	NO	Asignar a un analista la tarea
	gestión de la	políticas para la	revisión de políticas de seguridad de		de crear políticas de
	seguridad de la	seguridad de la	la información del sistema de		seguridad de la información y
	información	información	evaluación docente.		sus respectivos
Políticas de					procedimientos. Además, el
seguridad de la					analista será el encargado
información					dar seguimiento al
					cumplimiento de las políticas
					creadas.
Organización	Organización	Roles y	El personal del área de informática	NO	Revisar el manual de
de la seguridad	interna	responsabilidade	da la UTN desarrolla varias		funciones, para comprobar si
informática		s de seguridad de	actividades de manera esporádica.		es necesario hacer
		la información	No sigue las instrucciones del		modificaciones a los
			manual de funciones definido en el		procedimiento y posterior a
			plan de desarrollo.		ello hacer cumplir
					procedimientos.

	Organización	Contacto con los	La UTN mantiene relaciones con	NO	Establecer contactos con
	interna	grupos de interés	proveedores nacionales y		grupos de la seguridad de la
		especial	extranjeros, de los cuales ninguno es		información.
			representativo en cuanto a seguridad		
			de la información.		
Organización	Dispositivos	Política de	No existe una política de soporte	NO	Establecer políticas de
de la seguridad	móviles y	dispositivos	para la gestión de riesgos por el uso		seguridad para el ingreso
informática	teletrabajo	móviles	de dispositivos móvil para ingresar al		desde dispositivos móviles.
			sistema de evaluación docente.		Las medidas de seguridad
					deberán ser difundidas para
					el conocimiento de todas las
					partes implicadas.
Seguridad en	Antes del empleo	Términos y	La UTN no dispone de documentos	NO	Definir de forma clara y
recursos		condiciones de	en donde se describe las funciones y		concisa los términos y
humanos		empleo	responsabilidades para la seguridad		condiciones de contrato, para
			de la información. Debido a que		las diferentes actividades del
			existe un llamamiento a concurso.		DDTI.

	Durante el	Conciencia,	No existe una capacitación	NO	Crear un plan de
	empleo	educación y	planificada relacionado con la		capacitación, para dar a
		formación en	seguridad de la información		conocer los puntos
		seguridad de la			importantes sobre la
		información.			seguridad de la información.
	Durante el	Proceso	La UTN no dispone de un proceso	NO	Crear un proceso disciplinario
	empleo	disciplinario	disciplinario definido, para sancionar		bien definido, para la sanción
Seguridad en			a empleados que hayan violado la		de actores que violen la
recursos			seguridad de la información.		seguridad de la información.
humanos	Finalización o	Responsabilidade	La UTN no posee documentación	NO	Elabora un plan para el cese
	cambio de	s ante la	oficial acerca de la confidencialidad		de cambios de personal. Para
	empleo	finalización o	de la información, una vez terminado		retirar el acceso a los
		cambio de	el contrato de un empleado.		estudiantes y docentes que
		empleo			no pertenezcan a la UTN.
Control de	Requisito de	Política de control	La UTN no dispone de políticas para	NO	Crear políticas de para el
acceso	negocio para el	de acceso	el acceso al sistema de evaluación		acceso y control del sistema
	control de acceso		docente.		de evaluación docente.
	Requisito de	Acceso a redes y	La UTN no dispone de políticas para	NO	Crear un plan de monitores
	negocio para el	servicios de red	el acceso de redes, pero existe un		del sistema de evaluación
	control de acceso		monitoreo continuo.		docente.

	Gestión de	Provisión de	No existe un procedimiento definido	NO	Crear un proceso para la
	acceso de los	acceso a	para asignar o revocar los derechos		creación de nuevos usuarios
	usuarios	usuarios	de acceso a usuarios. Es gestionado		y revocar a usuarios.
			por el módulo de seguridad		
	Gestión de	Gestión de la	No existe políticas de	NO	Crear medidas de seguridad
	acceso de los	información	confidencialidad de las claves de		para el acceso al sistema de
Control de	usuarios	secreta de	acceso de los usuarios		evaluación docente y
acceso		autentificación de			difundirlas.
		los usuarios			
	Gestión de	Revisión de los	Existe un seguimiento del acceso de	NO	Crear un proceso para revisar
	acceso de los	derechos de	los miembros que ya no son parte de		los derechos de acceso al
	usuarios	acceso de	la UTN. También se verifica el		sistema de evaluación
		usuario	usuario cuando se identifica una		docente.
			anomalía.		
Control de	Gestión de	Retiro y ajuste de	No existe una eliminación de acceso	NO	Crear un proceso para la
acceso	acceso de los	los derechos de	cuando un estudiante ya no es parte		eliminación de acceso a los
	usuarios	acceso	de la UTN		estudiantes y docentes que
					ya no pertenecen a la UTN

Control de	Responsabilidades	Uso de la	No existe un procedimiento definido	NO	Crear una guía de seguridad
acceso	del usuario	información	para el acceso a la plataforma y las		para el acceso al sistema de
		secreta de	debidas seguridades. Las claves son		evaluación docente y
		autentificación	manejadas por la base de datos.		difundirla.
	Control de	Procedimientos	No existe una política de acceso	NO	Crear un proceso para inicios
	acceso a	seguros de inicio	seguro. Únicamente se trabaja con el		de sesión y desbloqueo para
	sistemas y	de sesión	bloque por contraseña		el sistema de evaluación
Control de	aplicaciones				docente.
acceso	Control de	Sistema de	No existe políticas para la asignación	NO	Crear una política para la
	acceso a	gestión de	de contraseñas. Las contraseñas son		gestión de contraseñas y
	sistemas y	contraseñas	asignadas por la base de datos		políticas de confidencialidad
	aplicaciones				
Criptografía	Controles	Gestión de llaves	No existe políticas para la gestión de	NO	Crear políticas para la gestión
	criptográficos		llaves. Las llaves se gestionan		de llaves del sistema de
			directamente desde la base de datos		evaluación docente.
			en base a su configuración.		
	Áreas seguras	Protección contra	No existe procedimientos definidos	NO	Establecer procedimientos
		amenazas	contra eventualidades externas.		contra eventualidades
		externas y			externas.
		ambientales.			

Seguridad	Equipos	Ubicación y	No existe políticas para el consumo	NO	Establecer políticas contra
física y del		protección de	de alimentos o cualquier líquido que		consumo de alimentos en
entorno		equipos	dañe los equipos o documentos.		sitios de procesamiento de datos físicos.
	Equipos	Instalaciones de suministro	No existe suministro redundante que garantice la continuidad operativa.	NO	Proponer un plan de redundancia eléctrica.
Seguridad de	Registro y	Registro de	No existe procesos de registro de	NO	Proponer un procedimiento
las	monitoreo	eventos	eventos.		para la recopilación de
operaciones					evidencia de incidentes del sistema de evaluación docente.
Seguridad de	Gestión de la	Gestión de las	No existe procedimientos definidos	NO	Proponer procedimientos
las	vulnerabilidad	vulnerabilidades	para las vulnerabilidades técnicas.		ante vulnerabilidades
operaciones	técnica	técnicas	En caso de algún fallo no existe		técnicas para el sistema de
Seguridad de			herramientas de backup.		evaluación docente
las	Gestión de la	Restricciones en	No existe normas para la sanción del	NO	Establecer un reglamento
operaciones	vulnerabilidad	la instalación del	personal que instale software no		para la instalación de nuevo
	técnica	software	adecuado.		software en los equipos del DDTI

Adquisición	Datos de prueba	Protección de	Las pruebas de software se realizan	NO	Establecer procedimientos
Desarrollo y		datos de prueba	en el puesto de trabajo de los		para la realización de prueba
mantenimiento			programadores. No existe directrices		con datos reales de software
del sistema			para el uso de datos reales para		nuevo.
			pruebas.		
Relaciones con	Gestión de la	Monitoreo y	La UTN mantiene relaciones con	NO	Establecer un políticas para la
proveedores	provisión de	revisión de los	proveedores externos, pero no existe		seguridad de la información
	servicios del	servicios de	procesos de seguimiento.		por parte de proveedores.
	proveedor	proveedores			
Gestión de	Gestión de los	Responsabilidade	La UTN cuenta con un software Help	NO	Realizar las pruebas
incidentes de	incidentes de	s y	Desk, pero no lo tiene implementado.		necesarias de Help Desk con
seguridad de la	seguridad de la	procedimientos			la finalidad de ponerlo en
información	información y				operación.
	mejoras				
	Gestión de los	Informe de los	No existe un proceso definido para la	NO	Establecer un procedimiento
	incidentes de	eventos de	recopilación de errores del sistema		oficial para la documentación
	seguridad de la	seguridad de la	de evaluación docente.		de errores del sistema de
	información y	información			evaluación docente.
	mejoras				

	Gestión de los	Informe de	no existe un procedimiento definido,	NO	Establecer un procedimiento
	incidentes de	debilidades de	para la recopilación de errores por		para la recopilación de
	seguridad de la	seguridad de la	parte de proveedores.		errores en el sistema de
Gestión de	información y	información			información del sistema de
incidentes de	mejoras				evaluación docente.
seguridad de la	Gestión de los	Aprendizaje de	No existe un manual de evaluación	NO	Establecer un plan de
información	incidentes de	los incidentes de	de incidentes que permita mejorar los		mejoras del sistema de
	seguridad de la	seguridad de la	errores cometidos en cuanto a la		seguridad de la información,
	información y	información	seguridad de la información.		la misma que tendrá como
	mejoras				base la recopilación de
					errores registrados del
					sistema.
	Continuidad de	Planificación de	El departamento de informática	NO	Agregar al plan de
Aspectos de	seguridad de la	la continuidad de	cuenta con un plan de continuidad a		continuidad la seguridad de la
seguridad de la	información	seguridad de la	baja escala, el plan no toma en		información del sistema de
información		información	cuenta daños ni catástrofes y no		evaluación docente.
para la gestión			incluyen en la seguridad de la		
de la			información.		

continuidad del	Redundancias	Disponibilidad de	El departamento de informática no NO	Establecer un plan de
negocio.		las instalaciones	dispone de la infraestructura	redundancia para el sistema
		de procesamiento	necesaria para brindar un servicio de	de evaluación docente.
		de la información	alta disponibilidad.	
Cumplimiento	Cumplimiento de	Protección y	El DTI no cuenta con algún NO	Elaborar procedimientos para
	los requisitos	privacidad de la	documento sobre confidencialidad de	el manejo de información
	legales	información de	la información	confidencial del sistema de
	contractuales	carácter personal		evaluación docente.

Fuente: Elaboración Propia

3.4 Identificación de Vulnerabilidades

La explotación de vulnerabilidades se ha convertido en la mayor preocupación para las organizaciones en materia de seguridad, le siguen otros incidentes como infección de malware, fraudes, phishing o ataques de denegación de servicio.

Para poder realizar las identificaciones de vulnerabilidades existen varias herramientas que para este estudio se utilizados las siguientes herramientas que se detallan a continuación.

a) SiteVerify

Es una herramienta gratuita para la plataforma de Windows para escanear enlaces e imágenes para averiguar si están rotas o funcionan correctamente. La aplicación es compatible con todas las versiones de Microsoft Windows a partir de Windows XP. Es compatible con versiones de cliente servidor (Brinkmann, 2017).

Los enlaces son una de las principales piedras angulares de Internet. Pueden apuntar a recursos o contenidos locales o remotos, y tienen diferentes estatus asociados con ellos (Brinkmann, 2017).

Los webmasters pueden querer asegurarse de que los enlaces funcionan correctamente en sus páginas. Esto es importante ya que los enlaces rotos se ven generalmente como una señal de baja calidad. Los usuarios de Internet también pueden necesitar herramientas de verificación de enlace, por ejemplo, cuando analizan sus marcadores para los enlaces que ya no funcionan (Brinkmann, 2017).

Se utilizó SiteVerify para verificar si los enlaces son válidos los cuales se extraen y se puede diferenciar con los siguientes colores:

- Azul: Urls que están activas y han sido visitadas.
- Rojo: Urls que no fueron encontradas.
- Verde: Imágenes Validas.
- Negro entradas que no han sido visitadas.

Para realizar la verificación de esta vulnerabilidad se usó el enlace del portafolio estudiantil: http://cloud2.utn.edu.ec/ords/f?p=109:LOGIN:::::

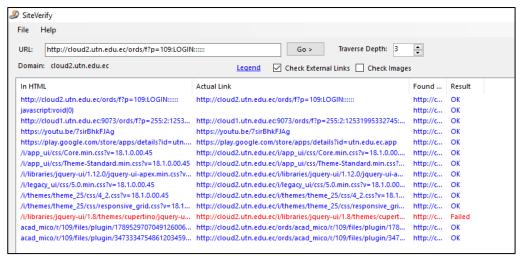


Figura 31: Utilización de la herramienta SiteVerify

Fuente: Elaboración Propia

En la figura 31 se observa que los enlaces están activos y han sido visitados (color azul) Y un solo enlace no se encuentra disponible (rojo)

b) Nmap

Nmap es una aplicación multiplataforma usada para explorar redes y obtener información acerca de los servicios, sistemas operativos y vulnerabilidades derivadas de la conjunción de éstos (Seguinfo, 2007).

Esta aplicación es muy usada, las técnicas de escaneo han sido implementadas en sistemas de detección de intrusos y firewall (Seguinfo, 2007).

Se escogió esta herramienta Nmap para verificación de puertos debido a que es un sistema robusto y el mejor en su área, permitiendo el escaneo en IPv4 e IPv6, el escaneo de host, denegación de servicios, se puede obtener uniforme detallado de los resultados, posee interfaz gráfica para el usuario, es de software gratuito, se puede usar en diferentes plataformas, es de alta velocidad de exploración, comprueba la configuración de elementos de seguridad (cortafuegos, sistemas de detección de intrusos entre otros)

Se procede a realizar un escaneo de puertos habilitados usando a la dirección IP 129.144.x.x esta prueba fue efectuada con herramienta Nmap en Windows se detalla en la figura 32.

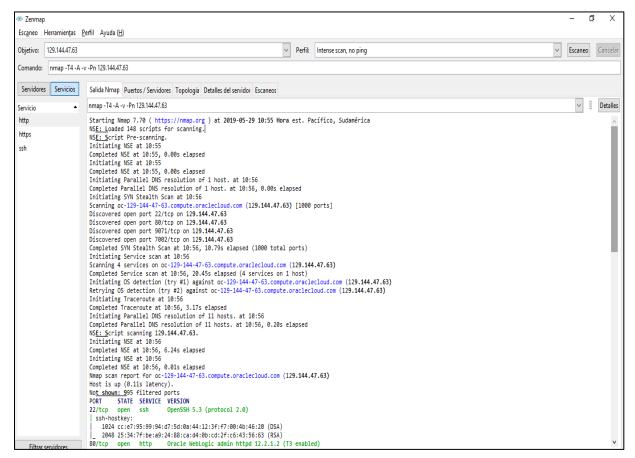


Figura 32 Escaneo con Nmap Fuente: Propia

Se encontró que existen 4 puertos que están habilitados y uno solo se encuentra seguro el puerto 443 de la página de la Universidad es el único que cuenta con seguridad https.

```
Salida Nmap Puertos / Servidores Topología Detalles del servidor Escaneos
nmap -T4 -A -v -Pn 129.144.47.63
                                                                                                                                          Deta
PORT
             STATE SERVICE VERSION
                                     OpenSSH 5.3 (protocol 2.0)
22/tcp
                       ssh
             open
   ssh-hostkey:
      1024 cc:e7:95:99:94:d7:5d:0a:44:12:3f:f7:00:4b:46:20 (DSA)
      2048 25:34:7f:be:a9:24:88:ca:d4:0b:cd:2f:c6:43:56:63 (RSA)
80/tcp
             open
                       http
                                     Oracle WebLogic admin httpd 12.2.1.2 (T3 enabled)
 _http-title: Error 404--Not Found
 weblogic-t3-info: T3 protocol in use (WebLogic version: 12.2.1.2)
443/tcp closed https
7002/tcp open ssl/ht
                      ssl/http Oracle WebLogic admin httpd
 _http-title: Error 404--Not Found
   ssl-cert: Subject: commonName=DemoCertFor_UTNAPEX3_domain
 | Issuer: commonName=CertGenCA/organizationName=MyOrganization/stateOrProvinceName=MyState/
countryName=US
   Public Key type: rsa
Public Key bits: 2048
   Signature Algorithm: sha256WithRSAEncryption
Not valid before: 2019-01-05T05:00:37
Not valid after: 2024-01-04T05:00:37
   MD5: 72d3 6acc ea59 3139 dad7 93be 3c9d cf6f
   SHA-1: 8c1d 29e1 c5c9 244e 3875 d63f aa74 2b1d b6fe f257
 _ssl-date: 2019-05-29T15:56:43+00:00; +1s from scanner time.
9071/tcp open
                                     Oracle WebLogic admin httpd
                       http
 |_http-title: Error 404--Not Found
 _weblogic-t3-info: T3 protocol in use (Weblogic version: 12.2.1.2)
De<u>vice type: g</u>eneral purpose|storage-misc|firewall
Running (JUST GUESSING): Linux 2.6.X|3.X|4.X (94%), Synology DiskStation Manager 5.X (86%),
WatchGuard Fireware 11.X (86%), FreeBSD 6.X (85%)
OS_CPE: cpe:/o:linux:linux_kernel:2.6.32 cpe:/o:linux:linux_kernel:3.10 cpe:/
o:linux:linux_kernel:4.4 cpe:/o:linux:linux_kernel cpe:/a:synology:diskstation_manager:5.1 cpe:/
o:linux:linux_kernel:4.4 cpe:/o:linux:linux_kernel cpe:/a:synology:diskstation_manager:5.1 cpe
o:watchguard:fireware:11.8 cpe:/o:freebsd:fcebsd:6.2
Aggressive 05 guesses: Linux 2.6.32 (94%), Linux 2.6.32 or 3.10 (94%), Linux 4.4 (94%), Linux
4.0 (92%), Linux 2.6.32 - 2.6.35 (91%), Linux 2.6.32 - 2.6.39 (90%), Linux 2.6.32 - 3.0 (89%),
Linux 3.11 - 4.1 (88%), Linux 3.2 - 3.8 (88%), Linux 2.6.18 (88%)
No exact OS matches for host (test conditions non-ideal).
Uptime guess: 25.107 days (since Sat May 04 08:22:11 2019)
Network Distance: 17 hops
TCD Sequence Predictions
TCP Sequence Prediction: Difficulty=258 (Good luck!)
```

Figura 33: Puertos habilitados Nmap

Fuente: Elaboración Propia

Como conclusión se pudo obtener que el firewall implementado es muy restrictivo a nivel de direccionamiento público y es por esta razón que se encontró 4 puertos abiertos los cuales son:

Tabla 28: Identificación de puertos

Puerto	Versión de Vulnerabilidad
22	ssh: OpenSSH 5.3 (Protocol 2.0)
7002	ssl/http
80	Oracle WebLogic admin httpd
9071	Oracle WebLogic admin httpd

Fuente: Elaboración Propia

Utilizando la herramienta nmap en Kali Linux mediante el comando **–Sv** el cual se usa para identificar servicios y versiones se precede a verificar si es posible realizar ataques intermedios al sistema usando los puertos abiertos.

Comando -Sv 129.144.x.x

Como se puede observar en la figura 34 de la herramienta nmap de Kali Linux.

```
root@kali: ~
File Edit View Search Terminal Help
 nmap -v -iR 10000 -Pn -p 80
SEE THE MAN PAGE (https://nmap.org/book/man.html) FOR MORE OPTIONS AND EXAMPLES
root@kali:~# nmap -sV 129.144.47.63
Starting Nmap 7.70 ( https://nmap.org ) at 2019-06-05 16:06 EDT
Nmap scan report for oc-129-144-47-63.compute.oraclecloud.com (129.144.47.63)
Host is up (0.032s latency).
Not shown: 989 filtered ports
PORT
        STATE SERVICE
                                  VERSION
                                  OpenSSH 5.3 (protocol 2.0)
22/tcp
        open
               ssh
25/tcp
        closed smtp
53/tcp
        open
               domain?
                                  Oracle WebLogic admin httpd
80/tcp
        open
               http
443/tcp closed https
2000/tcp open
               cisco-sccp?
5060/tcp open
               sip?
7002/tcp open
               ssl/afs3-prserver?
8008/tcp open
               http
8010/tcp closed xmpp
9071/tcp open
               http
                                  Oracle WebLogic admin httpd
1 service unrecognized despite returning data. If you know the service/version,
please submit the following fingerprint at https://nmap.org/cgi-bin/submit.cgi?n
ew-service :
```

Figura 34: Utilizacion de comando –Sv para identificar servicios y versiones

Fuente: Elaboración Propia

En el puerto 22 la versión de OpenSSH fue revisada en CVE Details y Openbsd existen vulnerabilidades reportadas, pero no existen herramientas para iniciar los ataques las paginas publicadas en internet para detectar vulnerabilidades (CVE details) y Rapid7 (Rapid7), lo recomendable seria mantener el puerto cerrado.

En la Figura 35 de (CVE details) se encontró que existe un reporte de la vulnerabilidad de la versión de OpenSSH.

OpenSSH Vulnerability: CVE-2016-0778

Severity	cvss	Published	Created	Added	Modified
5	(AV:N/AC:H /Au:S/C:P	01/14/2016	07/25/2018	01/25/2016	10/30/2017
	/I:P/A:P)				

Description

The (1) roaming_read and (2) roaming_write functions in roaming_common.c in the client in OpenSSH 5.x, 6.x, and 7.x before 7.1p2, when certain proxy and forward options are enabled, do not properly maintain connection file descriptors, which allows remote servers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact by requesting many forwardings.

Solution(s)

openbsd-openssh-upgrade-latest

Related Vulnerabilities

APPLE-SA-2016-03-21-5

80698

CVE - 2016-0778

DSA-3446

http://www.openssh.com/txt/release-7.1p2

Figura 35: Reporte de Vulnerabilidad de OpenSSH en CVE Details Fuente: (CVE details)

Para los puertos 80 y 9071 existe un código malicioso en reportados en la página Exploit Database que puede ser utilizado y la efectividad dependerá de la seguridad implementada en el servidor.

En la figura 36 se observa que la versión de WebLogic si existe un código que puede ser utilizado para atacar a la información por ese puerto, el firewall implementado es restrictivo, pero aun así se identificó el puerto 80 abierto.

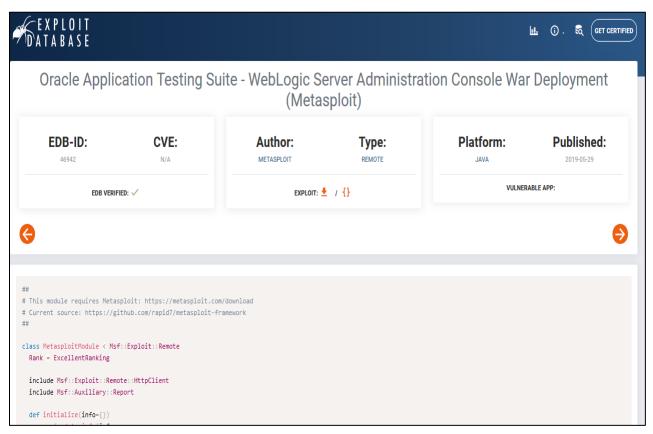


Figura 36: Reporte de Vulnerabilidad puerto 80 y 9071 en Exploit Database Fuente: (EXPLOIT DATABASE, s.f.)

c) SqlMap

SqlMap es una herramienta desarrollada en Python para realizar inyección de código sql automáticamente. Su objetivo es detectar y aprovechar las vulnerabilidades de inyección SQL en aplicaciones web. Una vez que se detecta una o más inyecciones SQL en el host de destino, el usuario puede elegir entre una variedad de opciones entre ellas, enumerar los usuarios, los hashes de contraseñas, los privilegios, las bases de datos o todo el volcado de tablas / columnas

específicas del DBMS, ejecutar su propio SQL SELECT, leer archivos específicos en el sistema de archivos y mucho más (SqlMap).

Mediante la herramienta de SqlMap en Kali Linux se intentó hacer inyección SQL ya que como estudiantes para acceder a la evaluación docentes es por el portfolio estudiantil y se constató que al ser desarrollado en Oracle el lenguaje de desarrollo es elevado y para poder atacar a este tipo de lenguaje seria a través de SQL Plus el cual está incorporado en el paquete de programas de Oracle.

En la figura 37 se puede observar el resultado de la prueba de vulnerabilidad realizada con SqlMap en Kali Linux.

```
root@kali: ~
File Edit View Search Terminal Help
[02:23:03] [INFO] testing 'PostgreSQL > 8.1 AND time-based blind'
[02:23:07] [INFO] testing 'Microsoft SQL Server/Sybase time-based blind (IF)'
[02:23:10] [INFO] testing 'Oracle AND time-based blind'
[02:23:14] [INFO] testing 'Generic UNION query (NULL) - 1 to 10 columns'
[02:23:23] [CRITICAL] connection dropped or unknown HTTP status code received. T
ry to force the HTTP User-Agent header with option '--user-agent' or switch '--r
andom-agent'. sqlmap is going to retry the request(s)
[02:23:23] [WARNING] most likely web server instance hasn't recovered yet from p
revious timed based payload. If the problem persists please wait for a few minut
es and rerun without flag 'T' in option '--technique' (e.g. '--flush-session --t
echnique=BEUS') or try to lower the value of option '--time-sec' (e.g. '--time-s
[02:24:02] [WARNING] GET parameter 'p' does not seem to be injectable
[02:24:02] [CRITICAL] all tested parameters do not appear to be injectable. Try
to increase values for '--level'/'--risk' options if you wish to perform more te
sts. If you suspect that there is some kind of protection mechanism involved (e.
g. WAF) maybe you could try to use option '--tamper' (e.g. '--tamper=space2comme
nt') and/or switch '--random-agent'
[*] ending @ 02:24:02 /2019-06-04/
```

Figura 37: SqlMap en Kali Linux
Fuente: Elaboración Propia

3.5 Informe de Auditorla

Nombre de la Entidad: Universidad Técnica del Norte

Fecha del Informe: 01/07/19

AUDITORIA AL SISTEMA DE EVALUACIÓN DOCENTE

OBJETIVO

Evaluar políticas y controles de la seguridad de la información para el funcionamiento del sistema de evaluación docente, utilizando la metodología Magerit en conjunto con la normativa ISO 27002:2017 para determinar el estado actual del sistema y proponer recomendaciones necesarias para proteger la información.

Lugar de la Auditoria: Departamento de Desarrollo Tecnológico e Informático.

Grupo de Trabajo de Auditoria: Verónica Lizeth Guamán Guamán.

HERRAMIENTAS UTILIZADAS

Metodología Magerit V3.

Pilar

ISO 27002:2017.

ALCANCE

El trabajo de tesis denominado "EVALUACIÓN DE SEGURIDAD DE LA INFORMACIÓN APLICADO AL SISTEMA DE EVALUACIÓN DE DOCENTES DE LA UNIVERSIDAD TÉCNICA DEL NORTE BASADO EN LA ISO 27002:2017 CON LA METODOLOGÍA MAGERIT V3", tiene como finalidad evaluar la seguridad de la información, mismo que se inició con la recopilación de datos para evaluar los controles más importantes de la norma ISO/IEC 27002:2017, que contribuyeron con la elaboración del análisis de la situación actual del sistema, basándose en los

controles de seguridad que se rigen en dicha norma.

Además, se toma en cuenta los parámetros descritos en ella, para establecer soluciones adecuadas a las falencias encontradas, cumpliendo con los requerimientos de la Norma ISO

27002:2017.

113

CONCLUSIONES

La evaluación de riesgos realizada al sistema de evaluación docente identifico como una vulnerabilidad critica, el no contar con políticas de seguridad interna que permita establecer lineamientos y pautas para preservar la seguridad de los datos y la infraestructura tecnológica de la institución.

La metodología utilizada para esta investigación fue MAGERIT, permite un análisis de riesgos profundo, valorando cada uno de los activos mediante dimensiones de seguridad como: disponibilidad, confidencialidad, integridad, autenticidad y trazabilidad.

La normativa ISO 27002:2017 desempeña un rol importante en este estudio, permite verificar el cumplimiento de controles que garanticen la seguridad de la información del sistema de evaluación docente de la Universidad Técnica del Norte.

La situación actual del sistema de evaluación docente evidencia un nivel considerable de cumplimiento de las políticas de seguridad de la información, tanto física como de gestión (53%), por lo que requiere de un compromiso de autoridades y docentes para un cumplimiento total de la normativa.

Como evidencia del trabajo realizado al sistema de evaluación docente de la Universidad Técnica del Norte se elaboró un documento de los riesgos encontrados con los resultados obtenidos de la aplicación de la metodología MAGERIT en el software PILAR, el mismo que consta en el Departamento de Tecnología Informática – UTN.

RECOMENDACIONES

Concientizar y educar a la comunidad universitaria sobre distintos riesgos informáticos a los que se encuentra expuesta la información de la academia.

Planificar una capacitación adecuada para que los usuarios no atenten contra la confidencialidad, integridad y disponibilidad de los datos de los sistemas informáticos.

Actualizar las políticas de seguridad de la información y procedimientos que se emplean en el sistema de Evaluación docente de la Universidad Técnica del Norte, para garantizar la confiabilidad, integridad y disponibilidad de la información.

Documentar procedimientos del sistema de evaluación docente, así como errores presentados en una bitácora, para crear un plan de optimización del sistema.

Elaborar manuales del sistema de evaluación docente, que sirva como guía para el personal encargado del control y seguridad de la información.

Se recomienda que se realice una revisión periódica de las amenazas y riesgos ya que la tecnología está en constante cambio y estos problemas deben ser controlados para evitar futuros inconvenientes en los sistemas.

Como un trabajo a futuro se podría ejecutar con la presencia de un auditor el análisis de riesgos sobre ERP's académicos, y obtener información detallada sobre el funcionamiento de los mismos, para tener resultados precisos sobre el estado actual, y con el libre acceso al sistema se podría identificar vulnerabilidades con herramientas de detección, así se estaría teniendo un trabajo completo de evaluación de vulnerabilidades y amenazas.

BIBLIOGRAFÍA

- (CEIDPA), C. I. (2018). Evaluación integral del desempeño del personal académico de la UTN para el período septiembre 2018 agosto 2019. Ibarra.
- Aguirre, B. J. (2011). Auditoria Informática. MEXICO: UNAM.
- Brinkmann, M. (22 de septiembre de 2017). Obtenido de Ghacks: https://www.ghacks.net/2017/09/22/use-siteverify-to-verify-links/
- Cecilia Reyes. (11 de Junio de 2017). Obtenido de World Economic Forum: https://www.weforum.org/agenda/2017/01/global-risks-in-2017/
- Chilán, S. E., & Williams, P. P. (2017). Apuntes teóricos introductorios sobre la seguridad de la información. *Revista Científica Dominio de las Ciencias*, 284-295.
- Cordero Torres, G., & Crespo, E. (2016). ESTUDIO COMPARATIVO ENTRE LAS METODOLOGÍAS

 CRAMM Y MAGERIT PARA LA GESTIÓN DE RIESGO DE TI EN LAS MPYMES. Cuenca,

 Ecuador.
- Curiel, G. (2006). Auditoria de Estados Financieros. Naucalpan de Juárez: PEARSON.
- CVE details. (s.f.). https://www.cvedetails.com. Obtenido de https://www.cvedetails.com/vulnerability-list.php?vendor_id=97&product_id=585&version_id=121223&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=3&cvssscoremax
- DATTA BUSINESS INNOVATION. (2019). UNIVERSIDAD TÉCNICA DEL NORTE, EFICIENCIA EN LA NUBE. *DATTA BUSINESS INNOVATION*, 60-63.
- Departamento de Desarrollo Tecnológico e Informático UTN. (2013). *Plan de Desarrollo Tecnológico e Informático 2013 2017*. Ibarra.
- EXPLOIT DATABASE. (s.f.). Obtenido de https://www.exploit-db.com/exploits/46942

- Gabriel Baca Urbina. (2016). *Introducción a la Seguridad Informática* (Vol. 1). Mexico: Grupo Editorial Patria, S.A. de C.V.
- Gonzales, E. F. (2018). Auditoria Operativa. Quito: Universidad Central del Ecuador.
- Guitián, G. (2014). Metodologías y modelos para auditar la información. Análisis reflexivo. *Revistas Científicas Complutenses*, 234-235.
- Helena Alemán Novoa, C. R. (2015). Metodologías Para el Análisis de Riesgos en los SGSi. *UNAD*Revista Especializada en Ingenieria, 15-18.
- Hidalguense, U. T. (2011). Auditoria. Mexico: UTHH.
- INEN. (2017). ECUATORIANA Nte INEN-ISO / IEC 27002. QUITO: INEN.
- International Organization for Standarization. (13 de 12 de 2017). ISO 27000. *International Organization for Standarization*, 1-3-4. Obtenido de INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.
- ISOTools. (19 de Julio de 2016). ISO 31000 Gestión de Riesgos: ¿Cuáles son sus directrices?

 Recuperado el 12 de Mayo de 2019, de https://www.isotools.org/2016/07/19/iso-31000-gestion-riesgos-cuales-directrices/
- Jácome León, J. G., Pusdá Chulde, M. R., & Imbaquingo Esparza, D. E. (2017). Fundamentos de Auditoría Informática basada en riesgos. Ibarra-Ecuador: UTN. Obtenido de http://repositorio.utn.edu.ec/handle/123456789/6794
- Mieres, J. (2011). Ataques linformáticos. Bogota.
- Ministerio de Energia, T. y. (2017). *Proteccion de la Información.* Madrid: Ministerio de Energia, Turismo y Agenda Digital España.
- Ministerio de Hacienda y Administraciones Publicas de España. (2012). *Magerit versión 3.0. Metodología de Análisis y Gestion de Riesgos de los Sistemas de Información.* MADRID:

 Ministerio de Hacienda y Administraciones Públicas de Españ.

- Miramegias. (11 de 11 de 2018). *Miramegias*. Obtenido de Miramegias: http://www.miramegias.com/auditoria/files/apuntes/ut12.pdf
- Poveda, J. M. (27 de Abril de 2011). www.isaca.org. Recuperado el 28 de Enero de 2019, de www.isaca.org:

 http://www.isaca.org/Blogs/282270/archive/2011/04/27/Protecci%C3%B3ndeActivosdeInformaci%C3%B3n.aspx
- Rapid7. (s.f.). www.rapid7.com. Obtenido de https://www.rapid7.com/db/vulnerabilities/openbsd-openssh-cve-2016-0778
- Real Academia de la Lengua Española. (13 de 11 de 2018). *RAE*. Obtenido de RAE: http://dle.rae.es/?id=4NVvRTc
- Recursos TIC. (11 de 11 de 2018). *RECURSOS TIC*. Obtenido de RECURSOS TIC:

 http://recursostic.educacion.es/observatorio/web/en/software/software-general/1040-introduccion-a-la-seguridad-informatica?showall=1
- Seguinfo. (27 de Junio de 2007). Seguridad Informática Noticias de Seguridad Iinformatica. Obtenido de https://seguinfo.wordpress.com/2007/06/27/%C2%BFque-es-nmap/
- SqlMap. (s.f.). sqlmap.org. Obtenido de http://sqlmap.org/
- Tarazona, T Cesar H. (2011). Amenazas Informáticas y Seguridad de la Información. ETEK Internacional.

Tarazona, T. C. (2007). Amenazas Informáticas y Seguridad de la Información. SURVEY.

Universidad Tecnológica de la Huasteca Hidalguense. (2011). Auditoria. Mexico: UTHH.

ANEXOS

Anexo 1: Encuesta aplicada a Docentes y Estudiantes

UNIVERSIDAD TÉCNICA DEL NORTE FACULTAD DE INGENIERÍA EN CIENCIAS APLICADAS CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

Encuesta dirigida para estudiantes y docentes sobre el uso del sistema de evaluación docentes.

Objetivo: Conocer la opinión sobre el funcionamiento del sistema de evaluación docente, verificar los niveles de riesgo que ocasionaría a la Universidad Técnica del Norte

Encuesta sobre el sistema de evaluación docente

Marque con una x la respuesta elegida.

1. ¿Usted conoce el Universidad Técnica	tuncionamiento dei sistema de evaluación docente de i a del norte?
SI	itivos se puede acceder al sistema de evaluación docente?
Laboratorios	
Laptops personales	
Móviles	
Otros	
3. ¿Con que frecuenci	a usted utiliza el sistema de evaluación docente?
Una vez al semestre	
Una vez al bimestre	
Una vez al mes	
Una vez por semana	
2 a 5 veces por semana	

4.	¿Cree usted que existe algún control de acceso al sistema de evaluación
	docente?
SI	
NO	
5.	¿La contraseña que usted emplea para acceder al sistema de evaluación docente
	cuenta con requerimientos de seguridad?
SI	
NO	
6.	¿El sistema de evaluación docente tiene una política de bloqueo sesiones o de
	computadores después de un tiempo determinado?
SI	
NO	
7.	¿Cuál es el nivel de facilidad de uso del sistema de evaluación docente?
Exc	elente
Muy	v buena
Bue	na 🗆
Reg	gular
Mal	a
Muy	v mala
8.	¿Usted ha tenido inconvenientes con el servicio de evaluación docente?
SI	
NO	
9.	¿Usted ha tenido inconvenientes con la información ingresada en el sistema de
	evaluación docente?
SI	
NO	

10. ¿Existe algún r	esponsable del sistema de evaluación docente que brinde	atención
cuando sea ne	cesario?	
sı 🗆		
NO 🗆		
11. ¿Usted cree qu	ue la información que ingresa al sistema de evaluación do	cente es
confidencial?		
sı 🗆		
NO 🗆		
12. ¿En qué porce	ntaje usted considera que el sistema de evaluación docen	te
satisface sus n	ecesidades?	
Entre 80-100%		
Entre 50-80%		
Entre 40-60%		
13. Si el porcentaje	e escogido en la pregunta anterior es entre 40-60% indique	e el
motivo de su re	espuesta.	
No existe disponibili	dad al sistema de evaluación docente.	
Al parecer no hay re	troalimentación de las evaluaciones a los docentes.	
Existe fugas de la in	formación ingresada en el sistema de evaluación docente	
Otro		
14. ¿Tiene la confi	anza suficiente para presentar quejas sobre las fallas del s	sistema
de evaluación	docente?	
SI \square		
NO 🗆		
15. ¿Qué tan efect	ivos son los técnicos para resolver problemas del sistema	ı de
evaluación doc	cente?	
Muy efectivos		
Efectivos		

Regularmente efe	ectivos
Poco efectivos.	
16. ¿Cómo calif	ica el sistema de evaluación docente de la Universidad Técnica del
Norte?	
Excelente	
Bueno	
Regular	
Malo	
Pésimo	
17. ¿Usted cons	sidera que el servicio de evaluación docente debe estar disponible a
cualquier ho	ora y para cualquier usuario?
SI \square	
NO 🗆	

Anexo 2: Preguntas dirigidas al personal encargado del manejo del sistema.

- 1. ¿Qué Nivel de daño representaría para la Universidad si el servicio de evaluación docente no estuviera disponible?
- 2. ¿Qué nivel de daño representaría para la universidad que los datos del sistema de evaluación docente fueran total o parcialmente falsos, modificados, o faltaran datos?
- 3. ¿Qué nivel de daño representaría para la universidad que los datos que se obtienen en el sistema de evaluación docentes fueran conocidos por personas no autorizadas?
- 4. ¿Qué nivel de daño representaría para la Universidad que la persona que acceda a la información del sistema de evaluación docente no sea realmente quien se cree?
- 5. ¿Qué nivel de daño representaría para la universidad que no quedara constancia del uso del servicio de evaluación docente o el acceso a los datos?

Anexo 3: Encuesta de Valoración de Dimensiones

UNIVERSIDAD TÉCNICA DEL NORTE FACULTAD DE INGENIERÍA EN CIENCIAS APLICADAS CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

Encuesta dirigida a la persona encargada del manejo del sistema de evaluación docentes.

Objetivo: Conocer los niveles de riesgo que ocasionaría al sistema de Evaluación Docente en base a los siguientes interrogantes por medio de la siguiente escala de Valoración.

Escala de Valoración:

1	Daño muy bajo
2	Daño bajo
3	Daño medio
4	Daño alto
5	Daño muy alto

Encuesta de Nivel de Riesgo del sistema de evaluación docente

DIMENSIONES DE VALORACIÓN	DESCRIPCIÓN	DE DAÑO
Disponibilidad	¿Qué Nivel de daño representaría para la Universidad si el servicio no estuviera disponible?	5
Integridad	¿Qué nivel de daño representaría para la universidad que los datos del sistema de evaluación docente fueran total o parcialmente falsos, modificados, o faltaran datos?	5
Confidencialidad	¿Qué nivel de daño representaría para la universidad que los datos que se obtienen en el sistema de evaluación docentes fuera conocido por personas no autorizadas?	5
Autenticidad	¿Qué nivel de daño representaría para la Universidad que la persona que acceda a la información no sea realmente quien se cree?	5
Trazabilidad	¿Qué nivel de daño representaría para la universidad que no quedara constancia del uso del servicio o el acceso a los datos?	4

GLOSARIO

Activo: es un procedimiento, sistema u otra cosa que tenga un valor para una organización y por lo tanto deba de ser protegida.

Spyware: Código malicioso cuyo principal objetivo es recoger información sobre las actividades en cualquier ordenador.

Troyanos, virus y gusanos: Son programas maliciosos, que se posicionan en los ordenadores con el propósito de permitir el acceso no autorizado a un atacante.

Phishing: Es un ataque del tipo de ingeniería social, en la cual cumple con el objetivo de obtener de manera fraudulenta datos confidenciales de un usuario, especialmente financieros.

Spam: Estos llegan a través de correo electrónico, el cuales difundir grandes cantidades de mensajes comerciales o propagandísticos.

Botnets: Es una amenaza que controla los ordenadores de forma remota, quedando incorporadas en redes distribuidas de ordenadores llamadas robot.

Trashing: Este nombre hace referencia al manejo de la basura, estos se manejan también por ingeniería social, el objetivo de ello es recopilar información desechada para robar su identidad. **Identificación de Activos:** es la identificación de los activos físicos y de otra índole de una organización.

Valoración de Activos: Esta valoración asignada al activo de acuerdo a la criticidad.

Identificación de amenazas: Son eventos que degradarían el valor que tiene los activos.

Frecuencia: son eventos que suceden en un tiempo determinado.

Degradación: nivel de afección de un activo ante una amenaza.

Impacto: Consecuencia que sobre un activo tiene la materialización de una amenaza.

Riesgo: Es la probabilidad de materialización de amenazas sobre el activo.

Salvaguardas: Son las medidas precisas a tomar para reducir el riesgo.

Riesgo Residual: Es el riesgo permanente después de aplicar las salvaguardas.

Confidencialidad: es la que impide que la información se divulgue a sistemas o personas no autorizadas; por lo tanto, la confidencialidad es la que asegura que solo las personas con la autorización debida, tengan acceso a la información.

Integridad: es la que mantiene los datos libres de modificaciones no autorizadas; por lo tanto, la integridad es la que busca mantener la información tal cual fue generada, libre de manipulaciones o cambios por personas no autorizadas.

Disponibilidad: es la que presenta la información a las personas que deben tener accesos a ella; por lo tanto, la disponibilidad se encarga de colocar la información a disposición a personas o sistemas autorizados para acceder a ella al momento que lo requieran.