UNIVERSIDAD TÉCNICA DEL NORTE

Facultad de Ingeniería en Ciencias Aplicadas Carrera de Ingeniería en Mantenimiento Eléctrico

ESTUDIO DEL FACTOR DE PÉRDIDAS TÉCNICAS EN REDES DE DISTRIBUCIÓN DE BAJO VOLTAJE, PARA LA EMPRESA ELÉCTRICA REGIONAL NORTE S.A.

Trabajo de grado presentado ante la Universidad Técnica del Norte previo a la obtención del Título de grado de Ingeniero en Mantenimiento Eléctrico

Autor:

Jefferson Darío Trujillo Jaramillo

Director:

Mg. Arellano Bastidas Olger Gilberto

Ibarra – Ecuador

2019

UNIVERSIDAD TÉCNICA DEL NORTE

BIBLIOTECA UNIVERSITARIA

AUTORIZACIÓN DE USO Y PUBLICACIÓN A FAVOR DE LA UNIVERSIDAD TÉCNICA DEL NORTE

1. IDENTIFICACIÓN DE LA OBRA

En cumplimiento del Art. 144 de la Ley de Educación Superior, hago la entrega del presente trabajo a la Universidad Técnica del Norte para que sea publicado en el Repositorio Digital Institucional, para lo cual pongo a disposición la siguiente información:

DATOS DE CONTACTO			
CÉDULA DE IDENTIDAD:	1716915986		
APELLIDOS Y NOMBRES:	Trujillo Jaramillo J	Jefferson Darío	
DIRECCIÓN:	Otavalo, Eugenio	Espejo, Calle Princip	oal
EMAIL:	jdtrujilloj@utn.edu	ı.ec	
TELÉFONO FIJO:	062635103	TELÉFONO MÓVIL:	0993676462

DATOS DE LA OBRA		
TÍTULO:	ESTUDIO DEL FACTOR DE PÉRDIDAS	
	TÉCNICAS EN REDES DE	
	DISTRIBUCIÓN DE BAJO VOLTAJE,	
	PARA LA EMPRESA ELÉCTRICA	
	REGIONAL NORTE S.A.	
AUTOR (ES):	Trujillo Jaramillo Jefferson Darío	
FECHA: DD/MM/AAAA	30 de julio del 2019	
SOLO PARA TRABAJOS DE GRADO		
PROGRAMA:	x PREGRADO □ POSGRADO	
TITULO POR EL QUE OPTA:	Ingeniero en Mantenimiento Eléctrico	
ASESOR /DIRECTOR:	Mg. Olger rellano	

2. CONSTANCIAS

El autor (es) manifiesta (n) que la obra objeto de la presente autorización es original y se la desarrolló, sin violar derechos de autor de terceros, por lo tanto la obra es original y que es (son) el (los) titular (es) de los derechos patrimoniales, por lo que asume (n) la responsabilidad sobre el contenido de la misma y saldrá (n) en defensa de la Universidad en caso de reclamación por parte de terceros.

Ibarra, a los 30 días del mes de julio del 2019

EL AUTOR:

Trujffo Jaramillo Jefferson Dario

1716915986

UNIVERSIDAD TÉCNICA DEL NORTE FACULTAD DE INGENIERIA EN CIENCIAS APLICADAS

ACEPTACIÓN DEL DIRECTOR

MSc: Olger Arellano

CERTIFICA

Que después de haber examinado el presente trabajo de investigación elaborado por el señor estudiante; Trujillo Jaramillo Jefferson Darío certifico que ha cumplido con las normas establecidas en la elaboración del trabajo de investigación titulado: "ESTUDIO DEL FACTOR DE PÉRDIDAS TÉCNICAS EN REDES DE DISTRIBUCIÓN DE BAJO VOLTAJE, PARA LA EMPRESA ELÉCTRICA REGIONAL NORTE S.A". Para la obtención del título de ingeniero en Mantenimiento Eléctrico; aprobando la defensa, impresión y empastado.

MSc. Olger Arellano

DIRECTOR DE TESIS

Dedicatoria

Este logro lo dedico a mi Dios el cual me ha cuidado y bendecido cada día y también para mis padres que se han esforzado diariamente para darme la educación y las enseñanzas para ser una excelente persona.

Agradecimiento

Agradezco a mi Dios en primer lugar porque gracias a él tengo la salud, las fuerzas y la vida para seguir adelante cada día.

A mis padres Juan Salazar y Patricia Jaramillo, quien, con su trabajo, esfuerzo, dedicación, enseñanzas y sobre todo el apoyo que me brindan a diario, he logrado alcanzar una meta más en mi vida estudiantil, para convertirme en un profesional y a toda mi familia que siempre tuvieron fe en mí, muchas gracias.

Un agradecimiento especial a mi director de tesis Mg. Olger Arellano y todos los que conforman el departamento de Estudios Eléctricos y Calidad de Energía de la empresa EMELNORTE S.A. por sus conocimientos impartidos en la elaboración de este Trabajo de Grado y además agradéceles por su amistad y confianza brindada.

Tabla de Contenido

IDENT	ΓΙFICACIÓN DE LA OBRA	I
CONS	STANCIAS	ا
ACEP	TACIÓN DEL DIRECTOR	
Dedica	atoria	IV
Agrad	ecimento	V
Tabla	de contenido	VI
Índice	de figuras	XI
Índice	de cuadros	XII
Resun	nen	XIII
Abstra	act	XIV
	INTRODUCCIÓN	
A1. C	ontextualización	XV
A2. Pl	anteamiento del problema	XVI
A3. Fo	ormulación del problema	XVI
A4. Ju	ıstificación del trabajo	XVI
A5. Al	cance del trabajo	XVII
A6. Vi	abilidad del trabajo	XVIII
A7. OI	bjetivo general	XVIII
A8. OI	bjetivos específicos	XVIII
	CAPITULO 1	
	Marco Teórico	
1.1	Sistema de distribución	
1.2	Red de distribución primaria	1
1.3	Transformadores de distribución	2
1.4	Red de distribución secundaria	2
1.5	Estructura de las redes de distribución	3
1.5.1	Redes radiales	3
1.5.2	Redes en anillo	3
1.5.3	Redes malladas	3
1.6	Construcción de las redes de distribución	4

1.6.1	Líneas aéreas.	4
1.6.2	Líneas subterráneas.	4
1.6.3	Líneas mixtas	4
1.7	Clasificación de los sistemas de distribución	5
1.7.1	Trifásicos tres hilos	5
1.7.2	Trifásicos cuatro hilos	5
1.7.3	Monofásicos de un hilo	5
1.7.4	Monofásicos de tres hilos	6
1.8	Redes de acuerdo con la localización	6
1.8.1	Rurales	6
1.8.2	Urbanas	6
1.9	Conforme al tipo de estrato	.7
1.10	Conductores utilizados en redes de distribución de bajo voltaje	7
1.11	Características de las cargas	8
1.12	Pérdidas de energía eléctrica	8
1.13	Clasificación de pérdidas en energía del sistema eléctrico	.8
1.13.1	Pérdidas no técnicas de energía.	8
1.13.2	Pérdidas técnicas de energía.	.9
1.14	Pérdidas en las líneas.	11
1.15	Términos empleados en el estudio de pérdidas	12
1.15.1	Flujo de Carga	12
1.15.2	Demanda	12
1.15.3	Demanda máxima	13
1.15.4	Intervalo de demanda	13
1.15.5	Curva de carga	14
1.15.6	Carga instalada	14
1.15.7	Factor de Carga	14
1.15.8	Factor de Diversidad	15
1.15.9	Factor de Coincidencia	15
1.15.10) Factor de pérdidas	15
1.15.1	1 Factor de Potencia	16
1.16	Cálculo de pérdidas técnicas	16

1.17	Metodologías de Estimación de pérdidas técnicas en bajo voltaje	16
1.17.1	Análisis de flujo y distribución de carga en demanda máxima	17
1.17.2	Análisis de flujo de carga con separación de bloques horarios	18
1.17.3	Análisis de flujo de carga con asignación de demanda a cada abonado	18
1.17.4	Distribución de carga horaria por consumo kW/mes	19
1.18	Descripción general del sistema eléctrico de (EMELNORTE S.A)	.21
1.18.1	Sistema eléctrico de (EMELNORTE S.A)	.21
1.18.2	Balance de energía	.22
1.18.3	Información general de pérdidas	.23
	CAPITULO 2	
	Desarrollo	
2.1	Descripción de la metodología	24
2.1.1	Modelación	24
2.1.2	Software de simulación	24
2.1.3	Simulación	25
2.1.4	Cálculo de las pérdidas en energía	25
2.1.5	Cálculo del factor de pérdidas	25
2.1.6	División del factor de pérdidas por estrato	26
2.2	Determinación de las pérdidas técnicas a nivel de bajo voltaje	26
2.2.1	Muestra	26
2.2.2	Cálculo del tamaño de la muestra.	27
2.2.3	Muestra considerada	.27
2.2.4	Distribución de la muestra.	28
2.3	Requisitos para el modelamiento de las redes de bajo voltaje	29
2.3.1	Datos de los analizadores de red	29
2.3.2	Secuencia de fases	29
2.3.3	Tipo de calibre	29
2.3.4	Topología de la red	.30
2.3.5	Localización de la red en el sistema eléctrico	30
2.3.6	Diagrama unifilar del sistema	.32
2.3.7	Estratos de consumo en sistema ArcGIS	32
2.3.8	Datos acerca de la red de distribución.	33

2.3.9	Análisis de flujo de carga para el sistema de bajo voltaje	34
2.4 pérdi	Modelamiento de las redes de distribución de bajo voltaje para determinar las das técnicas	34
2.4.1	Selección de la red de bajo voltaje	34
2.4.2	Selección de parámetros eléctricos	35
2.4.3	Selección de la red de bajo voltaje en ArcGIS	36
2.4.4	Selección los atributos de la red	37
2.4.5	Exportar el diagrama unifilar de la red	37
2.4.6	Modelar la fuente en CYME-Dist	38
2.4.7	Modelar los tramos de red de bajo voltaje	39
2.4.8	Modelar los puntos de carga en la red de bajo voltaje	40
2.5	Pérdidas en las líneas de bajo voltaje	40
2.6	Determinación del factor de pérdidas	41
2.7	Determinación del factor de pérdidas por estrato	42
2.8	Factor de pérdidas por estrato	43
	CAPITULO 3	
	Resultados	
3.1	Introducción	45
3.2	Estratos de consumo	45
3.3	Factor de pérdida por estrato	45
3.4	Factor de pérdidas por sistema y potencia del transformador	46
3.5	Porcentaje de pérdidas de acuerdo con la demanda máxima	48
3.6	Porcentaje de pérdidas de acuerdo con la potencia del transformador	49
3.7	Factor de pérdidas y factor de carga	50
3.8	Cálculo de las pérdidas en energía	51
3.8.1	Cálculo de las pérdidas en energía en redes monofásicas	51
3.8.2	Cálculo de las pérdidas en energía en redes trifásicas	52
3.9	Resultados	53
3.10	Conclusiones	55
3.11	Recomendaciones	56
3.12	Referencias	57
3.13	Anexo	62

Anexo A Información de las redes por mes	62
Anexo B Información de las redes del estrato C	67
Anexo C Información de las redes del estrato D	69
Anexo D Información de las redes del estrato E	73
Anexo E Redes modeladas del estrato C	75
Anexo F Redes modeladas del estrato D	87
Anexo G Redes modeladas del estrato E	.128

Índice de Figuras

Fig. 1 Estructura de un sistema eléctrico de alto, medio, bajo voltaje	1
Fig. 2 Conexión de la red de transporte o transmisión y la red de distribución	2
Fig. 3 Red de distribución secundaria (bajo voltaje)	2
Fig. 4 Red radial, anillo y enmallada	4
Fig. 5 Sistema trifásico de cuatro hilos.	5
Fig. 6 Sistema monofásico de un hilo.	6
Fig. 7 Sistema monofásico de un hilo	8
Fig. 8 División de las pérdidas técnicas.	9
Fig. 9 Curva de histéresis	11
Fig. 10 Representación de una línea de distribución en bajo voltaje	11
Fig. 11Gráfica de una curva de demanda diaria.	13
Fig. 12 Porcentaje de monofásicos y trifásicos.	28
Fig. 13 Muestra estratificada.	28
Fig. 14 Disposición física de las redes de distribución.	30
Fig. 15 Disposición física real del sistema de distribución	30
Fig. 16 Redes eléctricas de EMELNORTE S.A. en ArcGIS.	32
Fig. 17 Colores de los estratos de consumo de EMELNORTE S.A. en ArcGIS	33
Fig. 18 Hoja de Excel con las mediciones del equipo Fluke 1744	34
Fig. 19 Parámetros eléctricos registrados en las bajantes del transformador	35
Fig. 20 Perfil de carga de una red de bajo voltaje	36
Fig. 21 Selección de una red de bajo voltaje en ArcGIS	36
Fig. 22 Atributos de la red de bajo voltaje en ArcGIS	37
Fig. 23 Exportar shapes (capas de ArcGIS)	37
Fig. 24 Importar elementos en CYME-Dist	38
Fig. 25 Ventana de las propiedades de la red diseñada en CYME-Dist	38
Fig. 26 Gráfico de la fuente diseñada en CYME-Dist	39
Fig. 27 Parámetros del espaciamiento de los conductores en CYME-Dist	39
Fig. 28 Red de bajo voltaje modelada en CYME-Dist	40
Fig. 29 Resultado del flujo de carga sumatoria por red en CYME-Dist	41
Fig. 30 Hoja de datos del perfil de carga de la red I3T5002	41
Fig. 31 Perfil de pérdidas de la red I3T5002	42
Fig. 32 Factor de pérdidas de la red I3T5002	42
Fig. 33 Factor de pérdidas del estrato E	43
Fig. 34 F. Pérdidas en los estratos de consumo	46
Fig. 35 Factor de carga vs Factor de pérdidas	51

Índice de Cuadros

	TABLA 1.2 Porcentaje de cobertura de EMELNORTE S.A en el año 2017	. 21
	TABLA 1.3 Balance de energía de EMELNORTE S.A. en el año 2017	. 22
	TABLA 1.4 Balance energético de pérdidas en el sistema de EMELNORTE S.A	. 23
	TABLA 2.1 Muestra de redes secundarias de (EMELNORTE S.A)	. 26
	TABLA 2.2 Parámetros técnicos de los calibres.	. 29
	TABLA 2.3 Código de las subestaciones que pertenecen a EMELNORTE S.A	. 31
	TABLA 2.4 Mediciones realizadas en el mes de junio por los analizadores de red	. 34
	TABLA 2.5 Consumo mensual de las luminarias	. 40
	TABLA 2.6 Factor de pérdida por estrato	. 43
	TABLA 2.7 Resultados del análisis de la muestra	. 44
	TABLA 3.1 Áreas de los estratos de consumo	. 45
	TABLA 3.2 Tabla de los factores de pérdidas calculado	. 46
	TABLA 3.3 Factor de pérdidas por estrato, sistema y potencia del transformador	. 47
	TABLA 3.4 Tabla de porcentaje de Pérdidas con relación a la demanda máxima	. 48
	TABLA 3.5 Tabla de porcentaje de Pérdidas con relación a la potencia aparente	del
tra	ansformador	. 50
	TABLA 3.6 Número de redes monofásicas	. 51
	TABLA 3.7 Tabla pérdidas técnicas en redes monofásicas	. 52
	TABLA 3.8 Número de redes monofásicas	. 52
	TABLA 3.9 Tabla pérdidas técnicas en redes trifásicas	. 53
	TABLA 3.10 Tabla porcentaje de pérdidas técnicas en energía de las redes	. 53

Resumen

El presente estudio determina las pérdidas técnicas presente en las redes de bajo voltaje de la Empresa Eléctrica Regional Norte S.A., a partir de un factor de pérdidas calculado en los estratos C, D y E. Usando como base la metodología del Magister en Ciencias de la Ingeniería Eléctrica Mentor Poveda.

Para la identificación de las pérdidas técnicas en las redes secundarias se empleó el software CYME, en el cual se modelo de manera detallada las redes de distribución, adicionalmente se ingresó la demanda máxima registrada en una semana y el consumo de los abonados. Usando para ello las mediciones tomadas con los analizadores de red en el año 2017 y el consumo de los abonados de la base de datos de ArcGIS.

En este sentido, se propone determinar valores promedios de factores de pérdidas, los cuales se agrupan según; su estrato de consumo, sistema y potencia del transformador, todo esto usando el programa Excel el cual me permitió ver una variación estándar de los resultados de una manera organizada y precisa.

Concluyendo que los datos disponibles en los sistemas de medición actual de la empresa eléctrica EMELNORTE S.A. y el factor de pérdidas calculado, son la base para determinar las pérdidas técnicas en energía en las redes de distribución aéreas desnudas.

Palabras claves: Demanda, Factor de pérdidas, Factor de carga, Perfil de carga, Redes de distribución

Abstract

This study aimed to determine the technical losses in the low voltage networks of the "Empresa Eléctrica Regional Norte", based on a loss factor calculated in strata C, D and E. Using the methodology of Mentor Poveda Mgs.

In order to identify the technical losses in the secondary networks, the CYME software was used, through this the distribution networks, maximum demand recorded per week and the users consumption levels were detailed. Using the measurements taken with the network analyzers in 2017 and user consumption levels of the ArcGIS database.

It is proposed to determine average values of loss factors, which are grouped according to; consumption stratum, system and power of the transformer, using the Excel program to see a standard variation of results in an organized and precise way.

Concluding that the data available in the current measurement systems of the electric company EMELNORTE S.A. and the calculated loss factor, are the basis for determining the technical losses in energy in the bare air distribution networks.

Keywords: Demand, Loss factor, Charge factor, Load profile, Distribution networks

INTRODUCCIÓN

A1. CONTEXTUALIZACIÓN

Las pérdidas de electricidad en los sistemas de transmisión y distribución son uno de los principales desafíos del sector eléctrico en América Latina y el Caribe (Crochemore Ney, Jiménez, & Alarcón, 2018). Debido a que el promedio de pérdidas en la región está entre el 17%, sobrepasando así la referencia internacional del 8% (Jiménez, Serebrisky, & Mercado, 2013). Estas pérdidas están conformadas por; pérdidas técnicas, que se relacionan con la energía que se pierde durante el transporte y distribución dentro de la red, desde las centrales generadoras a los clientes. ; y las pérdidas no técnicas, que representan el saldo restante de las pérdidas de energía que no ha sido facturada, referente al uso clandestino del servicio y a errores en la manipulación de datos administrativos y técnicos (Castillo, y otros, 2017).

Si estos valores son muy altos indican una ineficiencia del sistema. lo que representa un elevado costo económico, el cual tienen que cubrir las empresas eléctricas distribuidoras (Jiménez, Serebrisky, & Mercado, 2013). En este sentido, la mayoría de los países de América Latina y el Caribe han fortalecido el marco legal, con la creación de agencias e incorporación de planes de eficiencia energética (Sánchez, y otros, 2017). Por ejemplo: La Comisión Federal de Electricidad de México, ejecuto estrategias para reducir sus pérdidas, dando como resultado pérdidas de energía totales de 15.9% en 2011 a 11.77% en 2017 (Comisión Federal de Electricidad, 2017).

En el Ecuador, se está llevando adelante un modelo de desarrollo, que tiene como uno de sus objetivos, cambiar la matriz energética y transformar la matriz productiva; a través de inversiones (Tejada, Durán, Raúl, & Doyle, 2017). entre los que se destaca el Plan Nacional de Reducción de Pérdidas Eléctricas, creada por resolución Núm. 260/06, el 28 de noviembre de 2006, y aprobada por el Consejo Nacional de Electricidad (Orejuela Luna, 2014) .Cabe destacar que durante la implementación de dicho plan se ha reducido el valor de las pérdidas de 22,3 % en 2006 a 11,5% en 2017 a nivel nacional (Ministerio De Electricidad Y Energía Renovable, 2017). Estos valores, indican que el sector eléctrico sigue logrando avances en la reducción de pérdidas, buscando así alcanzar la meta propuesta que es de un valor de 7,6% para finales de periodo del 2022 (Consejo Nacional De Electricidad, 2013).

En la Empresa Eléctrica Regional Norte S.A., las pérdidas eléctricas se subdividen para todas las etapas del sistema eléctrico. Una de estas etapas es en las redes de distribución de bajo voltaje en donde se puede identificar 5 tipos de estratos los cuales son; E, D, C, B, A (EMPRESA ELÉCTRICA REGIONAL NORTE S.A., 2017). Y que están establecidos en función del promedio de consumo de energía mensual.

Registrando así un valor de pérdidas de energía eléctrica en todo el sistema de 9,23%, conformado por pérdidas técnicas con un valor de 6,3% y de pérdidas no técnicas con un valor de 2,93% (Agencia de Regulación y Control de Electricidad, 2016). Estas pérdidas se determinan mediante la diferencia entre; la energía entregada por el sistema Nacional Interconectado en las subestaciones; y la energía facturada a los abonados finales (EMPRESA ELÉCTRICA REGIONAL NORTE S.A., 2017).

A2. PLANTEAMIENTO DEL PROBLEMA

Uno de los temas principales a resolver en la última década en las empresas eléctricas distribuidoras son su porcentaje de pérdidas técnicas, para lo cual se han desarrollado diferentes metodologías para reducir los indicadores de pérdidas, con el fin de que su sistema de distribución sea más eficiente.

Por lo que es necesario de un estudio de pérdidas en las redes de distribución de bajo voltaje de EMELNORTE S.A. Ya que las redes de distribución son dinámicas y es allí donde se registra un mayor crecimiento de la demanda de energía eléctrica por el aumento de la población.

Actualmente la empresa EMELNORTE S.A. no cuenta con una modelación computacional detallada a nivel de bajo voltaje, como lo tienen para los sistemas de distribución primaria esto ayuda a mejorar la eficiencia del sistema y la calidad de energía que se entrega a los diferentes abonados.

Emelnorte S.A. es la encargada de la distribución de la energía eléctrica en la zona norte del país, no cuenta con un estudio del factor de pérdidas en redes de distribución de bajo voltaje, la cual produce una incertidumbre de cómo se encuentra las pérdidas técnicas en las redes de distribución por estrato de consumo.

A3. FORMULACIÓN DEL PROBLEMA

¿Cuál es el factor de pérdidas técnicas en redes de distribución de bajo voltaje, en cada estrato de consumo de la Empresa Eléctrica Regional Norte S.A.?

A4. JUSTIFICACIÓN DEL TRABAJO

Dado que las redes de distribución son dinámicas por el crecimiento de la demanda, por lo cual la necesidad de tener un panorama claro de cuáles son las pérdidas técnicas, no técnicas y como estas afectan a la eficiencia del sistema de distribución.

El presente trabajo de investigación se enfoca en redes de distribución de bajo voltaje de la Empresa Eléctrica Regional Norte, ya que no disponen de información de las pérdidas en los diferentes elementos que conforma el sistema eléctrico de distribución, lo que dificulta calcular los porcentajes de pérdidas técnicas en el sistema de concesión de EMELNORTE S.A.

Todo esto en base a la (Ley 0, 2015, art. 68), que determina un valor de pérdidas a alcanzar para el año 2022 del 7,6% y es controlado por el ente regulador que es el ARCONEL el cual revisa los avances y ofrece los ajustes correspondientes que deben cumplir las empresas distribuidoras.

Tomando en cuenta, que en la Regulación Nro. 05/17 sección cuarta se detalla que "si la Distribuidora sufriere pérdidas por deficiencias técnicas, u otras causas debidamente comprobadas, imputables a la empresa, deberán asumirlas en su totalidad". (Agencia de Regulación y Control, 2017).

Para lo cual, el estudio del factor de pérdidas por estrato permitirá calcular las pérdidas técnicas en los diferentes estratos, al extrapolar estos valores se verifica que redes de bajo voltaje presentan mayores problemas y que acciones debe tomar la empresa distribuidora para mitigar reducir las pérdidas.

A5. ALCANCE DEL TRABAJO

En el presente trabajo de grado se determinará el factor de pérdidas en redes de distribución de bajo voltaje por estrato de consumo para la empresa Eléctrica Regional Norte S.A. (EMELNORTE S.A).

Tomando como muestras los datos correspondientes a las mediciones obtenidas en el secundario de los transformadores de distribución en el año 2017, del área de Calidad de Energía de (EMELNORTE S. A),

El estudio iniciará con los datos de consumo mensual que almacena la base de datos del programa Arc-GIS, el cual cuenta con el registró de consumo promedio de todos los abonados, así como también de la topología e información georreferenciada de las redes secundarias de la cual se tomara una muestra.

A continuación, se procederá a modelar de manera georreferenciada las diferentes topologías de las redes secundarias aéreas desnudas en el programa CYM-Dist. Usando los datos de consumo de energía por parte de los abonados y la demanda máxima registrada en el secundario del transformador, se realizará la simulación de la distribución carga, para determinar las pérdidas en la red de distribución en bajo voltaje.

El programa Excel permitirá realizar el análisis de en el sistema y con esto obtener el factor de pérdidas de cada red secundaria analizada por estrato de consumo.

A6. VIABILIDAD DEL TRABAJO.

Mediante el convenio de cooperación interinstitucional entre la Universidad Técnica Del Norte y la Empresa Eléctrica Regional Norte S.A. (EMELNORTE S.A). Se realizará el estudio del factor de pérdidas que es de prioridad para la empresa Eléctrica Regional Norte S.A.

El estudio contara con el respaldo de información del área de Calidad de Energía y el departamento de Estudios Eléctricos, los cuales proporcionaran datos de los analizadores de red y de información acerca de las redes de distribución como también el consumo eléctrico de cada abonado de la empresa EMELNORTE S.A.

El software por utilizarse será CYME-Dist, ArcGIS los cuales serán proporcionado por la propia empresa ya que cuenta con licencias originales vigentes para el estudio de los factores de pérdidas por estrato.

se cuenta con los recursos económicos para suplir con los gastos que presentaran el desarrollo y cumplimiento del cada uno de los objetivos planteados.

A7. OBJETIVO GENERAL

Realizar un estudio del factor de pérdidas técnicas en redes de distribución de bajo voltaje, por estratos de consumo, con la ayuda de herramientas informáticas, en base a un muestreo de los datos históricos proporcionados por la empresa EMELNORTE S.A.

A8. OBJETIVOS ESPECÍFICOS

- Describir los conceptos teóricos y técnicos que intervienen en la determinación del factor de pérdidas.
- Modelar las redes secundarias de bajo voltaje en el programa Cyme-Dist, considerando parámetros técnicos de conductores, estructuras, cargas de abonados obtenidos de los analizadores de red y la base de datos del sistema comercial.
- Determinar el factor de pérdidas técnicas en redes de distribución en bajo voltaje, considerando el estrato de consumo.

CAPITULO 1

Marco Teórico

Para empezar el tema de análisis del factor de pérdidas técnicas para la Empresa Eléctrica Regional Norte S.A, se parte de los conocimientos básicos y los antecedentes, así como también estudios previos efectuados con relación al tema que sirven de apoyo a la investigación sobre la cual se sustenta la misma; dando a conocer primero la parte técnica y luego la práctica.

1.1 Sistema de distribución

El sistema de distribución tiene por objetivo el llevar la energía eléctrica a los distintos abonados (Bayod Rujula, 2008). El conjunto de: centrales de generación, subestaciones, centros de transformación, redes de transporte y redes de distribución de bajo voltaje; se denomina sistema de distribución (Conejo Navarro A. J., y otros, 2007).

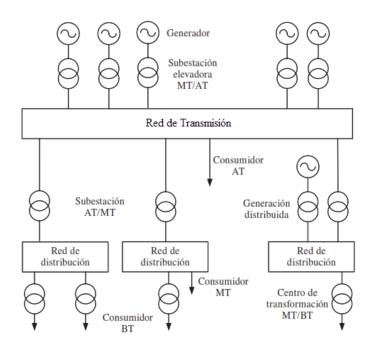


Fig. 1 Estructura de un sistema eléctrico de alto, medio, bajo voltaje.

Fuente: (Conejo Navarro A. J., y otros, 2007)

1.2 Red de distribución primaria

Una red de distribución primaria, obtiene la energía eléctrica de la subestación que transforman de alto voltaje de la red de transmisión a medio voltaje y esta a su vez se conecta con los transformadores de distribución ubicados en las diferentes partes del sistema eléctrico, llegando de esta manera a los puntos de consumo finales (Conejo Navarro A. J., y otros, 2007). en el caso de EMELNORTE S.A. es 6.200 V a 13.800 V, estas líneas comprenden hasta los transformadores de distribución (EMELNORTE, 2016).

El voltaje normalizado en las redes de distribución primaria de EMELNORTE S.A. son de 13,8kV (EMELNORTE, 2014), como lo indica la Fig.1.3 donde se muestra las redes de transmisión y las redes de distribución primaria.

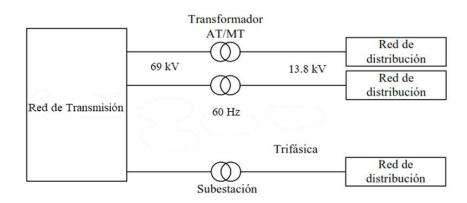


Fig. 2 Conexión de la red de transporte o transmisión y la red de distribución.

Fuente: (Conejo Navarro A. J., y otros, 2007)

1.3 Transformadores de distribución

Según (Queijo Gumersindo, 2018), un transformador es una máquina cuya función es la de transformar las magnitudes de voltaje y corriente de la energía eléctrica. Como es el caso del voltaje en redes secundarias que proviene de la reducción de 13,8 kV a 240/120V en monofásicas o 220/127V en trifásicas.

1.4 Red de distribución secundaria

Las redes de distribución secundaria o bajo voltaje son aquellas que, enlazan los transformadores de distribución con las acometidas en un área geográfica pequeña donde se localizan abonados residenciales y comerciales (Conejo Navarro A. J., y otros, 2007).

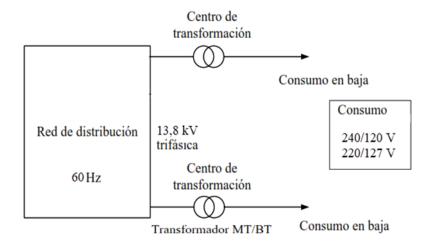


Fig. 3 Red de distribución secundaria (bajo voltaje).

Fuente: (Conejo Navarro A. J., y otros, 2007)

1.5 Estructura de las redes de distribución

Las redes de distribución también se pueden clasificar en función de su estructura; de la cual se distinguen tres configuraciones básicas: redes radiales, redes en anillo y redes malladas (Conejo Navarro A. J., y otros, 2007). De tal forma que la empresa distribuidora decide que esquema emplear para el sistema de distribución, esto se hace tomando en cuenta aspectos técnicos y económicos. (Fernández Barracon, 2016). A continuación, se describen las características principales de estas configuraciones:

1.5.1 Redes radiales

Las redes de distribución radial.- se alimentan únicamente por una fuente de alimentación desde uno de sus extremos y no tienen conexión con otras líneas, de esta forma la energía sólo dispone de un camino para alcanzar a los abonados, lo que hace que sean sencillas tanto en su ejecución como en la instalación de protecciones (Conejo Navarro A. J., y otros, 2007).

La desventaja es la falta de garantía en el servicio eléctrico, debido a que si existe una desconexión en la alimentación eléctrica o en cualquier tramo de la red los abonados conectados aguas abajo de la desconexión permanecen sin servicio eléctrico (Fernández Barracon, 2016).

1.5.2 Redes en anillo

Las redes en anillo.- su característica principal de este sistema es que tiene la posibilidad de alimentarse, al menos, desde dos puntos: lo que mejora la garantía en el servicio eléctrico permitiendo maniobrar y alimentar desde otros puntos de la red y de esta forma se logra aislar las fallas o tramos específicos para mantenimiento o reparación, la desventaja de esta configuración es su grado de complejidad que representa su ejecución y lo difícil que es realizar la coordinación de protecciones (Fernández Barracon, 2016).

1.5.3 Redes malladas

Las redes malladas.- se obtienen al enlazar varias redes en anillos, su característica principal es que se encuentran ubicadas cerca de los centros de consumo y además que los centros de transformación se alimentan de varias subestaciones cercanas, lo que las hace más flexibles al aumento o variación de demandas, el principal inconveniente de las redes malladas es su elevado costo económico debido a que dispone de un mayor número de dispositivos que las redes radiales y en anillo; además de que el sistema de protección es más complejo (Conejo Navarro A. J., y otros, 2007). En la Fig. 1.4. se muestra los diferentes tipos de redes explicadas anteriormente.

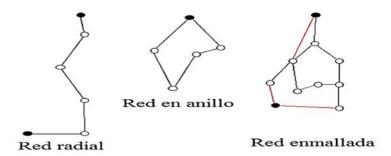


Fig. 4 Red radial, anillo y enmallada.

Fuente: (Manguía Aguilero, 2016)

1.6 Construcción de las redes de distribución

La construcción de las redes de distribución se clasifica en tres diferentes grupos los cuales se detallan a continuación:

1.6.1 Líneas aéreas.

Líneas aéreas. - Son aquellas donde el conductor está al aire libre, colocado a una cierta altura mediante postes. La altura de dichos postes y sus características son dispuestas en los reglamentos de construcción a nivel nacional, que adoptan las empresas eléctricas distribuidoras, donde además se especifican las características que deben reunir los postes dependiendo del material empleado como puede ser madera, hormigón o metal (Entrena González, 2012).

Las ventajas que poseen son: su costo bajo, fácil mantenimiento, fácil localización de fallas y tiempos de construcción reducidos y las desventajas son: el mal aspecto estético, menor confiabilidad, menor seguridad, son susceptibles a fallas y cortes de energía por lo expuestas que se encuentran (Entrena González, 2012).

1.6.2 Líneas subterráneas.

Líneas subterráneas.- Son aquellas instaladas bajo el nivel del suelo con el fin de disminuir los peligros de electrocución y mejorar el aspecto visual, pero esto presenta un costo mayor al ser necesario la apertura de zanjas y en ocasiones el uso de equipos tecnológicamente más sofisticados, razón por la cual este tipo de instalaciones se emplean para la distribución de energía en sectores urbanos. (Entrena González, 2012).

1.6.3 Líneas mixtas

Líneas mixtas. - Se le denomina con este nombre a las instalaciones donde parte del total del tramo de la línea va soterrada y la otra parte está al aire libre. Dando como resultado la unión de los dos tipos de líneas anteriormente mencionado (Entrena González, 2012).

1.7 Clasificación de los sistemas de distribución

Como lo afirma (Morales Gualotuña, 2011), las redes de distribución son en su mayoría circuitos radiales aéreos a los cuales se los puede clasificar de acuerdo con el número de fases e hilos, como se detalla a continuación.

1.7.1 Trifásicos tres hilos

Trifásicos tres hilos. - Este sistema está conformado por tres hilos de los cuales todos son fases vivas, que tienen igual magnitud y frecuencia y desfasadas 120°, estas configuraciones se presentan en redes de distribución primaria y secundaria con la característica que el neutro es flotante en el lado primario de los transformadores de distribución como se muestra en la Fig. 1.5. (Morales Gualotuña, 2011).

1.7.2 Trifásicos cuatro hilos

Trifásicos cuatro hilos.- Este sistema requiere una mayor inversión por el costo adicional del cuarto hilo denominado neutro aterrizado y se localiza en los circuitos de distribución secundaria de transformador trifásicos logrando de esta manera obtener dos voltajes; el voltaje de que es 220 voltios y el voltaje de fase que es de 127 voltios (Morales Gualotuña, 2011).

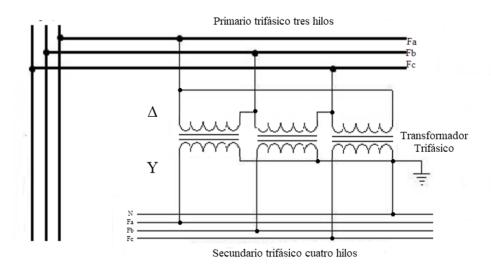


Fig. 5 Sistema trifásico de cuatro hilos.

Fuente: (Morales Gualotuña, 2011)

1.7.3 Monofásicos de un hilo

Monofásicos de un hilo. - Este sistema se origina de un sistema de distribución trifásicos, esto quiere decir que: se hacen derivaciones del sistema trifásicos tres hilos, pero solo se toma una fase, esta configuración sirve para alimentar transformadores

monofásicos que reciben el voltaje de una sola fase en el devanado primario (Morales Gualotuña, 2011).

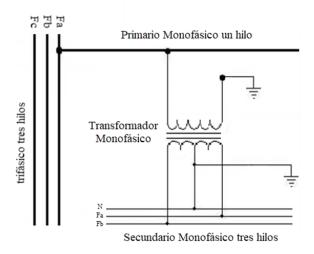


Fig. 6 Sistema monofásico de un hilo.

Fuente: (Morales Gualotuña, 2011)

1.7.4 Monofásicos de tres hilos

Monofásicos de tres hilos. - El sistema monofásico trifilar es usado en las redes de distribución secundaria de los sistemas de distribución de energía eléctrica. Como lo indica (Montoya & Vélez, 2015). Este sistema proviene de un transformador monofásico, de donde se obtienen dos fases y un neutro aterrizado en el secundario del transformador logrando de esta manera obtener dos voltajes: el voltaje de línea que es 240 voltios y el voltaje de fase que es 120 voltios.

1.8 Redes de acuerdo con la localización

A continuación, se describen los tipos de redes de distribución que se usan para alimentar de energía eléctrica a zonas urbanas y rurales.

1.8.1 Rurales

Rurales.- Se caracterizan por que en ellas predominan puntos de bajo consumo, que se encuentran dispersos en una amplia zona, en este tipo de sector las redes son redes aéreas desnudas con su respectivo centro de trasformación ubicado en postes estratégicos, además de tener la configuración radial, donde la energía fluye desde un terminal o transformador a los diferentes abonados (Conejo Navarro A., y otros, 2007).

1.8.2 Urbanas

Urbanas. - Tienen una mayor densidad de carga y cada centro de transformación alimenta a un número elevado de consumidores. Las redes de distribución urbanas suelen

utilizar la configuración en anillo para evitar cortes de suministro (Conejo Navarro A., y otros, 2007).

1.9 Conforme al tipo de estrato

Los clientes residenciales del área de concesión de EMELNORTE S.A.; están clasificados en 5 estratos de consumo esto se obtiene de acuerdo con el consumo promedio registrado por cada abonado de los datos históricos o estimaciones de las planillas mediante la ruta de lectura (EMELNORTE, 2017).

TABLA 1.1 Estratos de consumo de EMELNORTE S.A.

ESTRATOS DE CONSUMO		
Categoría por estrato de consumo	kWh /mes	
Е	0-100	
D	101-150	
С	151-250	
В	251-500	
Α	>500	

Fuente: (EMELNORTE, 2017)

1.10 Conductores utilizados en redes de distribución de bajo voltaje

Los conductores empleados en las redes de bajo voltaje eran principalmente de cobre, pero han sido reemplazados por conductores de aluminio, esto permite reducir costos de manejo y además ofrecen una gran resistencia a la corrosión con respecto al cobre (Grainger & Stevenson, 1996).

Según (Grainger & Stevenson, 1996) los símbolos que identifican los diferentes tipos de conductores de aluminio son los siguientes:

- AAC o ASC conductores de aluminio
- AAAC conductores de aleación de aluminio
- ACSR conductores de aluminio con alma de acero
- ACAR conductores de aluminio con alma de aleación

Los cables que se emplea en las fases se encuentran fabricados de aluminio ya sea ASC o AAC y los que se emplean en el neutro son de aluminio con alma de acero (ASCR) para evitar que se rompa con facilidad.

1.11 Características de las cargas

En un sistema eléctrico pueden existir diferentes tipos de cargas conectadas a la red entre ellas monofásicas como trifásicas, como lo detalla (Montoya & Vélez, 2015) en la siguiente lista.

- Cargas monofásicas conectadas a línea neutro.
- Cargas monofásicas conectadas a línea.
- Cargas trifásicas conectadas en estrella sin neutro.
- Cargas trifásicas conectadas en estrella con neutro.
- Cargas trifásicas conectadas en triangulo sin neutro.

1.12 Pérdidas de energía eléctrica

Las pérdidas de energía eléctrica se producen cuando los ingresos de las empresas distribuidoras de energía presentan un valor menor a valor total de la energía consumida por los abonados. Esto se debe a que un valor porcentual de la energía que consumen los abonados no es facturado y no se refleja en los ingresos (Morrison, 2013).

1.13 Clasificación de pérdidas en energía del sistema eléctrico

Las pérdidas en energía del sistema eléctrico se estiman restando la energía comprada o generada menos la energía distribuida o vendida a los abonados, este resultado se clasifica en pérdidas técnicas y pérdidas no técnicas (Ochoa Osorio J. M., 2006).

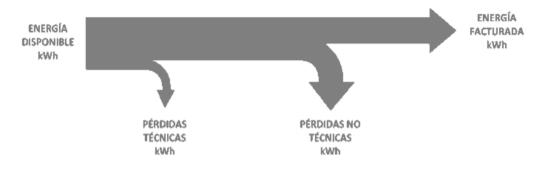


Fig. 7 Sistema monofásico de un hilo

Fuente: (Tama Franco, 2014)

1.13.1 Pérdidas no técnicas de energía.

Estas se originan por errores en la administración del sistema eléctrico; como es: la medición, el control, la facturación y además el uso ilegal de la energía por abonados no autorizados, convirtiéndose en pérdidas financieras para la empresa distribuidora (Tama Franco, 2014).

Pérdidas sociales

Son el resultado del hurto de energía en los diferentes sectores sociales. Estas pérdidas son conocidas como conexiones ilegales o de contrabando (Tama Franco, 2014).

Pérdidas comerciales

Son producidas por las alteraciones de los equipos de medición y la modificación ilegal de las conexiones que tienen como finalidad producir errores en los consumos registrados por las empresas distribuidoras, incluyen también las pérdidas ocasionadas por los sistemas administrativos de registro del consumo (Tama Franco, 2014).

1.13.2 Pérdidas técnicas de energía.

Un sistema eléctrico está integrado por una serie de elementos y debido a ellos, se producen pérdidas eléctricas que son: por aspectos normales de funcionamiento de la instalación que van relacionadas a los fenómenos físicos propios de la trasformación y conducción de la energía. En este sentido las pérdidas técnicas están vinculadas con la energía que se pierde en el proceso de: transformación, medición y transporte de la electricidad a través del uso de materiales y equipos (Tama Franco, 2014).

Las pérdidas técnicas aparecen en el sistema por el solo hecho de energizar la línea o el transformador, dentro de dichas pérdidas se encuentran: el efecto corona, pérdidas por histéresis, corrientes parásitas y efecto Joule. Siendo el efecto Joule considerado como una pérdida técnica, variable porque depende de la demanda del sistema y es la que compone en su mayoría la totalidad de las pérdidas técnicas (Ochoa Osorio J. M., 2006).

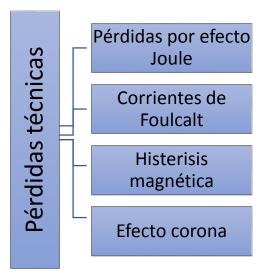


Fig. 8 División de las pérdidas técnicas.

Fuente: (Ochoa Osorio J. M., 2006)

Pérdidas por Efecto Joule

La ley de Joule menciona que: "El calor que desarrolla una corriente eléctrica al pasar por un conductor es directamente proporcional a la resistencia por el cuadrado de la intensidad de la corriente y el tiempo que dura la corriente" (Torre, 2000).

$$P\'{e}rdidas = I^2 * R$$

Donde:

• Pérdidas : Pérdidas en el elemento del sistema (vatios)

• *I* : Corriente que circula por el elemento (amperios)

• R : Resistencia del elemento (ohmios)

Para obtener en términos de energía simplemente se multiplica por el intervalo de tiempo deseado y de esta manera se obtiene la pérdida de energía de un circuito de potencia. (Torre, 2000)

$$E_{p \neq rdida} = I^2 * R * t$$

• Pérdidas por el efecto de Foucault

Las pérdidas por corrientes de Foucault o también llamadas corrientes parásitas se produce cuando un conductor atraviesa un campo magnético variable, el movimiento relativo produce una circulación de electrones, o corriente inducida dentro del conductor que a su vez generan un flujo magnético que se opone a la variación del flujo original y da como resultado que la energía se disipa en forma de calor (Bayod Rújula, 2008) .Cabe mencionar que estas pérdidas no dependen de la demanda o flujo de energía al contrario están relacionadas con las características de construcción de la máquina

• Pérdidas por el efecto de histéresis magnética

Las pérdidas por histéresis magnética aparecen cuando se alimenta con corriente alterna a un núcleo ferromagnético de un transformador y se la representa en un plano donde la B: densidad de flujo y la H:fuerza magnetizadora, donde se describe el ciclo de histéresis del material que no son más que los ciclos de magnetización y desmagnetización a los que ha sido sometido el material ferromagnético (Bayod Rújula, 2008).

El área que se forma en esta curva representa la energía que se acumula en el núcleo magnético en cada ciclo de la corriente alterna y dicha energía se disipa en forma de calor (Sectorelectricidad, 2016).

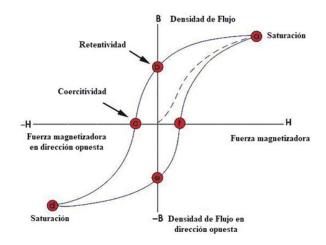


Fig. 9 Curva de histéresis

Fuente: (Sectorelectricidad, 2016)

• Pérdidas por efecto corona

Estas pérdidas importantes en líneas de transmisión en alto voltaje y medio voltaje, pero a nivel de distribución en bajo voltaje este efecto es despreciable. Esto se debe a que el efecto corona es provocado por una diferencia de potencial muy alta entre conductores, esta diferencia de potencial es capaz de romper el aislamiento del aire que se encuentra entre dos conductores y de esta manera hacer circular corriente de un conductor a otro a través del aire creando un halo luminoso en forma de corona. (Torre, 2000).

1.14 Pérdidas en las líneas.

Los sistemas eléctricos de distribución secundaria están formados por líneas aéreas y/o subterráneas y por ellas circulan las corrientes necesarias para suplir la demanda de potencia que requieren los diferentes abonados.

En los subsistemas de distribución; donde los voltajes son relativamente bajos, la pérdida por el efecto corona, se desprecian y los valores de susceptancia a tierra de la línea de distribución son muy pequeños, razón por la cual se suelen despreciar (Ochoa Osorio J. M., 2006). Con estas simplificaciones el modelo para representar una línea de distribución corresponde al siguiente gráfico:

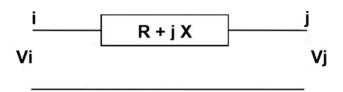


Fig. 10 Representación de una línea de distribución en bajo voltaje.

Fuente: (Ochoa Osorio J. M., 2006)

Donde:

Vi: Voltaje en el punto i (voltios)

Vj: Voltaje en el punto j (voltios)

R: Resistencia de la línea (ohmios)

jX: Reactancia en la línea (ohmios)

En los sistemas de distribución, los conductores que se usan son de diferente diámetro, por lo cual su resistencia por unidad de longitud varia, en cambio la reactancia por unidad es pequeño debido a que la distancia y el voltaje entre conductores no son elevados (Ochoa Osorio J. M., 2006).

Por las razones anteriores; es frecuente encontrar que los valores de resistencia sean mayores que los valores de reactancia como resultado del voltaje existente.

1.15 Términos empleados en el estudio de pérdidas

1.15.1 Flujo de Carga

Los flujos de carga son también llamados flujos de potencia, estos son de gran importancia en la planeación y en el diseño de la expansión futura de los sistemas eléctricos. La información que se obtiene de los flujos de potencia son la magnitud y ángulo de fase del voltaje en cada nodo o barra y las potencias reales y reactivas que fluyen en cada elemento del sistema, así como también las pérdidas por elemento o las pérdidas totales (Izquierdo Franco, 2002).

Sin embargo, se puede obtener otra información dentro de los análisis que se estén realizando; como en el estudio de pérdidas y el valor de pérdidas de potencia dentro del modelo realizado en el software (Izquierdo Franco, 2002).

Puedo manifestar que existen diferentes métodos para resolver un flujo de carga como son: el de método de Newton Raphson, Gauss Seidel y entre otros, sin embargo, hoy en día las compañías eléctricas utilizan softwares de simulación como el CYME, el cual facilita los cálculos y hora tiempo para conocer el estado de un sistema eléctrico.

1.15.2 **Demanda**

La demanda es la cantidad de potencia que un abonado consume en un determinado intervalo de tiempo, a este intervalo de tiempo se lo denomina intervalo de demanda, la variación de la demanda en el tiempo origina una curva de carga (demanda vs tiempo) que se puede expresar en kVA, kW, kVAR, A (Ramirez Castaño, s.f.).

$$\overline{D} = \left(\frac{Energia(kWh)}{tiempo(t)}\right)$$

Donde:

 \overline{D} : Demanda media

1.15.3 Demanda máxima

Corresponde a la mayor carga registrada de un sistema en un periodo de trabajo establecido de 10, 15 o 30 minutos y se mide en kW o kVA, esta demanda ofrece mayor interés ya que allí es donde se registra la máxima caída de voltaje y por ende se presentan mayores pérdidas de energía y potencia (Vásquez Granda, 2013).

1.15.4 Intervalo de demanda

La demanda eléctrica de un sistema se mide en intervalos de tiempo específico de: 15, 30 o 60 minutos, a esto se lo conoce como intervalos de demanda. En este sentido Alvarado (2017) explica hipotéticamente un valor de demanda máxima después de las 18:00 horas, pero antes de las 18:15 dando lugar a las siguientes conclusiones:

Con un instrumento configurado a medir con intervalos de medición de 15 minutos se registra el 97% del valor real a las 18:15 Por otra parte si el instrumento mide cada 30 minutos se registra el 90% del valor real a las 18:30 y finalmente si se configuro a medir con intervalos de 1 hora el valor registrado sería el 87% del valor real a las 18:00 horas (Alvarado, 2017). Dando como resultado que a menor intervalo de demanda se obtienen un valor más cercano al real de la demanda máxima del sistema.

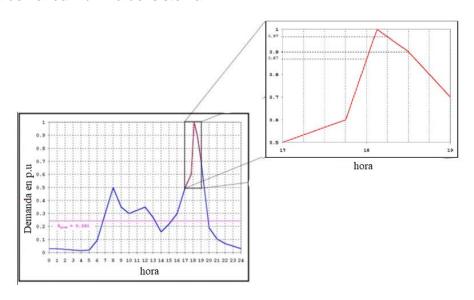


Fig. 11Gráfica de una curva de demanda diaria.

Fuente: (Alvarado, 2017)

1.15.5 Curva de carga

La curva de carga o perfil de carga es una representación gráfica de la variación de la carga durante un determinado tiempo, es decir muestra la demanda eléctrica acumulada de todos los abonados incluyendo las pérdidas existentes en los diferentes elementos que componen el sistema (Ramirez Castaño, s.f.).

1.15.6 Carga instalada

Es la suma de las potencias nominales de todos los abonados que se encuentran conectados y se expresa en kVA, MVA, kW o MW y se expresa mediante la siguiente fórmula (Ramirez Castaño, s.f.).

$$CI = \sum$$
 Potencias nominales

1.15.7 Factor de Carga

Se define como la relación entre el valor de la demanda promedio de la carga durante un período de tiempo establecido y la demanda máxima ocurrida en el mismo periodo, este valor se calcula matemáticamente con la siguiente ecuación:

$$Fc = \left(\frac{Demanda\ Promedio(kW)}{DemandaMaxima(kW)}\right)$$

$$Fc = \left(\frac{\sum Di * (t)}{D_{m\acute{a}x} * (T)}\right)$$

Donde:

Fc: Factor de Carga

Dm: La máxima demanda del Sistema (vatios)

Di: La máxima demanda de la individual del Sistema (vatios)

t: Intervalo individual de tiempo

T: Todo el intervalo de tiempo

Este factor brinda información acerca de la eficiencia de una carga ya que indica que tan cerca esta usualmente el valor de demanda promedio con relación a la demanda máxima, logrando obtener valores entre 0 y 1, en este sentido el valor de 1 corresponde a un Fc ideal donde la demanda máxima y la demanda promedio no tiene variaciones lo que indica una eficiencia muy alta ,en cambio si el Fc de tiene un valor cercano a 0 indica que la curva de carga sufre muchas variaciones con picos y valles lo que indica una eficiencia baja (Ramirez Castaño, s.f.).

1.15.8 Factor de Diversidad

El factor de diversidad es la relación entre la suma de las demandas máximas individuales de las distintas subdivisiones de un sistema (o partes de un sistema) y la demanda máxima de todo el sistema (Ramirez Castaño, s.f.).

$$F_{Div} = \frac{\sum D_{m\acute{a}x\ i}(W)}{D_{m\acute{a}x}}$$

Donde:

 F_{Div} : Factor de Diversidad

Dmáx: La máxima demanda de todo el sistema (vatios)

 $D_{m\acute{a}x i}$: La demanda máxima individual (vatios)

En términos generales el factor de diversidad se refiere al porcentaje de tiempo en que funcionan simultáneamente varias máquinas; puesto que los consumidores tienen diferentes hábitos de consumo y horarios.

1.15.9 Factor de Coincidencia

Se define como la relación de la demanda máxima ocurrida en el sistema y la sumatoria de las demandas de potencia máxima individuales que lo conforman en un intervalo de tiempo determinado; esto se usa para determinar la demanda más real en un circuito, para seleccionar los transformadores y cables de la red (Ramirez Castaño, s.f.).

$$Fcoinc = \frac{Dm(W)}{\sum_{n=1}^{\infty} Di}$$

Donde:

Fcoinc: Factor de coincidencia

Dm: La máxima demanda del sistema (vatios)

Di: La máxima demanda de la individual del sistema (vatios)

1.15.10 Factor de pérdidas

Es la relación entre las pérdidas promedio y la pérdida máxima en un lapso especificado de tiempo (Ramirez Castaño, s.f.).

$$F_{P\acute{e}rd} = \frac{Pp\acute{e}rdidas(W)}{P\acute{e}rdidaMax(W)}$$

Donde:

 $F_{P\acute{e}rd}$: Factor de pérdidas del sistema

Ppérdidas: Pérdidas promedio en elemento del sistema (vatios)

PérdidaMax: Pérdida máxima de un lapso especificado en el sistema (vatios)

El factor de pérdidas permite determinar el porcentaje de tiempo que se requiere para que con la demanda máxima se obtengan las mismas pérdidas que la demanda real para un intervalo de tiempo específico (Ramirez Castaño, s.f.). Y es menor o igual que el factor de carga porque las pérdidas son proporcionales al cuadrado de las cargas, además se puede especificar que el factor de pérdidas esta entre:

$$Fcarga^2 < Fperd < Fcarga$$

Es importante saber que la corriente que fluyen por los conductores rara vez es constante debido a que varía de acuerdo al ciclo de carga diario ,por esta razón se define un fp como la relación entre la corriente de carga promedio elevada al cuadrado dividido entre la corriente máxima de carga elevad al cuadrado (Ramirez Castaño, s.f.).

1.15.11 Factor de potencia

Es el término que se usa para describir la relación que existe entre la potencia activa y la potencia aparente consumida por una carga (Bayod Rujula, 2008, pág. 106).

$$Fp = cos \emptyset = \frac{P(kW)}{S(kVA)}$$

Donde:

Fp: Factor de potencia

P: Potencia activa

S: Potencia aparente

1.16 Cálculo de pérdidas técnicas

El simple hecho de conducir electricidad significa pérdidas de potencia y energía en los materiales y equipos utilizados para: generar, transmitir y distribuir la misma (Ghia & del Rosso, 2013).

Para el cálculo de las pérdidas de energía en cualquier momento de operación se requiere en primer lugar el cálculo de las pérdidas de potencia mediante: flujos de potencia, el cual proporciona valores tanto en magnitud como en ángulo del voltaje y las potencias real y activa

en los diferentes tramos del sistema; una vez que se conocen los valores de las pérdidas de potencia en cada momento se calcula el valor de las pérdidas totales de energía (Munguía Aquilero , 2018).

1.17 Metodologías de Estimación de pérdidas técnicas en bajo voltaje

Los métodos para estimar las pérdidas de energía en redes de bajo voltaje brindan una aproximación del nivel de pérdidas técnicas de una red de distribución, la mayoría de estos métodos requieren un análisis de flujo de carga de la red, pero en sí cada método varía de acuerdo con la información que dispone.

A continuación, se plantean cuatro métodos utilizados para la determinación de pérdidas técnicas en redes de distribución de bajo voltaje (Munguía Aguilero, 2018).

1.17.1 Análisis de flujo y distribución de carga en condiciones de demanda máxima de un periodo determinado

Este método lo detalla (Munguía Aguilero , 2018), que consiste en realizar una distribución de carga a partir de las condiciones de demanda máxima en el sistema. La asignación de carga la realiza el software de simulación ya antes mencionados para flujos de carga, tomando como base el consumo en kWh al mes registrados en las planillas de los abonados conectados aguas abajo del transformador de distribución.

Posteriormente se usan las mediciones existentes de las bajantes de cada transformador en busca del día donde se presentó la máxima demanda con relación a la curva de carga de cada transformador, para realizar la estimación de las pérdidas técnicas.

Utilizando las mediciones registradas por el equipo instalado en cada abonado se determina el factor de carga, al observar el comportamiento de cada abonado se tiene una tendencia de factor de carga y a partir de esta se calcula el factor de pérdidas utilizando la expresión desarrollada por los ingenieros de General Electric Company: Bullera y Woodrow. Dicha expresión se muestra a continuación.

$$F_{p\acute{e}rd} = x F_c + (1 - x) F_c^2$$

Donde: *x* representa un coeficiente que depende de aproximaciones estadísticas y de las características del sistema, en general su valor siempre es menor que 1.

Al determinar el factor de carga y el factor de pérdidas, se realiza la simulación y el análisis de flujo de carga para el circuito seleccionado bajo las condiciones de demanda máxima. Los resultados finales en el software de simulación representan las pérdidas en condiciones de

demanda máxima y a partir de estas se obtienen las pérdidas para demanda promedio utilizando la siguiente ecuación:

Pérd Demanda promedio (kW) = Pérd max Demanda (kW) *
$$F_{Pérd}$$

Finalmente; para obtener las pérdidas de energía de un intervalo de tiempo específico se multiplican las pérdidas en la demanda promedio por el intervalo de tiempo deseado ya sea: diario, semanal, mensual o anual; empleando esta ecuación:

Pérd Demanda promedio
$$(kW)$$
 = Pérd Demanda promedio $(kW) * t$

Donde:

t: Intervalo de tiempo equivalente (horas)

Para determinar el nivel de pérdidas en las líneas de distribución bajo voltaje se debe modelar la red en el software de simulación utilizando los tipos de cables que usa la empresa distribuidora y realizar el flujo de carga. Las pérdidas de energía se obtienen multiplicando el nivel de pérdidas de potencia obtenido en la simulación por el factor de pérdidas y el intervalo de tiempo de estudio aplicando la ecuación:

$$E_{p\acute{e}rd} = P_{p\acute{e}rd\ Dm\acute{a}x} * F_{P\acute{e}rd} * t$$

1.17.2 Análisis de flujo de carga con separación de bloques horarios

La metodología descrita por Manguía Aguilero (2018). Consiste en separar todas las mediciones efectuadas en los circuitos de bajo voltaje en diferentes bloques horarios, el método se facilita si se ordenan los datos en un orden descendente de mayor a menor, sin importar el día y hora en que se tomó la medición.

Todas las mediciones en los diferentes transformadores deben ordenarse de esta forma: al tener establecido el periodo de estudio junto con todas las mediciones necesarias se cambia el orden de los datos colocando de mayor a menor como se mencionó anteriormente y se buscará una tendencia correspondiente a la demanda (Manguía Aguilero,2018).

1.17.3 Análisis de flujo de carga con asignación de demanda a cada abonado en un periodo de tiempo determinado

Esta metodología es similar a la descrita anteriormente sin embargo en algunas empresas distribuidoras no se cuenta con los equipos de medición necesarios para registrar las demandas en los diferentes transformadores debido al costo que implica la adquisición de

dichos equipos. Como consecuencia de lo anterior, muchas veces se tienen solamente los registros del consumo de cada abonado (Munguía Aguilero, 2018).

1.17.4 Distribución de carga horaria por consumo kW/mes

El método está basado en las pérdidas resistivas obtenidas de la relación cuadrática entre: la demanda horaria y la demanda máxima; cabe mencionar que las pérdidas en el núcleo del transformador no está relacionada con la variación de la demanda de la carga y para la ejecución de este método es necesario utilizar el perfil de carga registrado en los medidores, la ventaja de este nuevo método es indicar los resultados de acuerdo con las pérdidas obtenidas por el método tradicional del factor de pérdidas (Poveda, 1999).

• Base del cálculo

El cálculo se inicia partir de la energía suministrada al sistema la cual es registrada y se le resta la energía facturada por los consumos de las instalaciones propias del sistema dando como resultado a las pérdidas totales, las pérdidas totales están conformadas por pérdidas técnicas y no técnicas cuya magnitud será el dato de partida para la separación de pérdidas en cualquier punto del sistema (Poveda, 1999).

Los registros digitales usados para el cálculo permiten obtener una curva de demandas y así al mismo tiempo la energía consumida, estos datos se ordenan de acuerdo con la fecha y hora en un intervalo de registro definida por el operador, el registro a considerar para ejecutar la metodología es de una semana completa (Poveda, 1999).

Base de cálculo de pérdidas resistivas

Las pérdidas resistivas se calculan en base a la demanda máxima de la carga, a partir de esto se conoce la pérdida resistiva en un intervalo de tiempo, el procedimiento descrito se puede usar para determinar las pérdidas en líneas: de transmisión, distribución primarias, secundarias y acometidas (Poveda, 1999).

A partir de la pérdida obtenida a la máxima demanda del perfil de carga se puede determinar la pérdida resistiva a cualquier otra demanda del perfil de la carga (Poveda, 1999), es decir se extrapola la pérdida a demanda máxima a las diferentes demandas del registro de mediciones, mediante la siguiente ecuación:

$$D_{RL-i} = \left(\frac{D_{Pi} * cos \emptyset_{max}}{D_{Pmax} * cos \emptyset_{i}}\right)^{2} * D_{RL-max}$$

Donde:

 D_{RL-i} : Pérdida resistiva a una demanda cualquiera de la carga (vatios)

 D_{RL-max} : Pérdida resistiva a demanda máxima de la carga (vatios)

 D_{Pi} : Demanda i cualquiera de la carga (vatios)

 D_{Pmax} : Demanda máxima de la carga (vatios)

 $cos \phi_{max}$: Factor de potencia perteneciente a la demanda máxima $cos \phi_i$: Factor de potencia perteneciente a la demanda individual

La anterior ecuación se aplica para cada una de las demandas de la carga y se obtiene la curva de demandas de las pérdidas resistivas y el procedimiento resulta correcto porque la demanda es una función en escalón (Poveda, 1999).

• Pérdidas resistivas en redes secundarias

El cálculo de las pérdidas paras redes de bajo voltaje, se realiza con base a los registros de la curva de demanda tomada de los contactos (bornes) de bajo voltaje de los transformadores de distribución con una base de mediciones de por lo menos una semana; luego se obtiene una curva del perfil de carga y a la cual se aplica en ella el procedimiento general para determinar las pérdidas resistivas tomando como base la pérdida a demanda máxima, obtenido de la modelación de la red secundaria tomada de la muestra (Poveda, 1999).

• Estimación de las pérdidas de potencia en los circuitos secundarios

La metodología usa la energía consumida en los diferentes nodos, para hallar la demanda máxima en ellos; la metodología es la siguiente:

- ✓ Obtener un diagrama unifilar del circuito secundario, el cuál incluya los parámetros eléctricos.
- ✓ Obtener la demanda máxima del transformador de distribución (kW, kVAR, kVA, A).
- ✓ Estimar la demanda máxima de cada punto del circuito secundario asociado al transformador.
- ✓ Calcular los voltajes en de los diferentes puntos y las pérdidas del circuito mediante un flujo de carga.

En resumen el cálculo de las pérdidas resistivas es obtenida de la relación cuadrática entre la demanda horaria y la demanda máxima en cada parte del sistema, cabe mencionar que las pérdidas es determinada por el operador en el núcleo del transformador no está relacionada con la variación de la demanda de la carga y para la ejecución de este método es necesario utilizar el perfil de carga registrado por los analizadores de red y la ventaja de

este nuevo método muestra resultados de acuerdo con las pérdidas obtenidas por el método tradicional del factor de pérdidas (Poveda, 1999).

Este método, será considerado como el método exacto, con base al cual se compararán los métodos descritos anteriormente, debido que disminuye en gran medida los promedios de datos y toma datos reales para ser utilizados en los flujos de carga, realizando una mayor cantidad de simulaciones y así representar la variabilidad de la red de distribución por tiempos (Manguía Aguilero, 2018).

1.18 Descripción general del sistema eléctrico de (EMELNORTE S.A)

1.18.1 Sistema eléctrico de (EMELNORTE S.A)

La Empresa Eléctrica Regional Norte S.A. (EMELNORTE S.A) es la encargada de proveer el servicio de energía eléctrica, dentro de su área de concesión que comprende las provincias de: Imbabura, Carchi, los cantones de Cayambe y Pedro Moncayo, el cantón Sucumbíos de la provincia del mismo nombre y los sectores de Durango y Alto Tambo de la provincia de Esmeraldas (EMELNORTE S.A., 2017).

De acuerdo con (EMELNORTE S.A., 2017), en el mes de diciembre cuenta con 68 redes primarias a un nivel de voltaje de 13,8 kV con una longitud de 5.753,27 km, 4.110,46 km de ramales monofásicos, 38,33 km de ramales bifásicos y 1.594,74 km de ramales trifásicos, cuenta con 15733 transformadores de distribución los cuales 13512 son monofásicos con una potencia instalada de 248.2 MVA y 2221 son trifásicos con una potencia instalada de 137.8 MVA.

Un total de 6.280,28 km de redes secundarias de las cuales, 5.617,48 km son aéreas, 310,06 km son preensambladas, y 145,13 km son subterráneas, cuenta con 77.048 medidores monofásicos, 164.303 medidores bifásicos y 3.393 medidores trifásicos, conectados mediante 187.518 acometidas con una longitud 4.616,66 km, que equivale a un porcentaje de cobertura eléctrica del 98.72% del área de concesión (EMELNORTE S.A., 2017).

TABLA 1.1 Porcentaje de cobertura de EMELNORTE S.A en el año 2017.

	Carchi	98.33 %
2017	Imbabura	98.32 %
2017	Pichincha	99.51 %
	Promedio	98.72 %

Fuente: (EMELNORTE S.A., 2017)

1.18.2 Balance de energía

El balance de energía del sistema de la Empresa Eléctrica Regional Norte S.A. en el periodo de enero del 2017 a diciembre del 2017, muestra la cantidad de energía comprada y la energía consumida, incluyendo las pérdidas por: transformación, transporte y distribución; estas lecturas registradas son obtenidas por medio de medidores ubicados en las cabeceras de las diferentes subestaciones y la energía facturada en los medidores de los abonados como se muestra en la siguiente tabla.

TABLA 1.2 Balance de energía de EMELNORTE S.A. en el año 2017.

	BALANCE DE ENERGÍA DEL AÑO 2017													
	Ud.	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO							
ENERGÍA REQUERIDA	kWh	50286523	47752520	50137282	47819402	49089350	49624536							
ENERGIA FACTURADA	kWh	46001060	43500650	45776430	44391070	43123450	46171800							
ENERGIA PERDIDA TOTAL		4285463	4251870	4360852	3428332	5965900	3452736							
PÉRDIDAS TÉCNICAS (68%)	kWh	2924633	2901708	2976083	2339680	4071455	2356335							
PÉRDIDAS NO TÉCNICAS (32%)		1360830	1350162	1384769	1088651	1894445	1096401							
% PÉRDIDAS	%	8,5%	8,9%	8,7%	7,2%	12,2%	7,0%							
% PÉRDIDAS TÉCNICAS		5,8%	6,1%	5,9%	4,9%	8,3%	4,7%							
% PÉRDIDAS NO TÉCNICAS	%	2,7%	2,8%	2,8%	2,3%	3,9%	2,2%							

		BALANCE	DE ENERGÍ	A DEL AÑO 201	7		
	Ud.	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
ENERGÍA REQUERIDA	kWh	50442622	52735089	52779495	53666205	52383224	52389018
ENERGIA FACTURADA	kWh	45668730	46901770	48154810	48521840	49766490	43857700
ENERGIA PERDIDA TOTAL	kWh	4773892	5833319	4624685	5144365	2616734	8531318
PÉRDIDAS TÉCNICAS (68%)	kWh	3257964	3980975	3156137	3510795	1785801	5822236
PÉRDIDAS NO TÉCNICAS (32%)		1515928	1852345	1468548	1633570	830932	2709082
% PÉRDIDAS	%	9,5%	11,1%	8,8%	9,6%	5,0%	16,3%
% PÉRDIDAS TÉCNICAS	%	6,5%	7,5%	6,0%	6,5%	3,4%	11,1%
% PÉRDIDAS NO TÉCNICAS	%	3,0%	3,5%	2,8%	3,0%	1,6%	5,2%

Fuente: (EMELNORTE S.A., 2017)

De acuerdo con la tabla anterior se puede observar que de la resta de energía requerida y factura se logra determinar las pérdidas totales del sistema, este valor se divide en un 68% en pérdidas técnicas y en un 32% en pérdidas no técnicas ((EMELNORTE S.A., 2017).

Encontrada las pérdidas en energía, se calcula los porcentajes de pérdidas mensuales o anuales para todo el sistema para ello se usa la siguiente fórmula:

$$\%Eps = \frac{Eps}{Ec} * 100\%$$

%Eps: Porcentaje de pérdidas en el sistema (%)

Eps : Energía pérdida en el sistema (kWh)

Ec: Energía comprada (kWh)

De los resultados se observa que el porcentaje de energía pérdida en todo el sistema en el año 2017 es de 9,28%, esto se divide en 6.3% en pérdidas técnicas y 2.8% en pérdidas no técnicas (EMELNORTE S.A., 2017).

1.18.3 Información general de pérdidas

De acuerdo con el balance de pérdidas energéticas desde el año 2009 al año 2017 se observa que los porcentajes de pérdidas totales del sistema se ha reducido de un 10.74% a un 9.28% (EMELNORTE S.A., 2017). Este porcentaje se debe reducir aún más para cumplir con el objetivo nacional que indica que en el año el 2021 el nivel de pérdidas de energía totales para el sistema de distribución debe ser del 7.5% (CONELEC, 2013).

TABLA 1.3 Balance energético de pérdidas en el sistema de EMELNORTE S.A

	BALANCE DE ENERGÍA DEL AÑO 2009-2017												
AÑO	Recibida	Recibida facturación a clientes regulados											
ANO	MWh	MWh	MWh	%									
2009	428482	387023	47977	10,74									
2010	454085	404531	51204	10,99									
2011	507640	459763	50298	9,66									
2012	481602	435348	49876	10,06									
2013	517388	467683	59655	11,16									
2014	545214	502737	50756	9,04									
2015	562358	512635	53015	9,25									
2016	563096	514785	53149	9,23									
2017	502865	494986	57269	9,28									

BALANCE DE ENERGÍA DEL AÑO 2017								
	Unidad	Total						
ENERGÍA REQUERIDA TOTAL	kWh	609105266,7						
ENERGÍA TOTAL FACTURADA	kWh	551835800						
ENERGÍA PERDIDA TOTAL SISTEMA	kWh	57269466,7						
PÉRDIDAS TÉCNICAS	kWh	33261566,7						
PÉRDIDAS NO TÉCNICAS		15476581,8						
PORCENTAJE	DE PÉRDIDAS							
PORCENTAJE DE ENERGÍA PERDIDA	%	9,28						

Fuente: (EMELNORTE S.A., 2017)

De acuerdo con esto, se logra evidenciar que el porcentaje total de energía pérdida engloba a todo el sistema de distribución, pero existe la incertidumbre de cuanta energía se pierde en cada etapa, para lo cual es necesario conocer qué porcentaje de ese total antes mencionado corresponde a los elementos presentes en el sistema.

CAPITULO 2

Desarrollo

La presente sección del trabajo se define la metodología y criterios empleados para determinar las pérdidas en las líneas aéreas de bajo voltaje. Para una mejor comprensión se modela y ejecuta la metodología de manera minuciosa en una sola red (I3T5002) de las 191 redes que conforman la muestra.

2.1 Descripción de la metodología

La metodología se basa en la distribución de carga horaria por consumo kW/mes por las ventajas que destacan a las otras metodologías, las cuales son:

- Toma en cuenta las variaciones que tiene la curva de demanda en el sistema durante el período de estudio.
- Utiliza el factor de potencia en cada intervalo de medición para estimar las pérdidas de potencia en diferentes condiciones, a partir de una condición cualquiera de la demanda en el sistema.
- Requiere solamente un flujo de carga por red, para determinar el valor de pérdidas en de energía en el intervalo de tiempo que se registra cada valor de demanda.

2.1.1 Modelación

El cálculo de las pérdidas resistivas en potencia se hace en base a una modelación digital de la red secundaria, dado el hecho que tiene varios nodos es necesario hacer una modelación, para tener un cálculo aproximado respecto a las pérdidas resistivas que se producen en la red, por lo que es necesario la siguiente información:

- Longitud de la red.
- Secciones de conductores.
- Nodos.
- Ubicación de clientes en la red.
- kWh facturados de cada usuario.
- kWh totales en cada poste.
- Espaciamiento de los conductores.

2.1.2 Software de simulación

En el presente estudio se usa el software de simulación CYME-DIST por las facilidades que ofrece, cabe mencionar que la empresa EMELNORTE S.A. no dispone de un módulo de simulación de bajo voltaje. Sin embargo, esto no representa un inconveniente para la modelación, puesto que lo único que hay que tener en cuenta es cambiar el voltaje del punto

de partida, es decir que en lugar de una subestación están los terminales secundarios de bajo voltaje de un transformador de distribución.

Y a partir de la demanda se realiza la distribución de carga en todos los nodos de conexión de los clientes, tomando en cuenta que la modelación se deber realizar a la demanda máxima registrada en los terminales del transformador.

2.1.3 Simulación

La simulación en el programa parte de una distribución de carga usando la demanda máxima registrada en las bajantes del transformador y con el flujo de carga se analiza las caídas de voltaje para obtener las pérdidas totales en la red secundaria,

Este es un proceso interactivo en el cual se ajusta la demanda inyectada en la red con la demanda de cada cliente, todo esto esta detallado por el Mentor Poveda en su metodología.

2.1.4 Cálculo de las pérdidas en energía

Para el cálculo de las pérdidas de energía en la red secundaria es necesario el perfil de carga de 7 días de un transformador de distribución, con el perfil de carga se obtiene:

- Factor de carga
- Factor de pérdida

Las pérdidas en potencia se obtienen de la corrida de flujos a demanda máxima mientras que las pérdidas en energía se obtienen usando el perfil de la carga y la ecuación siguiente.

$$Perd_{energia} = Perd_{not-Dmax} * 8760 * FPerd$$

Donde:

Perd_{energía} : Pérdidas en energía

 $Perd_{pot-Dmax}$: Pérdidas a demanda máxima

8760 : Número de horas que tiene un año

FPerd : Factor de pérdidas

2.1.5 Cálculo del factor de pérdidas

El factor de pérdidas es un valor calculado a partir de la curva de carga de las mediciones en los terminales del transformador en estudio.

Para determinar el factor de pérdidas es necesario extrapolar el resultado obtenido del flujo de carga de la simulación a demanda máxima con todas las demandas individuales que forman la curva de carga, con la implementación de la ecuación descrita por (Poveda, 1999).

Para determinar el factor de pérdidas secundarias se usan las pérdidas promedio sobre la pérdida máxima simuladas, estas se subdividen en diferentes grupos como: potencia del transformador, estructura de la red: monofásica, trifásica y estrato de consumo.

2.1.6 División del factor de pérdidas por estrato

De acuerdo con la base de la empresa de distribución de energía eléctrica EMELNORTE S.A se determina a que estrato pertenece cada red de distribución y cuál es su factor de pérdidas, para mayor facilidad se aplica porcentajes de pérdidas en potencia con relación a la demanda máxima y con relación a la potencia del transformador tanto para las redes monofásica y trifásicas dependiendo de los abonados.

2.2 Determinación de las pérdidas técnicas a nivel de bajo voltaje

Para determinar las pérdidas técnicas en las redes de bajo voltaje es conveniente partir de una muestra que represente a la población; como se explica a continuación:

2.2.1 Muestra

La muestra seleccionada está en función a los datos medidos por del departamento de Calidad de Energía del año 2017, de los analizadores de red instalados en las bajantes de los transformadores por un periodo de 7 días con intervalos de medición de 10 minutos, las selecciones de los puntos de medición fueron ubicados de manera aleatoria en diferentes zonas del área de concesión de EMELNORTE S.A. obteniendo una muestra de 191 redes.

Una vez determinado el tamaño de la muestra se selecciona de manera aleatoria una red, la cual será modelada para la comprensión de la metodóloga mientras que el restante de redes se presenta en el ANEXO A.

TABLA 2.1 Muestra de redes secundarias de (EMELNORTE S.A)

MESES (2017)	ANALIZADORES (MUESTRA)
ENERO	18
FEBRERO	15
MARZO	16
ABRIL	17
MAYO	16
JUNIO	13
JULIO	10
AGOSTO	18
SEPTIEMBRE	19
OCTUBRE	18
NOVIEMBRE	15
DICIEMBRE	16
TOTAL	191

Fuente: (EMELNORTE, 2017)

2.2.2 Cálculo del tamaño de la muestra

De la población finita total de 15733 transformadores registrados en el año 2017 se divide en 13512 transformadores monofásicos y 2221 transformadores trifásicos, todos ellos con sus respectivas redes de distribución de las cuales; el 93% son áreas desnudas, el 5% son redes preensambladas y el 3% redes subterráneas.

Esta es la fórmula aplicada:

$$n = \frac{N * Z^2 * \sigma^2}{e^2(N-1) + Z^2 * \sigma^2}$$

Donde:

n: Tamaño de la muestra poblacional a obtener

N : Tamaño de la población total

 σ : desviación estándar de la población

Z: grado de confianza que se desee

e : representa el límite aceptable de error muestral

Aplicando esta ecuación se busca obtener la muestra a través de la población seleccionada.

$$n = \frac{13512 * 1.96^2 * 0.5^2}{0.073^2(13512 - 1) + 1.96^2 * 0.5^2} = 178(monof\'{a}sicos)$$

$$n = \frac{2221 * 1.28^2 * 0.5^2}{0.20^2(2221 - 1) + 1.28^2 * 0.5^2} = 10 \text{ (trifásicos)}$$

De acuerdo con los resultados de la ecuación se obtiene una muestra con 178 mediciones que dispone de un porcentaje de confianza del 95% y con un porcentaje de error del 7% en las redes de distribución monofásicas, por el contrario, en redes de distribución trifásicas se obtiene un porcentaje de confianza del 80% con un porcentaje de error del 20% ajustándose a un tamaño de muestra de 10 mediciones.

2.2.3 Muestra considerada

Las redes de bajo voltaje que conforman la muestra de estudio fueron elegidos de acuerdo con los siguientes criterios:

• Redes de bajo voltaje donde exista clientes con registros del consumo mensual

- Los transformadores que alimentan a un solo abonado o son de uso especial no se toma en cuenta
- Registros completos, sin interrupción ni fallas durante los 7 días de medición.

2.2.4 Distribución de la muestra

La muestra total por analizar está conformada por redes aéreas desnudas en configuración radial, de las cuales el 95% del son redes monofásicas y el 5% restante corresponde a redes trifásicas.

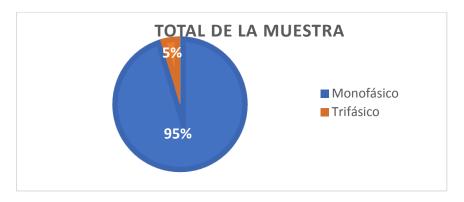


Fig. 12 Porcentaje de monofásicos y trifásicos.

Fuente (Autor)

Del total de la muestra se concluye que la mayoría de la muestra son pertenecientes al estrato D y de los estratos A y B no se encontró mediciones por parte de los analizadores de red instalados en el año 2017, a esto se lo conoce como muestra estratificada y se puede observar en la siguiente figura,

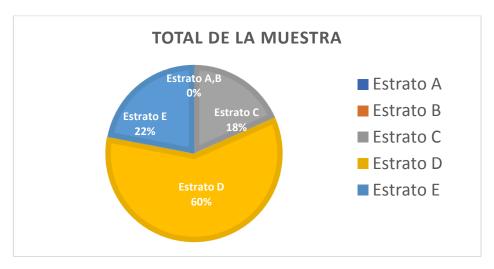


Fig. 13 Muestra estratificada.

2.3 Requisitos para el modelamiento de las redes de bajo voltaje

En el desarrollo de la metodología, el objetivo principal es determinar el factor de pérdida en redes de bajo voltaje, pero para ello es necesario el levantamiento de información que debe incluir las características de la red y las características de la carga, de manera que se disponga de los datos necesarios para ejecutar los cálculos.

2.3.1 Datos de los analizadores de red

El equipo usado para las mediciones es el Fluke modelo 1744 Power Quality Logger (Registrador de calidad de energía) de los cuales se obtienen los datos de demanda con un intervalo de 10 minutos como son:

- Potencia Activa, Reactiva y Aparente.
- Factor de Potencia
- Voltajes, corriente y más.

2.3.2 Secuencia de fases

La secuencia de fase es importante para la respectiva modelación ya que a lo largo de la red se encuentran cargas monofásicas o trifásicas conectadas y través de la secuencia de fase permite conocer el balance de carga y así planificar futuras extensiones sin sobrecargar la red.

2.3.3 Tipo de calibre

El tipo de calibre del conductor es esencial para determinar las pérdidas resistivas en las líneas y se obtiene del programa ArcGIS en donde se encuentra la base de datos sobre las redes tanto de medio voltaje como de bajo voltaje, de una manera gráfica y detallada, especificando el vano de poste a poste con sus respectivas longitudes y coordenadas, en la siguiente tabla se muestra los diferentes calibres de conductores y la resistencia individual de acuerdo con el diámetro y temperatura.

TABLA 2.2 Parámetros técnicos de los calibres.

ID Equipo	Diámetro (cm)	RMG (cm)	R 25°C (ohmios/km)	R 50°C (ohmios/km)	Capacidad (Amps)
#2_ACSR_	0.803	0.12	0.85	1.01	228
#4_ACSR_	0.635	0.13	1.39	1.59	172
#6_ACSR_	0.503	0.12	2.23	2.47	142
1/0_AC\$R_	1.011	0.13	0.54 ~	0.65	301
2/0_AC\$R_	1.135	0.15	0.43	0.53	345
266_ACSR_	1.631	0.66	0.21	0.23	566
4/0_AC\$R_	1.430	0.24	0.27	0.35	452

Fuente (Munguía Aguilero , 2018)

2.3.4 Topología de la red

Constituye la posición real y la forma general en que están dispuestos los conductores que integran el sistema de distribución de energía eléctrica. La Empresa Eléctrica Regional Norte S.A. dispone de la siguiente configuración de las redes de distribución aéreas desnudas:

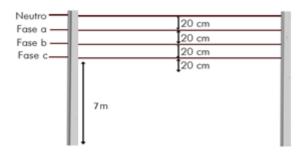


Fig. 14 Disposición física de las redes de distribución.

Fuente (Choque, Sanhueza, & Harnisch, 2001)

Las consideraciones en la topología de la red son dispuestas por cada compañía de distribución y se observa de manera real en la siguiente figura:

Fig. 15 Disposición física real del sistema de distribución.

Fuente (Autor)

2.3.5 Localización de la red en el sistema eléctrico

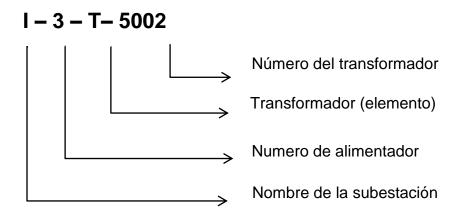

Para localizar una red en el sistema de distribución es necesario conocer el código del transformador al cual se encuentra conectada dicha red, este código esta estableció dentro la empresa de distribución de acuerdo con la subestación y alimentador. Esta codificación es utilizada para mejorar la referencia del transformador en el sistema eléctrico, se puede observar en la siguiente tabla el nombre las subestaciones que dispone EMELNORTE S.A. con sus respectivos códigos.

TABLA 2.3 Código de las subestaciones que pertenecen a EMELNORTE S.A.

NOMBRE	CÓDIGO
La Carolina	K
San Vicente	I
Cotacachi	Н
El Retorno	R
Alpachaca	M
San Agustín	S
Otavalo	V
Atuntaqui	А
El Chota	Х
Tulcán	L
Ajavi	J
San Gabriel	G
El Ángel	E
Cayambe	С
La Esperanza	Z

Fuente (EMELNORTE S.A)

A continuación, se detalla de manera separada cada sección que conforman el cogido de un transformador de distribución en la base de datos de EMELNORTE S.A. La codificación indica que el transformador numero 5002 está conectado al alimentador 3 de la subestación San Vicente.

2.3.6 Diagrama unifilar de la red

Para obtener la disposición física de cada conductor y sus características implícitas se usa el programa ArcGIS que cuenta con la base de datos técnicos de la empresa eléctrica EMELNORTE S.A. en la cual se puede observar los elementos del sistema eléctrico georreferenciados, asimismo se observan las redes de distribución de manera unifilar y detallada en cada zona del sistema eléctrico.

La siguiente figura muestra la red de distribución de bajo voltaje perteneciente al transformador I3T5002.

Fig. 16 Redes eléctricas de EMELNORTE S.A. en ArcGIS.

Fuente (Autor)

2.3.7 Estratos de consumo en sistema ArcGIS

Dentro del programa ArcGIS se encuentra detallo los estratos de consumo mediante una paleta de colores, que nace del consumo promedio registrado por cada abonado de los datos históricos e estimaciones de las planillas de cada zona. Y sirve para identificar a que estrato pertenece el transformador y su red secundaria.

A continuación, se muestra una figura de los diferentes estratos de consumo del área de concesión de Emelnorte S.A. con sus respectivos colores.

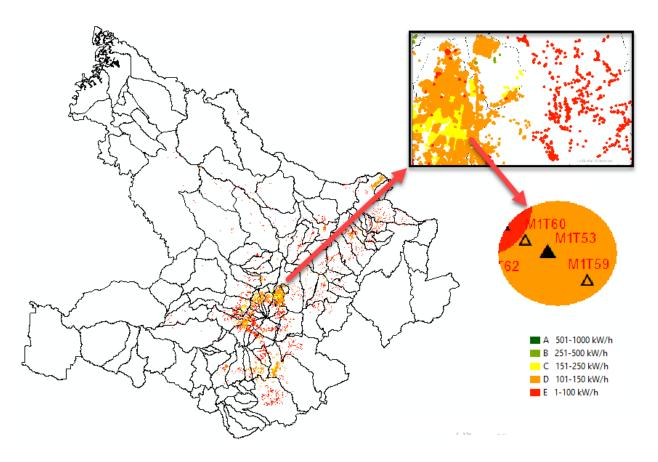


Fig. 17 Colores de los estratos de consumo de EMELNORTE S.A. en ArcGIS.

Al no existir una base completa acerca de los estratos de consumo el método empleado para determinar el estrato de cada red, es mediante la localización y visualización del color dentro del programa, esto es posible mediante coordenadas o códigos de elementos.

2.3.8 Datos acerca de la red de distribución

Para obtención de los datos de la muestra seleccionada, se analizó las mediciones realizadas por parte de la empresa EMELNORTE S.A., por medio de los analizadores instalados a las bajantes de los diferentes transformadores, estos datos son exportados y almacenados en una hoja de Excel de los cuales se puede observar los parámetros eléctricos en intervalos de tiempo de 10 minutos.

El equipo usado para las mediciones es el equipo Fluke modelo 1744 Power Quality Logger (Registrador de calidad de energía) que pertenecen a la empresa EMELNORTE S.A. para realizar mediciones de calidad de producto solicitados por el ARCONEL.

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0
1	PQ Log	Potencia													
2	1744 Power Quali	ty Logger	Numero de serie	: 20087DA	/B7										
3	Coigo de medició	n:													
4	Periodo de medio	ción: 10 minut	05												
5	Tensión nominal:	120 V													
6	Tensión: 115 V	Factor de Co	rrección: 1												
7	Corriente: 1500 A	Factor de Co	rrección: 1												
8	Fecha	4/4/2017	12/4/2017 15:31	17:16:07											
9															
10	Fecha	Hora	V medio L1	V medio l	I medio L1	I medio L2	I medio N	THD V medio L1	THD V medio L2	PF L1	PF L2	PF total	P medio L1	P medio L2	P total medio
11			V	V	Α	Α	Α	%	%				W	W	W
12	4/4/2017	15:40:00	122,26	122,29	4,3	0	0,4	3,6	3,64	0,923	1	0,923	352,84	0	352,84
13	4/4/2017	15:50:00	122,87	122,89	3,7	0,4	0,4	3,55	3,55	0,897	1	0,897	254,83	C	254,83
14	4/4/2017	16:00:00	122,93	122,93	3,7	0,7	0,5	3,53	3,53	0,933	1	0,933	274,43	C	274,43
15	4/4/2017	16:10:00	123,5	123,54	7,6	0	1,6	3,43	3,44	0,884	1	0,884	823,3	0	823,3
16	4/4/2017	16:20:00	124	124,05	7,2	0	1,9	3,3	3,34	0,864	1	0,864	744,89	0	744,89
17	4/4/2017	16:30:00	124,37	124,42	8,4	4,3	3,1	3,3	3,35	0,88	0,941	0,896	862,5	313,64	1176,14
18	4/4/2017	16:40:00	124,86	124,89	7,3	0,9	0,5	3,3	3,35	0,871	1	0,872	793,89	9,8	803,69
19	4/4/2017	16:50:00	124,59	124,6	4,4	0,7	0,3	3,74	3,74	0,902	1	0,902	362,64	0	362,64
20	4/4/2017	17:00:00	124,98	124,97	4,2	5,8	0,5	3,83	3,83	0,914	0,966	0,947	313,64	558,66	872,3
21	4/4/2017	17:10:00	125,19	125,17	3,4	6,4	0,3	3,83	3,88	0,885	0,938	0,925	225,43	744,89	970,31
22	4/4/2017	17:20:00	125,83	125,83	4,3	6,2	0,4	3,88	3,88	0,878	0,95	0,926	352,84	744,89	1097,73

Fig. 18 Hoja de Excel con las mediciones del equipo Fluke 1744.

2.3.9 Análisis de flujo de carga para el sistema de bajo voltaje

Para llegar a conocer las pérdidas técnicas en la red en bajo voltaje se usa el programa de cómputo CYME-DIST (Power System Análisis) versión 8.1; que a su vez se emplean los registros que dispone la base de datos de la empresa EMELNORTE S.A.

2.4 Modelamiento de las redes de distribución de bajo voltaje para determinación de las pérdidas técnicas

Para comprensión de la metodología se desarrollará el modelado de la red con código (I3T5002) la cual pertenece al transformador 5002 conectado al alimentador 3 de la subestación San Agustín perteneciente al estrato "E" para comprensión del lector. Sin embargo, el restante de redes del estrato "E" se encuentra modeladas en el anexo E,F,G.

2.4.1 Selección de la red de bajo voltaje

De las mediciones realizadas con analizadores de red se busca el código del transformador y que equipo Fluke se usó para su medición, para ello se ubica en la tabla de resumen mensual, donde se especifica a que transformadores se les realizo las mediciones y el equipo de medición que se usó, como lo muestra la siguiente tabla:

TABLA 2.4 Mediciones realizadas en el mes de junio por los analizadores de red

CALIDAD DE PRODUCTO MES JUNIO 2017												
N° EQUIPO MEDICIÓN ID. TRAFO P.												
F10	4233	I2T7										
F11	4234	I2T6										
F12	F12 4235 I2T2											
F14	4236	I3T5004										

F15	4237	I3T5002
F16	4238	I2T220
F17	4239	I2T224
F10	4240	I3T387
F11	4241	I3T171
F12	4242	I3T473
F13	4243	I3T428
F14	4244	I3T825

Fuente (Autor)

2.4.2 Selección de parámetros eléctricos

A partir del documento de Excel exportado del analizador de red instalado a las bajantes del transformador I3T5002, se busca en qué momento se produjo la máxima demanda y se escogen los siguientes parámetros eléctricos; voltajes, corrientes y factores de potencia.

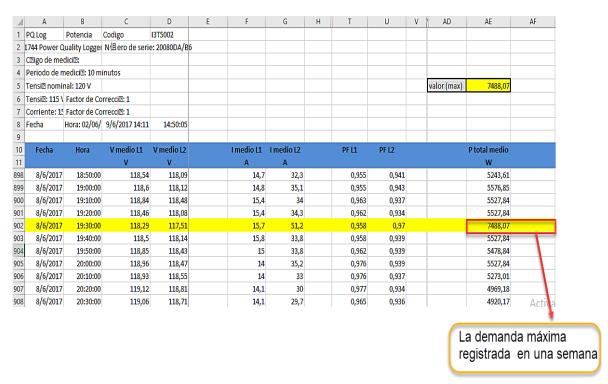


Fig. 19 Parámetros eléctricos registrados en las bajantes del transformador

Fuente (Autor)

La demanda máxima registrada de acuerdo con el perfil de carga de las mediciones realizadas por el analizador de red se usará para determinar las pérdidas técnicas e ingresar dichos valores en el software de simulación, en el siguiente perfil de carga se observa la demanda de una semana con intervalos de 10 minutos, de donde se observa que la demanda máxima ocurre a las 19:30:00 con un valor de 7,48 kW, como lo muestra la siguiente figura:

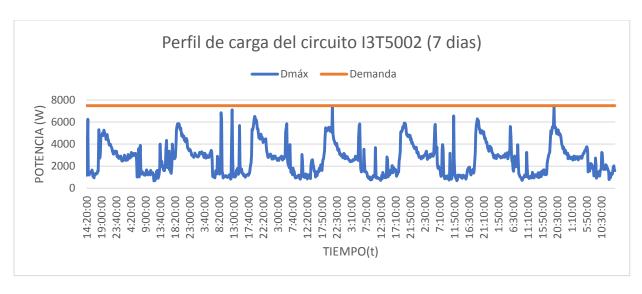


Fig. 20 Perfil de carga de una red de bajo voltaje.

2.4.3 Selección de la red de bajo voltaje en ArcGIS

A partir de la red seleccionada se busca obtener los datos georreferenciados de la topología de la red, para lo cual se hace uso de la herramienta informática ArcGIS en la cual se localiza el transformador y la red de bajo voltaje con los diferentes puntos de carga (nodos).

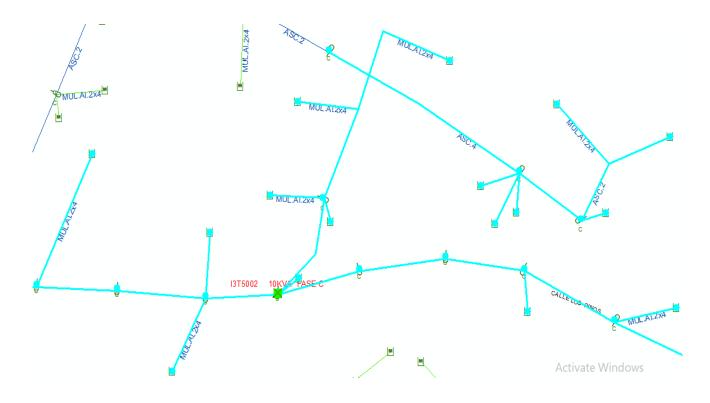


Fig. 21 Selección de una red de bajo voltaje en ArcGIS

2.4.4 Selección los atributos de la red

Dentro del programa Arc-Gis se encuentra de manera detalla la información de los abonados de manera mensual; a partir de la muestra se escoge la red a modelar en este caso la I3T5002; En los atributos de la red de bajo voltaje se revisa la potencia del transformador a la cual está conectada, los abonados, el número de luminarias existentes y el consumo mensual en los diferentes nodos.

SI	SIGELEC.ATRIBUTOS CONSUMIDOR														
	OBJECTID *	CODIGOCLIENTE *	CLITOTDEU	CLIFECULTP	CLIULTCONM	CLIULTCONP	CLIINSTIE	CLINUMPO	CLIFECINS	EDCCO	CDAFAS	CDACO	USOCO	IDCCEDRUC	CLINOMABR
	70924	140032	19,31	12/11/2016	140	5	N	0	7/4/2000	Α	1	2	RD	1000257376	NIMIA FLORISA LOZA GUERRA
	70925	227926	6,22	12/11/2016	70	2	N	0	3/4/2008	Α	1	2	RD	1000806040	LOZA LOZA GLADYS ISABEL DEL ROSAR
	103144	30912	9,35	9/11/2016	86	3	N	0	18/6/1990	Α	1	2	TE	1000119402	CONEJO ARELLANO ALFONSO
	103150	30910	52,63	15/3/2015	69	2	N	0	18/6/1990	1	1	2	RD	1000742500	ARELLANO CABASCANGO FRANCISCO
L	103878	30896	0	9/11/2016	44	2	N	0	18/6/1990	Α	1	2	RD	1000484806	ARELLANO ROMERO ALEJANDRO
	104499	35359	19,21	9/11/2016	114	4	N	0	25/6/1990	Α	1	2	RD	1000487205	QUINCHUQUI TABANGO SEGUNDO
L	104520	30909	5,05	9/11/2016	11	0	N	0	7/7/1991	Α	1	2	RD	1000126951	CACHIGUANGO J ALBERTO
L	104521	93834	4,44	9/11/2016	1	0	N	0	18/6/1990	Α	1	2	RD	501766562	ALANUCA YANCHATIPAN RAUL
L	104522	96067	14,98	9/11/2016	38	1	N	0	16/9/1994	Α	1	2	CO	501766562	ALUNUCA YANCHATIPAN RAUL
	104523	154582	19,59	9/11/2016	117	4	N	0	6/12/2001	Α	1	2	RD	1001874005	LOPEZ QUILUMBA MARIA JUANA
	104524	208682	9,44	9/11/2016	83	3	N	0	20/8/2008	Α	1	2	RD	1002969549	CACHIGUANGO CABASCANGO JAIME HU
	104525	32125	10,8	9/11/2016	102	4	N	0	18/6/1990	Α	1	2	RD	1000746055	MUENALA CACHIMUEL LUIS
L	104526	203881	10,2	9/11/2016	0	0	N	0	24/1/2008	Α	1	2	RD	1701058412	CACHIGUANGO ARELLANO JOSE ANTON
L	104527	36002	12,5	9/11/2016	75	3	N	0	17/9/1990	Α	1	2	RD	1001004058	CACHIGUANGO MALDONADO JOSEFINA
	104529	148529	22,21	9/11/2016	181	6	N	0	9/5/2001	Α	1	2	TE	1001370715	MORETA ARELLANO ROSA MARIA
L	156846	327913	20,05	9/11/2016	34	1	N	0	21/10/2010	Α	1	2	RD	1001194776	CACHIGUANGO CACHIMUEL EDGAR SEG
L	156934	326179	4,69	9/11/2016	5	0	N	0	7/9/2010	Α	1	2	RD	1000875326	QUINCHUQUI ANTONIO
L	189630	169651	7,66	9/11/2016	54	2	N	0	27/2/2003	Α	1	2	RD	1000641355	BURGA JOSE VICENTE
	209506	200216	5,1	9/11/2016	0	0	N	0	22/9/2005	Α	1	2	RD	1701058412	CACHIGUANGO ARELLANO JOSE ANTON
	223376	318278	1,14	9/11/2016	57	2	N	0	14/12/2009	Α	1	2	RD	1001722253	MARMOL FUERES LUIS ALFONSO
Ĺ	224921	227927	18,04	12/11/2016	129	4	N	0	3/4/2008	Α	1	2	RD	1000257376	LOZA GUERRA NIMIA FLORINSA
Ľ	228536	118621	11,1	9/11/2016	110	4	N	0	3/9/1997	Α	1	2	RD	1001004058	CACHIGUANGO MALDONADO JOSEFINA
Г															

Fig. 22 Atributos de la red de bajo voltaje en ArcGIS

Fuente (Autor)

2.4.5 Exportar el diagrama unifilar de la red

Para el modelamiento de la red de bajo voltaje en el programa CYME-Dist es necesario conocer: las distancias de cada tramo, los puntos de carga y la cabecera de la red; para lo cual se procede a importar la red de bajo voltaje de ArcGIS en formato de shape.

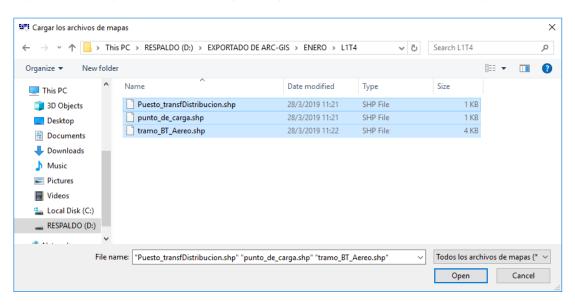


Fig. 23 Exportar shapes (capas de ArcGIS)

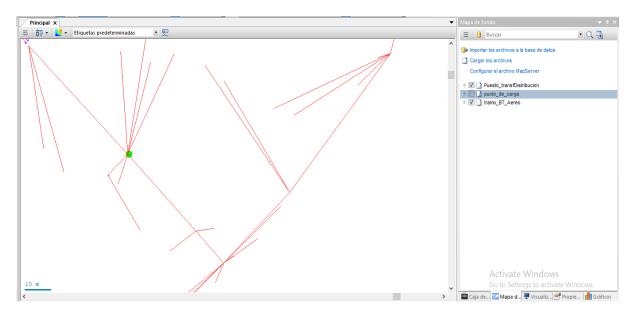


Fig. 24 Importar elementos en CYME-Dist

2.4.6 Modelar la fuente en CYME-Dist

Para el modelamiento de la fuente en CYME se ubica en la cabecera de la red y se ingresa los voltajes equivalentes, así como también la demanda en corriente y factor de potencia en el momento de la máxima demanda.

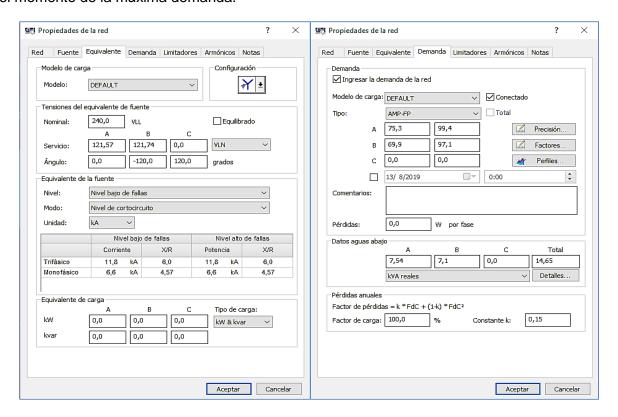


Fig. 25 Ventana de las propiedades de la red diseñada en CYME-Dist

Los valores anterior mente mencionados son ingresados en el software de simulación en forma de una fuente de donde se procederá a distribuir la carga total en función de los abonados conectados.

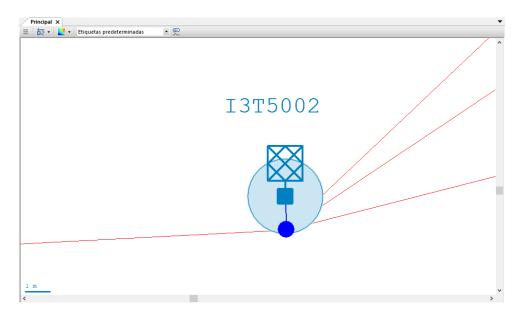


Fig. 26 Gráfico de la fuente diseñada en CYME-Dist

Fuente (Autor)

2.4.7 Modelar los tramos de red de bajo voltaje

Para el modelamiento de la red de bajo voltaje en CYME se usa los parámetros de diseño existentes en la base de datos de ArcGIS como son: la distancia que tiene cada tramo, el número de conductores, la secuencia de los conductores con sus respectivos espaciamientos y el calibre del conductor.

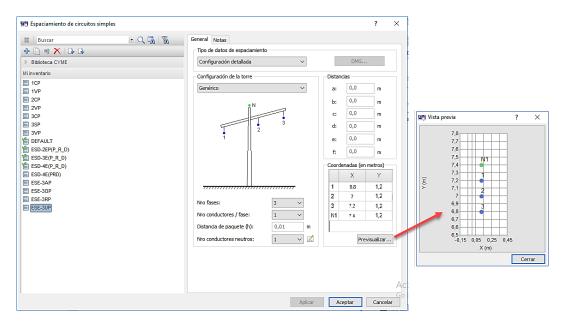


Fig. 27 Parámetros del espaciamiento de los conductores en CYME-Dist

2.4.8 Modelar los puntos de carga en la red de bajo voltaje

En el modelamiento de los puntos de carga se usa el consumo de energía eléctrica registrado por cada abonado durante un mes, los cuales son ubicados en cada nodo en forma de una carga concentrada que indica que el consumo total en ese punto es la suma del consumo de todo un mes de los abonados conectados en ese punto (nodo).

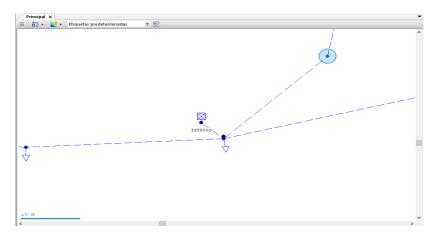


Fig. 28 Red de bajo voltaje modelada en CYME-Dist

Fuente (Autor)

alumbrado público.

Para determinar el valor de las cargas concentradas en cada nodo, es necesario añadir el consumo mensual de las luminarias instalada en los diferentes postes, la ubicación de las luminarias así como su potencia se puede obtener en la base georreferenciada de ArcGIS.

Con la potencia de cada luminaria se puede obtener el consumo mensual como se detalla en la siguiente tabla:

Alumbrado público Luminarias Potencia (W) 70 100 125 150 175 250 500 Funcionamiento Consumo (kWh / mes) 25,2 36 90 180 45 54 63

TABLA 2.5 Consumo mensual de las luminarias

Fuente: Autor

2.5 Pérdidas en las líneas de bajo voltaje

Una vez modelado toda la red de bajo voltaje se procede a realizar una distribución de carga conforme a la demanda ingresada en la fuente y a partir de ella se realiza un flujo de carga del cual se obtiene un reporte del valor de pérdidas en las líneas correspondiente a la máxima demanda ingresada.

Alimentador:	I3T5002
Fuente:	I3T5002_1104_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.	

			FP(%)
7,55	1,98	7,81	96,72
0,00	0,00	0,00	0,00
7,55	1,98	7,81	96,72
7,66	1,97	7,91	96,85
7,37	1,89	7,61	96,85
0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00
7,37	1,89	7,61	96,85
0,00	0,00	0,00	0,00
0,00	-0,00	0,00	0,00
0,00	-0,00	0,00	0,00
0,18	0,09	0,21	89,83
0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00
0,18	0,09	0,21	89,83
	pén	DIDA BECLI	I TANITE /
DEMANDA MÁXIMA			
	7,55 7,66 7,37 0,00 0,00 0,00 7,37 0,00 0,00 0,0	7,55 1,98 7,66 1,97 7,37 1,89 0,00 0,00 0,00 0,00 7,37 1,89 0,00 0,00 0,00 -0,00 0,00 -0,00 0,00 -0,00 0,18 0,09 0,08 0,09 0,18 0,09 0,18 0,09 0,18 0,09	7,55 1,96 7,81 7,66 1,97 7,91 7,37 1,89 7,61 0,00 0,00 0,00 0,00 0,00 0,00 7,37 1,89 7,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,18 0,09 0,21 0,00 0,00 0,00 0,18 0,09 0,21

Fig. 29 Resultado del flujo de carga sumatoria por red en CYME-Dist Fuente (Autor)

2.6 Determinación de las pérdidas

Luego de obtener el valor de pérdidas a demanda máxima de la simulación, se procede a calcular las pérdidas para las demandas individuales del perfil de carga, para ello se usa la ecuación de cálculo de pérdidas resistivas descrita por el Mentor Poveda.

Fig. 30 Hoja de datos del perfil de carga de la red I3T5002

Después de obtener las pérdidas para todos los intervalos de demanda, se crea un perfil de pérdidas propio de la red.

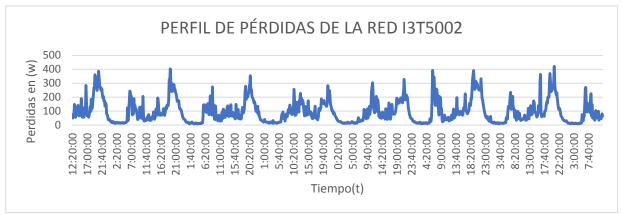


Fig. 31 Perfil de pérdidas de la red I3T5002

Fuente (Autor)

El factor de pérdidas se consigue a partir del perfil de pérdidas, dicho factor es calculado mediante el promedio de las pérdidas dividido sobre la perdida máxima resultante de la simulación, como se indica en la siguiente figura:

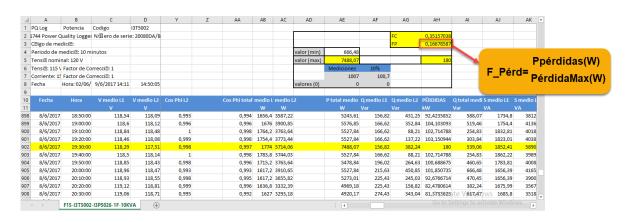


Fig. 32 Factor de pérdidas de la red I3T5002

Fuente (Autor)

2.7 Determinación del factor de pérdidas por estrato

En la figura anterior se observa el cálculo del factor de pérdidas propio de la red área específica que es la I3T5002 la cual tiene un valor de 0.16, pero para determinar el factor de pérdidas por estrato es necesario realizar el mismo análisis a varias redes que pertenezcan al mismo estrato de consumo y promediar el factor de pérdidas de todas las redes en un solo.

En la figura siguiente se observa la agrupación de varias redes las cuales tienen el mismo estrado de consumo, cada una de ellas tiene un valor conocido como factor de pérdidas individual y para el cálculo del factor de pérdidas por estrato se realiza un promedio entre todos los factores de pérdidas individuales.

Fig. 33 Factor de pérdidas del estrato E

Fuente (Autor)

2.8 Factor de pérdidas por estrato

En la tabla siguiente se muestra los resultados del promedio de los factores de pérdidas agrupados por estrato de consumo, para más observar el factor de pérdidas en cada red de distribución agrupado por su estrato se encuentran detallados en el anexo B, C y D.

TABLA 2.6 Factor de pérdida por estrato

FACTOR DE PÉRDIDA POR ESTRATO					
Estrato	#	F. Pérdida Promedio	Desviación Estándar		
Α	0	0	0		
В	0	0	0		
С	35	0,237	0,102		
D	114	0,199	0,101		
E	41	0,143	0,070		

Adicionalmente, se puede observar el número de luminarias y abonados en total, y en promedio de cada estrato, la tabla siguiente muestra el resultado final del factor de pérdidas en cada estrato de consumo

TABLA 2.7 Resultados del análisis de la muestra

ESTRATO C						
NUMERO DE MEDICIONES 35						
FACTOR DE PÉRDIDAS 0,2373 Desviación E. 0,1						
PROMEDIO DE ABONADOS TRAF. 39 ABONADOS Total.		1348				
LUMINARIAS PROMEDIO TRAF.	10	LUMINARIAS Total.	336			

ESTRATO D					
NUMERO DE MEDICIONES	114				
FACTOR DE PÉRDIDAS	0,1991	Desviación E.	0,101		
PROMEDIO DE ABONADOS TRAF.	37	ABONADOS T.	4209		
LUMINARIAS PROMEDIO TRAF.	12	LUMINARIAS T.	1335		

ESTRATO E						
NUMERO DE MEDICIONES	41					
FACTOR DE PÉRDIDAS	0,143191	Desviación E.	0,07			
PROMEDIO DE ABONADOS TRAF.	23	ABONADOS T.	925			
LUMINARIAS PROMEDIO TRAF.	9	LUMINARIAS T.	353			

CAPITULO 3

Resultados

3.1 Introducción

En el presente capitulo se detalla los resultados obtenidos de la aplicación de la metodología de Mg. Poveda en las redes de distribución secundaria.

3.2 Estratos de consumo

Se observa en la tabla 2.7 que no existe datos en los estratos B, esto se debe a que las mediciones realizadas por la unidad de calidad de energía en el año 2017 no tienen registros de dicho estrato, porque el porcentaje de abonados es pequeño en comparación con los demás

En cambio, en el estrato A no existen ninguna red de acuerdo con la base de datos de ArcGIS; Esto se puede observar mediante la siguiente tabla donde se detalla el porcentaje que cubre cada estrato de acuerdo con el área de concesión de EMELNORTE S.A. cabe mencionar que el cálculo del consumo de cada estrato está en función de la ruta de lecturas que existe en la empresa distribuidora.

TABLA 3.1 Áreas de los estratos de consumo

Área Total	ESTRATO	Área	Porcentaje
580502982,7	Α	//	//
	В	3895863,6	1%
	С	21947637,6	4%
	D	171359753,8	30%
	Е	383208707,7	66%

Fuente (EMELNORTE,2017)

Además, como se observa en la tabla anterior el estrato que tiene mayor porcentaje de abonados es el estrato E con un 66% y el estrato D con un 30%, se concluyendo que la mayor parte de las redes secundarias de los estratos C y D corresponden a sectores urbanos y en el estrato E corresponde a sectores rurales.

3.3 Factor de pérdidas por estrato

Se observa que el factor de pérdidas tiene una relación con el consumo mensual de los abonados debido a que los resultados obtenidos de la modelación muestran que al aumentar el estrato de consumo el factor de pérdidas se eleva, lo que indica que las pérdidas son altas en los estratos superiores, como se muestra a continuación:

TABLA 3.2 Tabla de los factores de pérdidas calculado

	FACTOR DE PÉRDIDA POR ESTRATO						
ESTRATO	#	F. PÉRDIDA PROMEDIO	DESVIACIÓN ESTANDAR	DESVIACIÓN MEDIA			
Α	0	0	0	0			
В	0	0	0	0			
С	35	0,237	0,102	0,082			
D	114	0,199	0,101	0,068			
Е	41	0,143	0,0690	0,051			

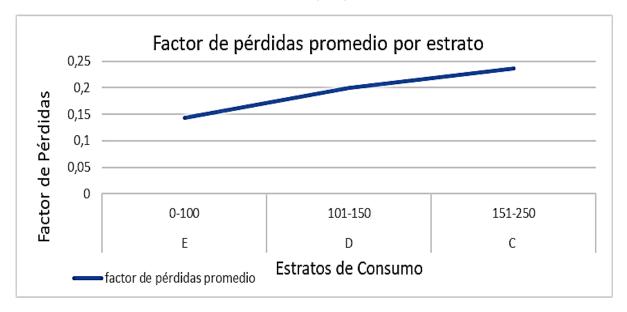


Fig. 34 F. Pérdidas en los estratos de consumo

Fuente (Autor)

3.4 Factor de pérdidas por sistema y potencia del transformador

Los factores anteriormente calculados tienen una desviación estándar alta lo que indica que sus resultados están muy dispersos, para optimizar los resultados, se ha optado por subdividir en: sistema ya sea monofásico o trifásico y potencia del transformador al cual esté conectado, de esta manera disponer de un factor de pérdidas que se ajuste a las redes de distribución con una desviación mínima.

Con esta clasificación el valor del factor de pérdidas es más preciso y su variación estándar es menor, lo que garantiza una mejor determinación de las pérdidas técnicas en la red. Por ejemplo; en el estrato E de manera general se tiene un factor de pérdidas de 0.19 pero si se subdivide de acuerdo con las potencias de los transformadores, el único factor de pérdidas que más se aproxima es el perteneciente al transformador de 37.5 kVA con un factor de pérdidas de 0.22, esto se logra observar en la siguiente tabla:

TABLA 3.3 Factor de pérdidas por estrato, sistema y potencia del transformador

Estrato		Factor de Pérdidas				
			Monofásico			
	kVA	Cantidad	F. Pérdidas promedio	Desviación estándar		
	10	4	0,193	0,067		
	15	3	0,231	0,122		
	25	10	0,169	0,070		
C	37,5	7	0,296	0,066		
	50	7	0,236	0,124		
			Trifásico			
	45	1	0,323	//		
	75	1	0,299	//		
	100	2	0,399	0,047		
			Monofásico			
	kVA	Cantidad	F. Pérdidas promedio	Desviación estándar		
	10	8	0,127	0,065		
	15	19	0,165	0,080		
	25	35	0,193	0,103		
	37,5	37	0,204	0,068		
	50	10	0,241	0,060		
	75	1	0,223	//		
			Trifásico			
	50	2	0,554	0,323		
	30	2	0,228	0,161		
			Manaféair			
	kVA	Cantidad	Monofásico F. Pérdidas promedio	Dogwiegión getándor		
	10	14	0,109	Desviación estándar 0,054		
	15	19	0,154	0,054		
т		19	0,134	0,059		
	25	4	0,133	0,036		
	37,5	4	0,221	0,121		
			,	,		

La tabla 3.3 es resultado de la simulación de toda la muestra, de acuerdo con la demanda máxima, lo que da como resultado un factor de pérdidas para cada tipo de red de distribución.

Por ejemplo; se tiene una red monofásica la cual está conectada a un transformador de 10kVA, esta se localiza en el estrato E y tiene un valor de pérdidas a demanda máxima de 240W y resultado de pérdidas en energía es el siguiente:

$$Eperdida = 240(W) * 8760(h) * 0.10$$

$$Eperdida = 210.2 \; kWh/anuales$$

El método anterior sirve determinar el valor de pérdidas técnicas en energía de una red de distribución a partir de las pérdidas a demanda máxima y de allí multiplicar por; el número de horas en el año y factor de pérdidas que se ajuste la red.

3.5 Porcentaje de pérdidas de acuerdo con la demanda máxima

El porcentaje de pérdidas de acuerdo con la demanda máxima hace una relación entre la demanda máxima que se registra en la red y el valor de pérdidas técnicas resultante del programa de simulación, dichos valores resultantes son promediados y agrupados de acuerdo con el transformador y los estratos de consumo como se observa en la tabla 3.4.

Por ejemplo; para un transformador de 10kVA del estrato E se sabe que la demanda máxima registrada en una semana es de 8605 W, aplicando la tabla 3.4 tengo un porcentaje de pérdidas del 3.3% de pérdidas con relación a la demanda máxima, que da como resultado 280 W de pérdidas técnicas y el resultado de pérdidas en energía es el siguiente:

$$Eperdida = 283.9(W) * 8760(h) * 0.10$$

 $Eperdida = 248.6 \, kWh/anuales$

Este es un cálculo adicional que determina el valor de pérdidas técnicas sin realizar una simulación o corridas de flujo; al contrario, busca una relación porcentual entre cual sería el valor de pérdidas a demanda máxima, para aplicarlo a las redes de distribución.

El inconveniente de aplicar este método es la dificultad que existe para saber cuál es la demanda máxima en una red en un intervalo de tiempo ya que hace necesario la instalación de equipos de medición, lo que representa un gasto económico.

TABLA 3.4 Tabla de porcentaje de Pérdidas con relación a la demanda máxima

Estrato	Porcentaje de pérdidas en potencia con relación a la demanda máxima					
	Monofásico					
	kVA	Cantidad	% Pérdida	Desviación estándar		
	10	4	3,40%	4,3		
	15	3	3,40%	2,2		
	25	10	1,20%	0,5		
C	37,5	7	2,40%	1,5		
	50	7	2,20%	1,7		
	Trifásico					
	45	1	1,70%	0		
	75	1	0,50%	0		
	100	2	3,20%	3,5		

			Monofási	со	
	kVA	Cantidad	% Pérdida	Desviación estándar	
	10	8	1,5%	0,6	
	15	19	2,7%	1,6	
	25	35	2,6%	1,4	
	37,5	37	2,1%	1	
	50	10	1,8%	1,1	
	75	1	1,6%	0	
	Trifásico				
	50	2	3,70%	0,2	
	30	2	1,70%	0,04	
			Monofási	со	
	kVA	Cantidad	% Pérdida	Desviación estándar	
	10	14	3,3%	1,9	
m	15	19	2,5%	1,4	
	25	4	2,4%	0,8	
	37,5	4	3,3%	1,3	

Fuente (Autor)

3.6 Porcentaje de pérdidas de acuerdo con la potencia del transformador

El porcentaje de pérdidas de acuerdo con la potencia aparente del transformador hace una relación entre los kVA con los kVA resultantes de la simulación en el software dichos valores son promediados de acuerdo con el estrato y potencia del transformador como se lo muestra en la tabla 3.5.

Esta relación tiene como objetivo estimar las pérdidas técnicas en todas las redes de distribución a partir de la potencia del transformador, lo que hace que el cálculo sea más sencillo además de que abarca a las redes que no fueron tomadas en la muestra y proporciona valores más cercanos a la realidad.

Por ejemplo; para un transformador de 10kVA del estrato E, se sabe de acuerdo a la tabla 3.6 que las pérdidas en kVA para tales transformadores son del 3,3%, dando como resultado 0.33 kVA el cual multiplico por el factor de potencia promedio de las redes de distribución que es de 0.95 obtengo las pérdidas en kW que sirven para determinar las pérdidas técnicas en energía mediante la siguiente ecuación:

$$Eperdida = (0.33(kVA) * 0.95) * 8760(h) * Fp$$

$$Eperdida = 313(W) * 8760(h) * 0.10$$

$$Eperdida = 274.1 \ kWh/anuales$$

El cálculo detallado anteriormente se puede usar para los transformadores monofásicos como trifásico del estrato D y E, pero para el estrato C no es tan precisó debido a la falta de mediciones de dicho estrato, lo cual ocasiona una desviación mayor de los resultados.

TABLA 3.5 Tabla de porcentaje de Pérdidas con relación a la potencia aparente del transformador

	Porcentaje de pérdidas con relación a la potencia del transformador							
			Monofásico					
	kVA	Cantidad	% Pérdidas	Desviación estándar				
	10	4	7,40%	10,5				
	15	3	9,80%	12				
	25	10	1,04%	0,6				
C	37,5	7	4,16%	4,4				
	50	7	1,59%	1,4				
			Trifásico					
	45	1	0,91%	//				
	75	1	0,15%	//				
	100	2	2,69%	3,20				
			Monofásico					
	kVA	Cantidad	% Pérdidas	Desviación estándar				
	10	8	1,6%	1				
	15	19	4,3%	2,8				
	25	35	4,9%	14,6				
D	37,5	37	1,4%	0,8				
	50	10	1,1%	0,7				
	75	1	0,9%	//				
			Trifásico					
	50	2	5,0%	0				
	30	2	1,40%	0,21				
			Monofásico					
	kVA	Cantidad	% Pérdidas	Desviación estándar				
m	10	14	3,3%	2,5				
	15	19	2,1%	1,6				
	25	4	1,9%	1,5				
	37,5	4	1,6%	1,3				

Fuente (Autor)

3.7 Factor de pérdidas y factor de carga

Al observar el factor de pérdidas y el factor de cargas de la red (I3T5002) tienden a mantener una relación, donde si el factor de carga aumente por consecuencia el factor de pérdidas también así consecutivamente, pero sería un error decir que para un factor de carga existe un mismo factor de pérdidas.

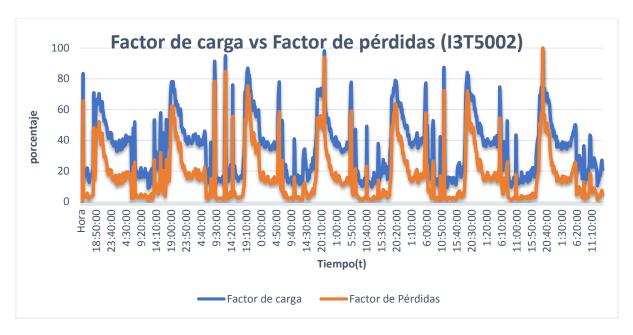


Fig. 35 Factor de carga vs Factor de pérdidas

En la red I3T5002 de acuerdo con los datos obtenidos se calcula un factor de carga de 0.35 y un factor de pérdidas de 0.16 pero esto no quiere decir que para otra red que tiene un factor de carga de 0.35 se pueda estimar un factor de pérdidas igual a 0.16.

3.8 Cálculo de las pérdidas en energía

La principal causa de determinar el factor de pérdidas es para conocer cómo se comportan las pérdidas en las redes y producto de este análisis determinar cuanta energía se pierde en dicha sección del sistema.

3.8.1 Cálculo de las pérdidas en energía en redes monofásicas

Para el cálculo de las pérdidas técnicas en las redes de distribución monofásico es necesario subdividir el número total de redes monofásica de acuerdo con la potencia del transformador, es decir de las 13512 redes 3726 pertenecen a redes monofásicas conectadas a transformadores de 10kVA y así sucesivamente como se detalla en la siguiente tabla:

TABLA 3.6 Número de redes monofásicas

Monofásicos	Potencia	Cantidad
13512	kVA	#
	10	3726
	15	3496
	25	2435
	37,5	1467
	50	617
	75	39

Fuente (EMELNORTE, 2017)

Para determinar las pérdidas técnicas en energía, es necesario multiplicar el valor de pérdidas técnicas promedio de cada transformador por el número total de transformadores que conforman todo el sistema de EMELNORTE S.A. dando como resultado:

TABLA 3.7 Tabla pérdidas técnicas en redes monofásicas

Pérdidas técnicas en energía del año 2017				
Monofásico	Potencia	Cantidad	Pérdidas técnicas promedio	TOTAL
IVIOIIOTASICO	kVA	#	kWh/anual	GWh/anual
	10	3726	227,05	846,0
13.512	15	3496	753,08	2632,8
	25	2435	773,18	1882,7
	37,5	1467	1290,90	1893,8
	50	617	1273,33	785,6
	75	39	976,39	38,1
			TOTAL	8079

Fuente (Autor)

3.8.2 Cálculo de las pérdidas en energía en redes trifásicas

Para el cálculo de las pérdidas técnicas en las redes de distribución trifásicas es necesario dividir el número total de redes, de acuerdo con la potencia de los transformadores como se detalla en la siguiente tabla:

TABLA 3.8 Número de redes monofásicas

Trifásicos	Potencia	Cantidad
2.221	kVA	#
	30	644
	45	269
	50	411
	75	475
	100	166

Fuente (Autor)

Para determinar las pérdidas técnicas en energía, es necesario multiplicar el valor de pérdidas técnicas promedio de cada transformador por el número de transformadores que conforman todo el sistema de EMELNORTE S.A. dando como resultado en redes trifásicas 6621 GWh/Anuales:

TABLA 3.9 Tabla pérdidas técnicas en redes trifásicas

Pérdidas técnicas en energía del año 2017				
Trifásico	Potencia	Cantidad	Pérdidas técnicas promedio	TOTAL
	kVA	#	kWh/anual	GWh/anual
	30	642	938,4	602,5
2.221	45	269	1018,1	273,9
	50	411	10723,6	4407,4
	75	475	261,7	124,3
	100	166	7300,4	1211,9
			TOTAL	6620

Para conocer las pérdidas técnicas en todo el sistema, basta con sumar los valores de energía de las redes trifásicas y monofásicas y posteriormente obtener el valor porcentual de las pérdidas técnicas en energía del valor total de pérdidas registrado en todo el sistema dando como resultado:

TABLA 3.10 Tabla porcentaje de pérdidas técnicas en energía de las redes

GWh/Anual (pérdidas T)	57269,5
GWh/Anual (pérdidas)	14698,9
% Pérdidas Técnicas	26%

Fuente (Autor)

Resultado de pérdidas técnicas en energía

Se concluye que del 100% de pérdidas en todo el sistema el 26% corresponden a pérdidas en las redes de distribución aéreas.

3.9 Resultados

En este punto se describen de manera clara los principales resultados obtenido del; modelamiento de las redes de bajo voltaje, el cálculo del factor de pérdidas y también sus pérdidas en energía anuales,

 Cuando se ingresa los parámetros eléctricos del instante donde se registró la máxima demanda en la modelación, se observa que no está relacionada la variación de la demanda de la carga, y para la ejecución de este método es necesario utilizar el perfil de carga registrado en los medidores,

- De la muestra total de redes secundarias se observa que el que tiene más participación es el del estrato (D) ya que en ella se encuentra un 60% del total de la muestra modelada.
- El estrato que tiene un factor de pérdidas en promedio más alto es el C debido a que su consumo es elevado por la cantidad de usuarios que dispone y la demanda que exigen a la red.
- De manera individual se puede decir que el factor de pérdidas más elevado se presente en los transformadores de 50kVA del estrato D con un valor del 0.5. esto se debe a que el número de abonados que alimenta es más grande.
- Debido a que dentro del área de concesión el número de redes monofásicas es mayor que las trifásicas, del total de pérdidas técnicas en energía el 55% son en redes monofásicas y 45% en trifásicas.
- Las redes que presentan mayor porcentaje de pérdidas son las del estrato C y E como se muestra en la tabla 3.3
- El tipo de conductor influye sobre las pérdidas en energía, dado que ésta es directamente proporcional; al valor de resistencia y reactancia por kilómetro y a la capacidad de corriente en amperios que soporta.
- El control y reducción de las pérdidas de energía eléctrica es una preocupación permanente de la empresa eléctrica EMELNORTE S.A., ya que con la base de cálculos sobre las pérdidas técnicas en las redes de bajo voltaje se pretende conocer cuanta energía de pierde solo en dicho sector, lo que permitirá ver la necesidad de ejecutar o no planes para reducir dichos valores.
- Las redes de bajo voltaje son uno de los sectores donde más se registra las pérdidas técnicas en energía del sistema eléctrico, debido a lo dinámico que es el sistema y además por el voltaje que maneja.

3.10 Conclusiones

- En el estudio se ha ejecutado el método del Mg. Mentor Poveda que aprovecha; los datos disponibles de los sistemas de medición actual de la empresa eléctrica EMELNORTE S.A. para calcular de manera más acertada el factor de pérdidas técnicas por estrato de consumo en las redes de distribución aéreas desnudas de la muestra.
- La distribución de carga utilizada en las simulaciones de bajo voltaje ofrece una mejor aproximación al comportamiento de las redes, el cual se basa en las lecturas de cabecera de un circuito y proporcional a los consumos asociados a cada transformador.
- Con la modelación de las redes de distribución en el programa Cyme-Dist se obtuvo como resultado los valores de pérdidas resistivas en las líneas y además permitió conocer cuál es su factor de pérdidas en las diferentes redes.
- Las pérdidas para las redes de bajo voltaje son agrupadas de acuerdo con la potencia del trasformador, así como también de acuerdo con el estrato de consumo y por lo tanto se pueden generalizar para la totalidad de la población de las redes de distribución aéreas.
- Se concluye que, con los datos del factor de pérdidas por estrato, se puede determinar cuántos GW/h se pierden anualmente en las redes de distribución y cuál es su porcentaje del total de pérdidas, lo que facilita a la empresa distribuidora efectuar medidas correctivas.

3.11 Recomendaciones

- Para un mejor análisis, implementar la metodología a todo el sistema de distribución (acometidas, medidores, transformadores, redes primarias) para de esta manera conocer las pérdidas técnicas y no técnicas de todo el sistema.
- Evitar el uso de más de 1008 mediciones que realiza el analizador de red durante una semana, ya que esto puede ocasionar redundancias y errores en lo que se refiere a las mediciones del factor tanto de pérdidas como de carga.
- Aumentar el número de redes secundarias trifásicas para reducir el error de sus datos debido a que el número de muestras que se dispone es limitado.
- Se recomienda que los estudios efectuados sean considerados como tema de investigación en una segunda etapa donde se propone evaluar las pérdidas a nivel de medio voltaje.
- Es recomendable que dentro de la empresa EMELNORTE S.A. se realiza un análisis del estrato de consumo a nivel de trasformador y no por rutas de lectura.

3.12 Referencias

- Agencia de Regulación y Control de Electricidad. (2016). Estadística Anual y Multianual del Sector Electrico Ecuatoriano 2016. Quito. Obtenido de http://www.regulacionelectrica.gob.ec/wpcontent/uploads/downloads/2017/08/Estad %C3%ADstica-anual-y-multianual-sector-el%C3%A9ctrico-2016.pdf
- Aguilar, E. (2006). Estimación De Pérdidas Técnicas En El Sistema De La Empresa Eléctrica Municipal De San Pedro Sacatepéquez, San Marcos (Tesis de Pregrado). Universidad De San Carlos De Guatemala , Guatemala . Obtenido de http://biblioteca.usac.edu.gt/tesis/08/08_0586_EA.pdf
- Crochemore Ney, R., Jiménez, R., & Alarcón, A. (2018). Pérdidas eléctricas: tres tendencias tecnológicas que pueden ayudar a resolver el problema. Obtenido de https://blogs.iadb.org/energia/2018/06/18/pérdidas-electricas-tres-tendencias-tecnologicas-que-pueden-ayudar-a-resolver-el-problema/
- Ghia , A., & del Rosso, A. (2013). Reducción de pérdidas en sistemas de transmisión y distribución. Argentina: Cámara Argentina de la construcción .
- Jiménez, R., Serebrisky, T., & Mercado, J. (2013). Dimensionando las pérdidas de electricidad en los sistemas de transmisión y distribución en América Latina y el Caribe. Washington: .
- Ochoa Osorio, J. (2006). Estimación De Pérdidas Técnicas En El Sistema De La Empresa Eléctrica Municipal De San Pedro (Tesis de pregrado). Universidad de San Carlos de Guatemala, Guatemala.
- Queijo Gumersindo, G. (2018). Fundamentos de Tecnologá Electrica. Madrid, España: Universidad Nacional de Educación a Distancia.
- Sánchez, J., Blanco, A., Yépez, A., Coviello, M., Schuschny, A., & Aiello, R. (2017). Eficiencia Energética en América Latina Y El Caribe .Obtenido de http://biblioteca.olade.org/opac-tmpl/Documentos/old0397.pdf
- Agencia de Regulación y Control. (2017). Regulación Nro 05/17. Obtenido de http://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2017/12/Regulación-de-Distribución-Dic-2017.pdf
- Alvarado, J. E. (30 de Abril de 2017). http://www.sectorelectricidad.com. Obtenido de http://www.sectorelectricidad.com/17597/carga-demanda-y-energia-electrica-conceptos-fundamentales-para-la-distribucion-de-electricidad/

- Bayod Rujula, Á. A. (2008). Fundamentos de sistemas eléctricos. España: Prensa Universitaria de Zaragoza.
- Bayod Rújula, Á. A. (2008). Fundamentos de sistemas eléctricos. Zaragoza: Prensas Universitarias de Zaragoza.
- Boix, O., Córcoles, F., Sainz, L., & Suelves, F. (2009). Tecnología Eléctrica.
- Castillo, T., Guillén, J., Mosquera, L., Rivadeneira, T., Segura, K., & Yujato, M. (2017). Anuario de 2017 Estadísticas Energéticas. Obtenido de http://biblioteca.olade.org/opac-tmpl/Documentos/old0396.pdf
- Choque, E., Sanhueza, R., & Harnisch V, I. (2001). Revista Facultad de Ingenieria U.T.A., 1.
- Comisión Federal de Electricidad. (2017). Principales Elementos Del Plan De Negocios 2018-2022. Obtenido de:

 https://www.cfe.mx/inversionistas/Documents/Plan%20de%20negocios/180223_CFE
 _PDN_2018-2022_Publica.pdf
- Conejo Navarro, A. J., Arroyo Sánchez, J., Milano, F., Alguacil Conde, N., Polo Sanz, J., Raquel García, B, López Garcia, L. (2007). Instalaciones eléctricas. Madrid, España: McGraw-Hill.
- Conejo Navarro, A., Arroyo Sánchez, J., Milano, F., Alguacil Conde, N., Polo Sanz, J., García Bertrand, R., . . . López García, L. (2007). Instalaciones Eléctricas. España: McGRAW-HILL.
- Consejo Nacional De Electricidad. (2013). Plan Maestro de Electrificación 2013-2022.

 Obtenido de:

 http://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/vol1Resumen-Ejecutivo-PME-2013-2022.pdf
- Edenor. (2017). Pérdidas de Energía. Obtenido de http://www.edenor.com.ar/cms/SP/EMP/RI/EST_pérdidas.html
- EMELNORTE S.A.(2014).Plan Estrategico. Obtenido de https://www.emelnorte.com/eern/index.php/2016-07-05-15-53-07/lotaip/2016/documentos-relacionados-1/44-plan-estrategico-emelnorte-aprobado-directorio-2015/file
- EMELNORTE S.A. (2016). Adecuacion de las redes de distribución de emelnorte, dimensionamiento de transformadores y método de cálculo de caídas de voltaje en redes secundarias de distribución. Ibarra.

- EMELNORTE S.A. (2014). ACTUALIZACIÓN PLAN ESTRATÉGICO 2014-2017. Obtenido de https://www.emelnorte.com/eern/index.php/2016-07-05-15-53-07/lotaip/2016/documentos-relacionados-1/44-plan-estrategico-emelnorte-aprobado-directorio-2015/file
- EMELNORTE S.A. (2017). Actualización Plan Estratégico.
- EMELNORTE S.A. (2017). Informe Ejecutivo Rendición De Cuentas. Obtenido de https://www.emelnorte.com/eern/index.php/2016-07-05-15-53-07/rendicion-de-cuentas/rendicion-de-cuentas-2018/2135-informe-rendicion-de-cuentas-2018/file
- EMPRESA ELÉCTRICA REGIONAL NORTE S.A. (2017). Adecuacion De Las Redes De Distribución De Emelnorte. Ibarra. Obtenido de https://www.emelnorte.com/eern/index.php/2016-07-05-15-53-07/rendicion-decuentas/rendicion-de-cuentas-2017/1715-informe-ejecutivo-rendicion-de-cuentas-2017/file
- Entrena González, F. (2012). Montaje de redes eléctricas aéreas de alta tensión. Málaga: IC editorial.
- Fernández Barracon, F. (2016). Montaje y Mantenimiento de Redes Eléctricas Aéreas de baja Tensión. Cano Pina, SL.
- Grainger, J., & Stevenson, W. (1996). Análisis de Sistemas de Potencia. Mexico: Mc Graw-Hill.
- Horna Torres, S. A., & Niño Vásquez, P. E. (s.f.). Electrificación urbana y rural.
- International Energy Agency. (2014). Estadísticas de energía de países de la OCDE, y Naciones Unidas. Obtenido de https://datos.bancomundial.org/indicador/EG.ELC.LOSS.ZS
- Izquierdo Franco, J. (2002). Estudio de flujos de potencia y análisis de fallas en sistemas eléctricos de distribución radial (Tesis de pregrado). Monterrey, México: Universidad Autonoma De Nuevo Leon.
- Manguía Aguilero, J. (2018). Aplicación y evaluación de las metodologías para el cálculo de pérdidas técnicas en baja tensión para redes de distribución de energía eléctrica de el salvador (tesis de pregrado). universidad de el salvador.
- Mediana, José Gregorio; Rivas, Fernando Alberto;. (2008). Análisis De Pérdidas Técinas Y No Técnicas A Nivel De 13.8kV / (240 -120) ;(Tesis de pregrado). Universidad De Carabobo , Valencia.

- Ministerio De Electricidad Y Energía Renovable. (2017). Plan De Reducción De Pérdidas De Energía Eléctrica. Ecuador. Obtenido de https://www.energia.gob.ec/ecuador-modelo-regional-en-reduccion-de-pérdidas-electricas/
- Montoya, O., & Vélez, V. (2015). Sistemas Polifásicos. Pereira: Universidad Tecnológica De Pereira. Obtenido de http://blog.utp.edu.co/circuitosii457/files/2015/10/Sistemas_Polifasicos.pdf
- Morales Gualotuña, B. P. (2011). Montaje de un alimentador primario trifásico de 22.8kV de la subestacion Conocoto en el Valle de los Chillos (tesis de pregrado). Quito: Escuela Politécnica Nacional.
- Morrison , M. (2013). Egehaina. Obtenido de http://egehaina.com/las-pérdidas-de-energia-y-su-impacto-en-el-deficit-electrico-2/
- Munguía Aguilero , J. I. (2018). Aplicación y evaluación de las metodologías para el cálculo de pérdidas técnicas en baja tensión para redes de distribución de energía eléctrica de el salvador (Tesis de pregrado). Universidad De El Salvador , Salvador.
- Ochoa Osorio , J. M. (2006). Estimación de pérdidas técnicas en el sistema de la Empresa Eléctrica Municipal De San Pedro. Guatemala.
- Ochoa Osorio, J. M. (2006). Estimacion de pérdidas técnicas en el sistema de la Empresa Eléctrica Municipal de San Pedro Sacatepéquez, San Marcos (Tesis de Pregrado). Guatemala: Universidad de San Carlos de Guatemala.
- Orejuela Luna, V. (2014). Beneficios Económicos de la Aplicación del Plan de Reducción de Pérdidas. Machala. Obtenido de https://www.academia.edu/9036192/BENEFICIOS_ECON%C3%93MICOS_DE_LA_APLICACI%C3%93N_DEL_PLAN_DE_REDUCCI%C3%93N_DE_P%C3%89RDIDAS_EN_EL_ECUADOR
- Poveda, M. (1999). A New method to calculate Power Distribution Losses in an Environment of High Unregistered Loads. IEEE/PES. Obtenido de biblioteca.olade.org/opac-tmpl/Documentos/hm000101.pdf
- Ramirez Castaño, S. (s.f.). Redes de distribución de energía . Manizales: Universidad Nacional de Colombia .
- Saturnino Catalán, I. (2013). Electrotecnia:Circuitos Electricos. Valencia: Universitat Politécnica De Valéncia.
- Sectorelectricidad. (17 de Febrero de 2016). Sectorelectricidad. Obtenido de http://www.sectorelectricidad.com/11611/que-curva-es-cual-es-su-utilidad/

- Tama Franco, A. (2014). Las pérdids de energía eléctrica. Revista Crieell ed 33, 12-17.
- Tejada, J., Durán, G., Raúl, J., & Doyle, M. (Septiembre de 2017). Incrementando la eficiencia del sector eléctrico ;Lecciones sobre la reducción de pérdidas eléctricas en Ecuador.

 Obtenido de
 - https://publications.iadb.org/bitstream/handle/11319/8525/Incrementando_la_eficienc ia_del_sector_electrico.pdf?sequence=1&isAllowed=y
- Torre, G. d. (2000). Análisis y Cálculo de las pérdidas. Quito: Politécnica Nacional.
- Vásquez Granda, P. M. (2013). Parametrización, control, determinación, y reducción de pérdidas de energía en base a la optimización en el montaje de estaciones de transformación en la provincia de Morona Santiago (Tesis de pregrado). Cuenca: Universidad de Cuenca.
- Weedy, B. (2003). Sistemas Electricos De Gran Potencia. España: Reverte S.A.
- EMELNORTE S.A. (2017). Base de Datos de ArcGIS. Ibarra. Obtenido de https://utneduec-my.sharepoint.com/:f:/g/personal/jdtrujilloj_utn_edu_ec/EjxPfxO5dlBMjqMMgeBLxYUBVIH9_wPvsG3xiYNlalSS1Q?e=Vs9XE1

Anexo
Anexo A Información de las redes por mes

							Fac	ctores			
	Código	Potencia	Estrato	Abonados	Tipo	Luminarias	F.	F	Pérdida	Demanda máxima	Factor de Potencia
2017							Carga	Pérdidas		Шахіша	Potencia
		(kVA)	#	#	#	#			(W)	(W)	
	L1T4	37,5	D	26	1	8	0,362	0,177	380	17083,4	0,983
	L1T3	37,5	D	26	1	29	0,433	0,229	320	18847,6	0,957
	L1T1	25	D	50	1	9	0,422	0,229	420	20905,8	0,974
	L1T303	25	D	32	1	7	0,344	0,151	520	25581	0,979
	L1T5103	25	D	43	1	13	0,302	0,124	380	16603,1	0,996
	L2T51	25	D	37	1	4	0,302	0,057	560	13427,6	0,990
	L3T40	25	D	33	1	7	0,293	0,037	740	19925,7	-0,995
	L3T5025	15	D	8	1	9	0,345	0,117	1050	22728,8	992
	L3T55	30	D	69	3	10	0,303	0,114	410	24581,3	0,914
ENERO	L2T53	25	D	36	1	10	0,344	0,114	990	22366,2	0,914
LINEIRO	L2T54	37,5	D	16	1	11	0,255	0,087	120	14799,7	0,998
	Z1T133	25	С	54	1	4	0,396	0,198	130	25513,1	0,982
	Z1T132	25	С	53	1	8	0,396	0,198	160	25513,1	0,982
	L4T5044	15	E	62	1	17	0,335	0,156	560	14309,7	0,994
	L4T100	25	E	32	1	8	0,312	0,146	890	26022	0,998
	L4T5021	37,5	D	24	1	13	0,259	0,094	140	14691,9	0,995
	L4T12	25	D	25	1	7	0,264	0,091	280	16436,5	0,995
	R5T38	25	D	29	1	, 15	0,458	0,676	940	28256,7	0,914
	Z2T1001	25	D	19	1	0	0,260	0,111	160	8154,55	0,99
	Z2T118	25	D	33	1	15	0,361	0,152	790	22042,8	0,993
	Z2T119	25	D	56	1	18	0,422	0,211	950	23758	0,987
	Z2T81	15	Ε	18	1	13	0,286	0,117	140	6635,37	0,988
	Z1T1060	15	D	8	1	9	0,243	0,076	370	17730,3	0,991
	Z3T16	15	Е	20	1	16	0,308	0,126	630	12320	0,994
	Z3T13	25	Ε	41	1	17	0,348	0,152	370	13506	0,987
	Z3T86	15	D	28	1	0	0,275	0,112	190	9144,46	0,984
FEBRERO	Z3T5007	10	D	3	1	19	0,318	0,153	170	8732,81	0,991
	Z3T5006	10	D	0	1	23	0,282	0,203	120	6929,4	-0,971
	Z4T200	15	E	17	1	0	0,320	0,132	80	3793,04	0,995
	Z4T199	15	E	25	1	0	0,276	0,097	260	9889,35	0,996
	Z4T93	15	E	22	1	7	0,212	0,062	160	11565,3	0,998
	C5T206	37,5	D	2	1	0	0,295	0,122	150	8027,13	1
	Z4T39	15	D	23	1	15	0,353	0,161	340	12104,4	0,984
	C1T80	37,5	С	35	1	6	0,413	0,213	210	17446	0,972
	C1T5017	50	С	32	1	6	0,323	0,139	830	22356,4	0,982
	C1T5013	50	С	25	1	7	0,475	0,268	190	23885,4	0,986

	C1T5005	50	С	8	1	6	0,199	0,062	70	7556,68	0,991
	C1T79	50	С	45	1	8	0,485	0,283	1390	27011,9	0,99
	C2T65	25	С	26	1	9	0,325	0,128	250	19484,7	0,972
	C2T27	25	D	37	1	12	0,485	0,276	240	19122	0,971
	C2T685	37,5	D	33	1	8	0,400	0,193	230	20425,6	0,978
MARZO	C2T37	25	D	40	1	14	0,465	0,267	850	25708,4	0,981
	M5T78	15	D	51	1	13	0,381	0,181	470	20670,6	0,986
	C3T277	10	С	17	1	10	0,335	0,149	210	10232,4	0,99
	C2T61	37,5	С	7	1	14	0,392	0,204	730	23228,7	0,973
	J5T61	37,5	D	35	1	5	0,505	0,315	1110	33559,1	0,984
	C3T8002	15	D	27	1	11	0,497	0,269	470	17377,4	0,987
	C3T604	10	D	24	1	9	0,295	0,116	320	15348,6	0,985
	C4T56	10	D	14	1	6	0,212	0,074	140	7448,86	0,983
	C5T52	15	D	26	1	0	0,210	0,070	170	21376,3	0,991
	C5T53	15	D	46	1	13	0,391	0,194	1410	23640,3	0,98
	C5T64	15	Ε	36	1	16	0,394	0,201	490	12937,5	0,964
	C5T62	15	Е	17	1	15	0,247	0,089	420	10399	-0,994
	V1T15	25	D	64	1	16	0,454	0,254	170	26002,4	0,966
	V2T5115	15	D	13	1	10	0,242	0,085	110	8458,38	0,999
	V2T261	15	D	37	1	21	0,333	0,144	320	15858,2	0,988
	V1T17	25	D	37 47	1	20	0,428	0,224	270	13888,2	0,973
	V1T9	25	D	16	1	4	0,288	0,109	830	21846,7	0,982
ABRIL	V1T16	37,5	D	49	1	16	0,435	0,244	440	22111,4	0,954
	V2T251	10	Ε	19	1	0	0,282	0,110	380	7488,07	0,996
	V2T250	37,5	Ε	45	1	14	0,284	0,108	910	18935,8	0,976
	V2T242	10	Ε	22	1	0	0,325	0,148	400	7693,89	0,987
	V2T244	10	Е	12	1	0	0,221	0,071	110	7586,08	0,986
	V3T5049	15	С	10	1	5	0,255	0,090	180	9095,45	-1
	V3T5016	45	С	16	3	2	0,532	0,323	360	21582,1	0,941
	V2T5115	15	D	13	1	10	0,242	0,085	290	8458,38	0,999
	V3T11	30	D	46	3	34	0,525	0,342	490	28384,1	0,958
	V3T34	100	С	98	3	3 4 15	0,544	0,366	4160	73116,5	0,961
	V4T20	10	D	14	1		0,441	0,233	100	6556,96	0,946
	V4T26	37,5	D	23	1	8	0,379	0,183	220	13496,2	0,974
	V4T24	37,5	D	18	1	11	0,313	0,135	300	16612,9	0,98
	V4T25	25	D	11	1	11	0,315	0,144	70	8252,56	0,967
	V5T22	15	D	35	1	8 10	0,341	0,139	800	22581,8	0,984
	V5T30	37,5	D	64	1		0,432	0,237	840	20651	0,959
	M2T171	25	С	22	1	11	0,335	0,167	150	10928,3	0,915
MAYO	I1T12	25	D	31	1	11	0,453	0,242	380	17210,8	0,974
	I1T8	25	D	18	1	16	0,349	0,181	150	10889,1	0,975
	I1T9	25	D	20	1	12	0,350	0,173	180	10938,1	0,973
	V5T24	15	D	44	1	6	0,494	0,372	400	22493,6	0,944
	I1T11	37,5	D	29	1	9	0,387	0,190	360	16975,6	0,944
	V5T87	37,3 15	D	12	1	14	0,338	0,150	1060	15162,4	0,969
	I1T30	37,5	D	6		0	0,252		90	10830,3	0,946
	11130	51,5	D	U	1	10	0,232	0,093	90	10000,0	0,502

1216		1077	l	_								
1272 37.5 D 22 1 7 0.449 0.246 490 22425 0.968 13T5004 15 E 19 1 13 0.364 0.169 100 8281.96 0.92 13T5002 10 E 18 1 15 0.362 0.167 180 7488.07 0.967 13T171 10 C 3 1 13 0.442 0.227 2150 22013,4 0.991 14T108 25 E 15 1 9 0.226 0.079 150 7801.7 0.886 14T52 10 E 19 1 14 0.460 0.237 60 6213.92 0.965 14T56 37.5 E 24 1 17 0.381 0.187 220 6829.4 0.996 14T361 15 E 19 1 9 0.331 0.128 80 5684.66 0.88 13T397 15 E 15 1 12 0.331 0.128 80 5684.66 0.88 13T384 15 E 26 1 19 0.478 0.280 400 13260.9 0.96 14274 25 C 20 1 16 0.324 0.151 140 9060.05 0.96 14274 25 C 20 1 16 0.324 0.151 140 9060.05 0.98 14274 25 C 20 1 16 0.324 0.151 140 9060.05 0.98 142784 25 C 20 1 16 0.324 0.151 140 9060.05 0.98 142784 25 C 20 1 16 0.324 0.151 140 9060.05 0.99 142784 25 C 20 1 12 0.266 0.998 150 14515.5 0.950 1447340 10 D 10 1 12 0.266 0.998 150 8419.18 0.97 1447340 10 D 10 1 12 0.266 0.998 150 8419.18 0.97 1447340 25 D 39 1 14 0.401 0.203 1.050 27874.4 0.97 144794 25 D 39 1 14 0.411 0.203 1.050 27874.4 0.97 144795 25 C 21 14 0.411 0.203 1.050 27874.4 0.987 R27260 10 E 13 1 0 0.209 0.072 410 8605.4 0.986		12T7	50	D	51	1	10	0,440	0,234	380	25541,8	0,978
1375004 15							24	•	•		,	·
Name							7	•	•			·
JUNIO 13T171 10							13		•			
MT108						1	15	•	0,167		7488,07	·
JUNIO IZT144		I3T171	10		3	1	13	0,442	0,227	2150	22013,4	0,991
Mathematical Math		I4T108	25		15	1	9	0,226	0,079	150	7801,7	0,986
H1756	JUNIO	I2T144			38	1	7	0,432	0,235	230	10134,4	0,956
H1T352		I4T52	10		19	1	14	0,460	0,237	60	6213,92	0,965
H17354 15 E 15 1 12 0,331 0,128 80 5684,66 0,88 H17354 15 E 26 1 19 0,478 0,280 400 13260,9 0,96 H37136 15 E 29 1 16 0,324 0,151 140 9066,05 0,95 H2774 25 C 20 1 12 0,253 0,089 250 14515,5 0,959 H2784 25 C 22 1 4 0,250 0,992 90 12290,6 0,991 H37190 15 E 48 1 28 0,460 0,254 610 14270,5 0,978 H4734 15 D 40 1 15 0,424 0,219 90 18200,7 0,969 H4734 15 D 40 1 12 0,266 0,098 150 8419,18 0,97 H4794 25 D 39 1 14 0,299 0,121 150 11898,6 0,968 H4769 25 C 11 1 5 0,213 0,076 50 8507,39 1 L17505 37,5 D 52 1 14 0,411 0,203 1050 27874,4 0,987 R275066 10 E 7 1 0 0,096 0,002 410 8605,4 0,992 R27258 10 E 13 1 0 0,209 0,072 410 8605,4 0,992 R27257 10 E 14 1 7 0,213 0,077 60 5027,98 0,998 R27257 10 E 14 1 7 0,213 0,077 60 5027,98 0,998 R275052 10 E 21 1 0 0,193 0,077 60 5027,98 0,998 R27257 10 E 14 1 7 0,213 0,077 60 5027,98 0,998 R27258 10 E 12 1 0 0,193 0,077 60 5027,98 0,998 R27258 10 E 21 1 0 0,193 0,077 60 5027,98 0,998 R27258 10 E 21 1 0 0,193 0,077 60 5027,98 0,998 R27258 10 E 21 1 0 0,247 0,098 220 5469,03 0,999 R275062 10 E 21 1 0 0,247 0,278 140 15400,5 0,992 R27505 15 E 15 1 3 0,474 0,278 140 15400,5 0,994 A47121 10 C 19 1 8 0,307 0,143 890 30971,6 0,998 A47121 10 C 19 1 8 0,307 0,143 890 30971,6 0,998 A47121 10 E 12 1 0 0,240 0,132 290 1065,8 0,998 A47131 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,999 A5744 25 D 64 1 28 0,460 0,254 1750 31834,1 0,991 R175123		I4T56	37,5	Е	24	1	17	0,381	0,187	220	6929,4	0,998
H1T354		H1T352	15	Ε	19	1	9	0,331	0,128	80	5684,66	0,88
H3T136		I3T387	15	Е	15	1	12	0,331	0,128	80	5684,66	0,88
H2T74		H1T354	15	Е	26	1	19	0,478	0,280	400	13260,9	0,96
H2T62		H3T136	15	E	29	1	16	0,324	0,151	140	9066,05	0,95
H2T62		H2T74	25	С	20	1		0,253	0,089	250	14515,5	0,959
Hard		H2T62	10	С	16	1		0,474	0,271	160	23052,3	0,98
H4T334		H2T84	25	С	22	1	4	0,250	0,092	90	12290,6	0,991
H4T334	JULIO	H3T190	15	Ε	48	1		0,460	0,254	610	14270,5	0.978
H4T340		H4T334	15	D	40	1		0,424	0,219		18200,7	
H4T93		H4T340	10	D	10	1		0,266	0,098	150	8419,18	0,97
H4T94		H4T93	25	D	40	1			0,192	230		
H4T69		H4T94			39					150		
L1T505 37,5 D 52 1 14 0,411 0,203 1050 27874,4 0,987												
R2T5096 10 E 7 1 0 0,096 0,022 180 5065,23 0,988 R2T261 10 E 8 1 0 0,223 0,069 70 6566,76 0,924 R2T5065 15 E 15 1 0 0,305 0,133 40 9428,69 9,97 R2T260 10 E 13 1 0 0,209 0,072 410 8605,4 0,992 R2T258 10 E 12 1 0 0,193 0,077 60 5027,98 0,985 R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 R2T5063 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 R2T255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,994 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,347 0,252 590 18730 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T261 215 E 10 1 8 0,337 0,100 130 5341,62 0,933 R15521 15 E 10 1 8 0,336 0,143 890 30971,6 0,989 R1513 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T261 15 E 10 1 8 0,347 0,155 280 18583 0,978 R1T261 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R150 0,037 R1521 15 E 10 1 8 0,036 0,040		L1T505			52					1050		0.987
R2T261 10 E 8 1 0 0 0,223 0,069 70 6566,76 0,924 R2T5065 15 E 15 1 0 0,305 0,133 40 9428,69 9,97 R2T260 10 E 13 1 0 0,209 0,072 410 8605,4 0,992 R2T258 10 E 12 1 0 0,193 0,077 60 5027,98 0,985 R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,985 R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 R2T5063 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 R2T255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,992 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T261 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5123 10 E 10 1 8 0,352 0,191 30 5341,62 0,933									•		·	
R2T2665 15 E 15 1 0 0 0,305 0,133 40 9428,69 9,97 R2T260 10 E 13 1 0 0,209 0,072 410 8605,4 0,992 R2T258 10 E 12 1 0 0,193 0,077 60 5027,98 0,985 R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 R2T2563 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 R2T255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 R2T5062 10 E 12 1 0 0,280 0,112 480 8154,55 0,99 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T261 15 E 10 1 8 0,352 0,191 30 5341,62 0,933								•	•			·
RZT260 10 E 13 1 0 0,209 0,072 410 8605,4 0,992 RZT258 10 E 12 1 0 0,193 0,077 60 5027,98 0,985 RZT257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 RZT2563 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 RZT255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 RZT5062 10 E 12 1 0 0,280 0,112 480 8154,55 0,999 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,300 0,40								•	•			·
AGOSTO R2T258 10 E 12 1 0 0,193 0,077 60 5027,98 0,985 R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 R2T5063 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 R2T255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 A4T134 37,5 C 24 1 13 0,474 0,280 0,112 480 8154,55 0,99 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,986 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 11 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,307 0,126 1750 1853 0,978												
R2T257 10 E 14 1 7 0,213 0,071 260 6958,81 0,982 R2T5063 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 R2T255 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 A4T131 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,357 0,460 0,160 17700 0,007							-					
AGOSTO 15 E 20 1 0 0,247 0,098 220 5469,03 0,986 AGOSTO R2T5062 10 E 21 1 0 0,315 0,141 180 10859,7 0,979 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T31 37,5 D 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1							-					
AGOSTO R2T5062 10 E 12 1 0 0,315 0,141 180 10859,7 0,979 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
AGOSTO R2T5062 10 E 12 1 0 0,280 0,112 480 8154,55 0,99 A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0,989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,978 R1T263 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,335 0,191 30 5341,62 0,933							_					
A4T134 37,5 C 24 1 13 0,474 0,278 140 15400,5 0,942 A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0.989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933	AGOSTO						_					
A4T121 10 C 19 1 8 0,307 0,126 150 12368,1 0,989 A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0.989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933	A00010						-					
A4T120 15 C 36 1 12 0,500 0,287 560 23052,3 0,987 A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0.989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
A4T31 37,5 D 39 1 13 0,516 0,324 680 20190,3 0,963 A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0.989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
A4T30 37,5 D 49 1 30 0,336 0,143 890 30971,6 0.989 A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
A5T24 25 D 19 1 12 0,326 0,137 200 7605,68 0,984 A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
A5T46 50 D 53 1 10 0,393 0,193 1020 23454,1 0,977 A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
A5T13 25 D 55 1 15 0,447 0,252 590 18730 0,976 R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933												
R1T263 25 D 47 1 12 0,347 0,155 280 18583 0,978 R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933							10					
R1T264 25 D 64 1 28 0,460 0,254 1750 31834,1 0,981 R1T5123 10 E 12 1 17 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933			25		55	1	15			590		
R1T5123 10 E 12 1 ₁₇ 0,280 0,132 290 10252 1 R1T5212 15 E 10 1 ₈ 0,352 0,191 30 5341,62 0,933		R1T263	25		47	1	12			280	18583	0,978
R1T5212 15 E 10 1 8 0,352 0,191 30 5341,62 0,933		R1T264	25	D	64	1	28	0,460	0,254	1750	31834,1	0,981
0.000 0.400 400 7700.0 0.007		R1T5123	10	Е	12	1	17	0,280	0,132	290	10252	1
R2T202 37,5 E 28 1 ₉ 0,393 0,196 120 7723,3 0,997		R1T5212	15	Е	10	1	8	0,352	0,191	30	5341,62	0,933
		R2T202	37,5	E	28	1	9	0,393	0,196	120	7723,3	0,997

	R2T235	15	Е	20	1	13	0,263	0,110	170	11722,2	0,987
	R2T314	37,5	D	44	1	30	0,414	0,188	750	17936,1	0,99
	R2T311	25	D	60	1	9	0,249	0,095	800	15348,6	1
	R2T301	25	D	48	1	17	0,427	0,224	310	14172,4	0,996
SEPTIEMBRE	R2T300	37,5	D	48	1	12	0,380	0,176	650	22758,2	0,986
	R4T88	37,5	D	19	1	11	0,422	0,201	550	24130,4	0,994
	R4T5012	37,5	D	25	1	12	0,331	0,134	260	25277,1	0.99
	R4T95	37,5	D	35	1	9	0,396	0,189	400	22797,4	0,982
	R5T4	25	D	45	1	8	0,445	0,243	350	20425,6	0,972
	R5T5007	10	D	4	1	2	0,147	0,042	20	8732,81	0,998
	R5T11	25	D	59	1	19	0,354	0,146	1810	31912,5	0,996
	R5T5036	10	D	6	1	3	0,244	0,095	50	5076,99	0,985
	R5T76	50	D	31	1	10	0,401	0,215	220	16838,4	0,976
	S5T5099	37,5	С	72	1	17	0,602	0,372	2470	48986,1	0,889
	S1T52	37.5	С	85	1	12	0,509	0,324	510	31667,5	0,955
	S1T54	37.5	С	115	1	15	0,538	0,339	840	34186,4	0,976
	S1T60	15	С	40	1	3	0,517	0,315	3020	51024,7	0,95
	S2T499	25	D	30	1	4	0,355	0,181	100	13045,3	0,964
	S2T534	37,5	D	27	1	10	0,473	0,268	190	17818,5	0,981
	J1T390	25	D	24	1	2	0,490	0,277	390	31393	0,961
	S2T379	25	С	49	1	15	0,496	0,257	190	15034,9	0,858
	S3T25	50	С	111	1	9	0,602	0,459	1600	58650	0,937
	S4T8	25	С	36	1	18	0,478	0,236	470	25512,4	0,994
OCTUBRE	S3T23	50	D	285	3	18	0,693	0,782	2330	59865,3	0,789
	S4T48	75	С	29	3	16	0,496	0,299	100	20092,3	0,969
	S4T50	50	С	43	1	19	0,427	0,221	200	24169,6	0,962
	S4T44	50	С	36	1	11	0,418	0,222	300	25022,3	0,98
	S4T39	50	D	43	1	13	0,481	0,277	160	18837,8	0,915
	S5T8007	25	D	32	1	25	0,377	0,182	350	16661,9	0,975
	S5T5002	25	D	19	1	9	0,418	0,215	360	19386,7	0,975
	S5T5048	15	D	35	1	6	0,400	0,209	330	16563,9	0,984
	S4T5056	25	С	34	1	9	0,454	#######	450	23454,1	0,927
	S5T92	37,5	D	25	1	24	0,217	0,083	160	8036,93	0,973
	S5T93	37,5	D	60	1	19	0,366	0,193	180	12084,8	0,95
	S5T94	25	D	20	1	7	0,304	0,121	360	12633,7	-1
	M6T636	10	E	16	1	6	0,255	0,094	810	12545,5	0,984
	M6T598	37,5	D	49	1	13	0,427	0,239	280	13447,2	0,968
	J1T129	50	D	48	3	17	0,412	0,216	540	24071,6	0,968
	J1T5061	37.5	Е	25	1	6	0,572	0,392	870	24581,3	0,893
	J1T135	15	D	18	1	11	0,478	0,264	490	14691,9	0,979
NOVIEMBRE	J2T36	50	D	85	1	7	0,542	0,350	390	33118	0,977
	J2T37	50	D	34	1	4	0,477	0,283	340	28423,3	0,975
	J2T11	50	D	8	1	10	0,328	0,132	130	10046,2	0,992
	J2T1	37.5	D	16	1	2	0,328	0,167	70	12545,5	0,992
	J3T27	50	D	111	3	26	0,529	0,323	1940	52083,2	0,964
	J3T46	100	С	67	3	7	0,605	0,433	330	41223,6	0,908

	J1T420	25	С	32	1		0,527	0,344	4210	87524,2	0,962
	J4T38	37,5	D	76	1	11	0,355	0,165	570	20053,1	0,959
	J4T5008	37,5k	D	41	1	5	0,434	0,234	540	22866,1	0,971
	S5T259	37,5	D	27	1	13	0,537	0,321	650	25933,8	0,951
	J4T49	37,5	D	47	1	7	0,508	0,309	120	22532,8	0,958
	J5T6	37,5	D	100	1	29	0,499	0,300	670	33392,5	0,958
	J5T4	37,5	D	34	1	7	0,452	0,261	350	21444,9	0,982
	J5T108	37,5	D	29	1	4	0,411	0,199	150	19915,9	0,984
	V2T5094	15	Е	14	1	11	0,415	0,203	270	12457,2	0,946
DICIEMBRE	M6T163	15	D	7	1	0	0,197	0,067	80	7233,24	0,996
	M6T57	15	D	16	1	4	0,271	0,110	200	8870,03	0,976
	M6T55	25	Е	35	1	6	0,341	0,154	250	15966,1	0,991
	J5T98	37,5	D	56	1	14	0,477	0,274	700	26296,5	0,977
	J5T99	75	D	62	1	11	0,425	0,223	500	31001	0,988
	J5T25	50	D	40	1	7	0,427	0,227	230	21376,3	0,975
	M6T195	37,5	D	10	1	21	0,435	0,234	520	14613,5	-0,973
	M6T224	15	D	13	1	7	0,432	0,238	290	16544,3	0,97

Anexo B Información de las redes del estrato C

ESTRATO C

CODIGO	POTENCIA	ESTRATO	ABONADOS	SISTEMA	LUMINARIAS	FAC	TORES	PÉRDIDA	REGI	STRO	TO		RDIDAS /SIMULAG	CIÓN	DISTANCIA
	kVA		#	#	#	F. Carga	F Pérdidas	w	Demanda M. (W)	F.P.	kW	kVAR	kVA	FP(%)	(m)
A4T120	15	С	36	1	12	0,500	0,287	560	23052,27	0,987	0,56	0,33	0,65	86,16	395,9
A4T121	10	С	19	1	8	0,307	0,126	150	12368,054	0,989	0,15	0,09	0,18	85,09	357,2
A4T134	37,5	С	24	1	13	0,474	0,278	140	15400,526	0,942	0,14	0,14	0,2	73,06	469,3
C1T5005	50	С	8	1	6	0,199	0,062	70	7556,68	0,991	0,07	0,04	0,09	86,5	167,5
C1T5013	50	С	25	1	7	0,475	0,268	190	23885,37	0,986	0,19	0,29	0,35	55,43	222,5
C1T5017	50	С	32	1	6	0,323	0,139	830	22356,39	0,982	0,85	0,57	1,02	82,95	293,1
C1T79	50	С	45	1	8	0,485	0,283	1390	27011,93	0,99	1,39	0,67	1,54	90,12	300,1
C1T80	37,5	С	35	1	6	0,413	0,213	210	17446,02	0,972	0,21	0,15	0,26	81,39	233,5
C2T61	37,5	С	7	1	14	0,392	0,204	730	23228,69	0,973	0,83	0,47	0,96	86,81	549,6
C2T65	25	С	26	1	9	0,325	0,128	250	19484,66	0,972	0,25	0,21	0,32	76,48	321,2
C3T277	10	С	17	1	10	0,335	0,149	210	10232,39	0,99	0,21	0,12	0,25	86,79	434
H2T62	10	С	16	1	7	0,474	0,271	160	23052,27	0,98	0,16	0,15	0,21	73,76	255,5
H2T74	25	С	20	1	12	0,253	0,089	250	14515,48	0,959	0,25	0,15	0,29	84,98	210,2
H2T84	25	С	22	1	4	0,250	0,092	90	12290,63	0,991	0,09	0,1	0,13	66,89	127,2
H4T69	25	С	11	1	5	0,213	0,076	50	8507,39	1	0,05	0,05	0,07	70,22	113,4
I3T171	10	С	3	1	13	0,442	0,227	2150	22013,35	0,991	2,15	0,87	2,32	92,6	773,4
J1T420	37,5	С	32	1		0,527	0,344	4210	87524,15	0,962	4,21	1,79	4,58	92	53,7
J3T46	100	С	67	3	7	0,605	0,433	330	41223,58	0,908	0,33	0,25	0,41	79,9	223,4
M2T171	25	С	22	1	11	0,335	0,167	150	10928,27	0,915	0,15	0,1	0,18	82,33	333,2
S1T52	37,5	С	85	1	12	0,509	0,324	510	31667,47	0,955	0,51	0,42	0,66	77,37	396,3

S1T54	37,5	С	115	1	15	0,538	0,339	840	34186,36	0,976	0,84	0,7	1,09	76,71	563,1
S1T60	15	С	40	1	3	0,517	0,315	3020	51024,72	0,95	3,02	1,83	3,54	85,54	81,9
S2T379	25	С	49	1	15	0,496	0,257	190	15034,94	0,858	0,19	0,1	0,21	89,32	147,8
S3T25	50	С	111	1	9	0,602	0,459	1600	58650	0,937	1,6	0,97	1,87	85,63	303,5
S4T44	50	С	36	1	11	0,418	0,222	300	25022,3	0,98	0,3	0,28	0,41	73,72	269,6
S4T48	75	С	29	3	16	0,496	0,299	100	20092,33	0,969	0,1	0,05	0,11	91,25	566,5
S4T50	50	С	43	1	19	0,427	0,221	200	24169,6	0,962	0,2	0,19	0,28	73,96	498,9
S4T5056	25	С	34	1	9	0,454	0,254	450	23454,12	0,927	0,45	0,27	0,52	85,96	338
S4T8	25	С	36	1	18	0,478	0,236	470	25512,36	0,994	0,47	0,25	0,53	88,72	518,1
S5T5099	37,5	С	72	1	17	0,602	0,372	2470	48986,08	0,889	2,47	1,98	3,17	78,04	857
V3T34	100	С	98	3	15	0,544	0,366	4160	73116,48	0,961	4,16	2,73	4,97	83,6	587,6
V3T5016	45	С	16	3	2	0,532	0,323	360	21582,1	0,941	0,36	0,2	0,41	86,87	46
V3T5049	15	С	10	1	5	0,255	0,090	180	9095,45	-1	0,18	0,12	0,22	82,98	156,9
Z1T132	25	С	53	1	8	0,396	0,198	160	25513,07	0,982	0,16	0,09	0,18	86,66	303,9
Z1T133	25	С	54	1	4	0,396	0,198	130	25513,07	0,982	0,13	0,1	0,16	80,89	130,9

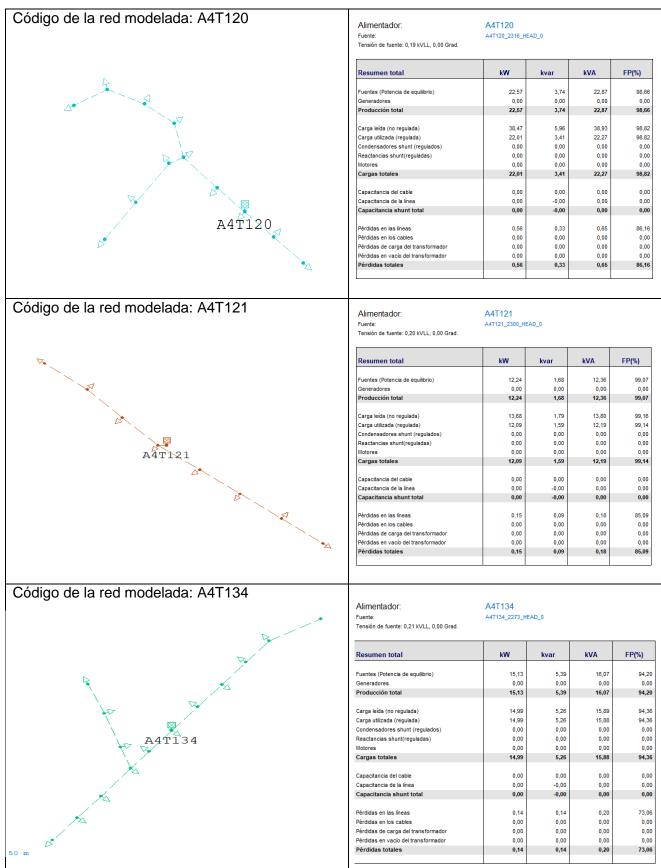
Anexo C Información de las redes del estrato D

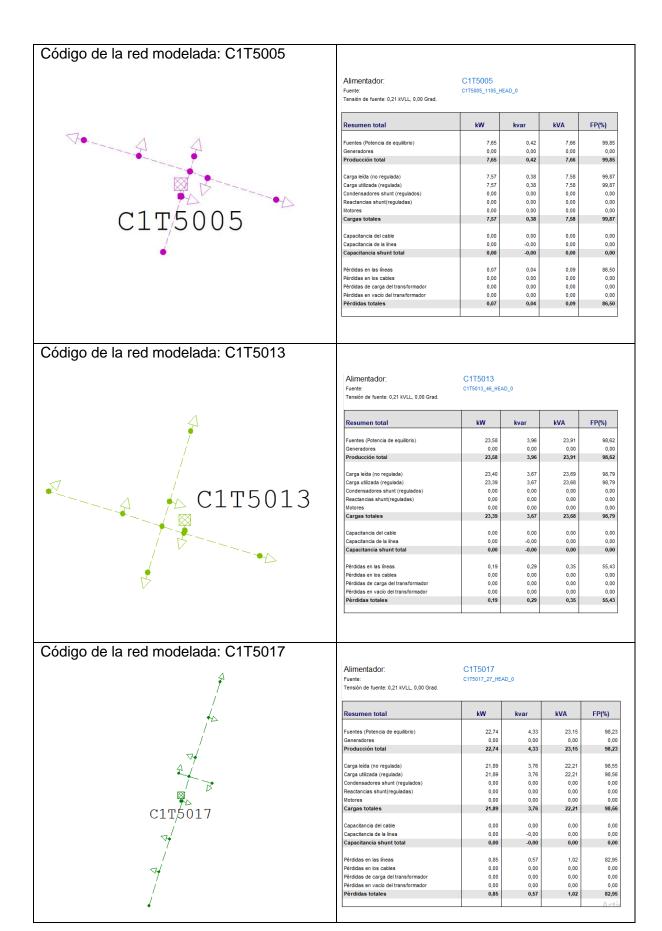
ESTRATO D

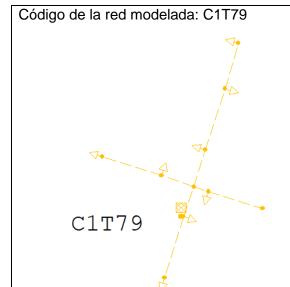
CODIGO	POTENCIA	ESTRATO	ABONADOS	SISTEMA	LUMINARIAS	FAC	TORES	PÉRDIDA	REGIS	STRO	1	PÉI TOTALES	RDIDAS /SIMULA	CIÓN	DISTANCIA
	kVA		#	#	#	F. Carga	F Pérdidas	W	Demanda M.	F.P.	kW	kVAR	kVA	FP(%)	(m)
A4T30	37,5	D	49	1	30	0,3359	0,1426	890	30971,59	0.989	0,89	0,53	1,03	85,7	1079,2
A4T31	37,5	D	39	1	13	0,5161	0,3242	680	20190,34	0,963	0,68	0,44	0,82	83,87	596,8
A5T13	25	D	55	1	15	0,4473	0,2524	590	18729,97	0,976	0,59	0,36	0,69	85,62	586,5
A5T24	25	D	19	1	12	0,3256	0,1370	200	7605,68	0,984	0,2	0,12	0,23	84,84	378,3
A5T46	50	D	53	1	10	0,3933	0,1931	1020	23454,12	0,977	1,02	0,6	1,18	85,97	1228,9
C2T27	25	D	37	1	12	0,4852	0,2764	240	19122,02	0,971	0,24	0,21	0,31	75,29	363,2
C2T37	25	D	40	1	14	0,4645	0,2670	850	25708,38	0,981	0,85	0,55	1,01	83,96	806,8
C2T685	37,5	D	33	1	8	0,3998	0,1929	230	20425,57	0,978	0,23	0,19	0,3	76,95	293,9
C3T604	10	D	24	1	9	0,2948	0,1164	320	15348,58	0,985	0,32	0,2	0,37	85,2	340,1
C3T8002	15	D	27	1	11	0,4974	0,2688	470	17377,41	0,987	0,47	0,3	0,56	84,32	526,3
C4T56	10	D	14	1	6	0,2119	0,0744	140	7448,86	0,983	0,14	0,1	0,17	81,97	351,9
C5T206	37,5	D	2	1	0	0,2946	0,1218	150	8027,13	1	0,15	0,1	0,18	82,38	257,9
C5T52	15	D	26	1	0	0,2096	0,0699	170	21376,28	0,991	1,02	0,64	1,2	84,8	537,9
C5T53	15	D	46	1	13	0,3909	0,1939	1410	23640,34	0,98	1,41	0,59	1,53	92,25	747,4
H4T334	15	D	40	1	15	0,4242	0,2191	90	18200,71	0,969	0,9	0,53	1,04	85,9	744,5
H4T340	10	D	10	1	12	0,2664	0,0977	150	8419,18	0,97	0,15	0,11	0,18	81,12	417,1
H4T93	25	D	40	1	12	0,3734	0,1923	230	14760,51	0,978	0,23	0,17	0,29	80,54	641,2
H4T94	25	D	39	1	14	0,2987	0,1213	150	11898,58	0,968	0,15	0,09	0,17	85,61	1053,3
I1T11	37,5	D	29	1	14	0,3868	0,1900	360	16975,57	0,969	0,36	0,21	0,42	86,2	581,7
I1T12	25	D	31	1	16	0,4527	0,2417	380	17210,8	0,974	0,38	0,22	0,44	86,48	659,6
I1T30	37,5	D	6	1	10	0,2521	0,0931	90	10830,26	0,982	0,09	0,09	0,12	70,2	291,8
I1T8	25	D	18	1	12	0,3492	0,1814	150	10889,06	0,975	0,15	0,1	0,18	83,51	306,9
I1T9	25	D	20	1	6	0,3496	0,1732	180	10938,07	0,973	0,18	0,11	0,21	85,61	232,4
I2T2	37,5	D	22	1	7	0,4495	0,2456	490	22425	0,968	0,49	0,29	0,57	86,15	216,7

I2T6	50	D	91	1	24	0,4743	0,2833	940	30481,53	0,977	0,93	0,76	1,2	77,61	724,6
I2T7	50	D	51	1	10	0,4399	0,2342	380	25541,76	0,978	0,38	0,31	0,49	77,81	271,2
J1T1	37,5	D	16	1	2	0,3284	0,1669	70	12545,45	0,992	0,07	0,06	0,09	74,63	46,8
J1T129	50	D	48	1	17	0,4120	0,2161	540	24071,59	0,968	0,54	0,31	0,62	86,43	406,7
J1T135	15	D	18	1	11	0,4776	0,2636	490	14691,9	0,979	0,49	0,34	0,59	82,24	548,5
J1T390	25	D	24	1	2	0,4903	0,2767	390	31393,04	0,961	0,39	0,37	0,53	72,27	120,3
J2T11	50	D	8	1	10	0,3284	0,1315	130	10046,16	0,992	0,13	0,13	0,18	70,25	254,2
J2T36	50	D	85	1	7	0,5422	0,3503	390	33118,04	0,977	0,39	0,35	0,53	74,44	318,5
J2T37	50	D	34	1	4	0,4768	0,2827	340	28423,3	0,975	0,34	0,34	0,48	70,68	96,4
J3T27	50	D	111	3	26	0,5287	0,3225	1940	52083,24	0,964	1,94	1,59	2,5	77,32	916,9
J4T38	37,5	D	76	1	11	0,3547	0,1649	570	20053,13	0,959	0,57	0,34	0,67	85,79	504
J4T49	37,5	D	47	1	7	0,5083	0,3087	120	22532,81	0,958	0,12	0,11	0,16	73,47	256,4
J4T5008	37,5	D	41	1	5	0,4340	0,2345	540	22866,05	0,971	0,54	0,41	0,68	79,76	231,2
J5T108	37,5	D	29	1	4	0,4108	0,1993	150	19915,91	0,984	0,15	0,15	0,21	70,7	114,2
J5T25	50	D	40	1	7	0,4270	0,2271	230	21376,28	0,975	0,23	0,21	0,31	75,14	241,9
J5T4	37,5	D	34	1	7	0,4524	0,2613	350	21444,89	0,982	0,35	0,23	0,42	82,99	182,9
J5T6	37,5	D	100	1	29	0,4993	0,3002	670	33392,47	0,958	0,67	0,55	0,87	77,37	524,7
J5T61	37,5	D	35	1	5	0,5045	0,3150	1110	33559,09	0,984	1,1	0,65	1,28	86,31	214,6
J5T98	37,5	D	56	1	14	0,4774	0,2743	700	26296,45	0,977	0,7	0,38	0,79	87,93	504,7
J5T99	75	D	62	1	11	0,4248	0,2229	500	31000,99	0,988	0,5	0,44	0,67	75,58	309,3
L1T1	25	D	50	1	9	0,4224	0,2291	420	20905,82	0,974	0,42	0,25	0,49	85,98	254
L1T3	37,5	D	26	1	29	0,4332	0,2290	320	18847,59	0,957	0,32	0,18	0,37	87,65	1045,2
L1T303	25	D	32	1	7	0,3442	0,1509	520	25580,97	0,979	0,52	0,29	0,6	87,13	189,7
L1T4	37,5	D	26	1	8	0,3622	0,1768	380	17083,38	0,983	0,38	0,21	0,43	87,65	235,2
L1T505	37,5	D	52	1	14	0,4114	0,2027	1050	27874,43	0,987	1,05	0,58	1,2	87,46	448,7
L1T5103	25	D	43	1	13	0,3024	0,1240	380	16603,13	0,996	0,38	0,23	0,44	86,02	384,5
L2T51	25	D	37	1	4	0,2036	0,0572	560	13427,56	0,997	0,56	0,41	0,69	80,54	394,7
L2T53	25	D	36	1	10	0,3439	0,1571	990	22366,19	0,994	0,99	0,57	1,14	86,58	576,9
L2T54	37,5	D	16	1	11	0,2554	0,0867	120	14799,72	0,998	0,12	0,07	0,14	87,19	438,5
L3T40	25	D	33	1	7	0,2935	0,1174	740	19925,71	-0,995	0,74	0,48	0,88	83,89	247,1
L3T5025	15	D	8	1	9	0,3448	0,1581	1050	22728,84	0,992	1,05	0,69	1,26	83,63	225
L3T55	30	D	69	3	10	0,3035	0,1144	410	24581,25	0,914	0,41	0,24	0,47	86,41	286
	-			-		1	•	-	. , -		0,41	0,24	0,41	00,41	200

L4T12 25 D 25 1 7 0,2641 0,0915 280 16436,51 0,995 0,28 0,17 0,33 85,7 L4T5021 37,5 D 24 1 13 0,2590 0,0935 140 14691,9 0,995 0,14 0,09 0,17 82,56 M5T78 15 D 51 1 13 0,3812 0,1807 470 20670,6 0,986 0,47 0,27 0,54 86,4 M6T163 15 D 7 1 0 0,1970 0,0673 80 7233,24 0,996 0,08 0,05 0,09 85,49 M6T194 37,5 D 31 1 9 0,1581 0,1801 250 9957,95 0,564 0,25 0,3 0,39 63,49 M6T195 37,5 D 10 1 21 0,4352 0,2344 520 14613,49 -0,973 0,52 0,3 0,6 <th>222,7 376,6 508,4 60,4 508 989,7 213,5 230,8 438,7 541,7 908 536,8 1045,8</th>	222,7 376,6 508,4 60,4 508 989,7 213,5 230,8 438,7 541,7 908 536,8 1045,8
M6T163	508,4 60,4 508 989,7 213,5 230,8 438,7 541,7 908 536,8
M6T163 15 D 7 1 0 0,1970 0,0673 80 7233,24 0,996 0,08 0,05 0,09 85,49 M6T194 37,5 D 31 1 9 0,1581 0,1801 250 9957,95 0,564 0,25 0,3 0,39 63,49 M6T195 37,5 D 10 1 21 0,4352 0,2344 520 14613,49 -0,973 0,52 0,3 0,6 86,41 M6T224 15 D 13 1 7 0,4321 0,2377 290 16544,32 0,97 0,26 0,17 0,31 83,66 M6T57 15 D 16 1 4 0,2707 0,1103 200 8870,03 0,976 0,2 0,14 0,24 82,82 M6T598 37,5 D 49 1 13 0,4271 0,2385 280 13447,16 0,968 0,28 0,2 0,34 <td>60,4 508 989,7 213,5 230,8 438,7 541,7 908 536,8</td>	60,4 508 989,7 213,5 230,8 438,7 541,7 908 536,8
M6T194 37,5 D 31 1 9 0,1581 0,1801 250 9957,95 0,564 0,25 0,3 0,39 63,49 M6T195 37,5 D 10 1 21 0,4352 0,2344 520 14613,49 -0,973 0,52 0,3 0,6 86,41 M6T224 15 D 13 1 7 0,4321 0,2377 290 16544,32 0,97 0,26 0,17 0,31 83,66 M6T57 15 D 16 1 4 0,2707 0,1103 200 8870,03 0,976 0,2 0,14 0,24 82,82 M6T598 37,5 D 49 1 13 0,4271 0,2385 280 13447,16 0,968 0,28 0,2 0,34 82,34 R1T263 25 D 47 1 12 0,3472 0,1548 280 18582,95 0,978 0,28 0,16 0,32	508 989,7 213,5 230,8 438,7 541,7 908 536,8
M6T195 37,5 D 10 1 21 0,4352 0,2344 520 14613,49 -0,973 0,52 0,3 0,6 86,41 M6T224 15 D 13 1 7 0,4321 0,2377 290 16544,32 0,97 0,26 0,17 0,31 83,66 M6T57 15 D 16 1 4 0,2707 0,1103 200 8870,03 0,976 0,2 0,14 0,24 82,82 M6T598 37,5 D 49 1 13 0,4271 0,2385 280 13447,16 0,968 0,28 0,2 0,34 82,34 R1T263 25 D 47 1 12 0,3472 0,1548 280 18582,95 0,978 0,28 0,16 0,32 85,95 R1T264 25 D 64 1 28 0,4601 0,2538 1750 31834,09 0,981 1,75 1,06 2,	989,7 213,5 230,8 438,7 541,7 908 536,8
M6T224 15 D 13 1 7 0,4321 0,2377 0,1103 0,2387 0,97 290 16544,32 0,97 0,26 0,17 0,31 83,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00	213,5 230,8 438,7 541,7 908 536,8
M6T57 15 D 16 1 4 0,2707 0,1103 200 8870,03 0,976 0,2 0,14 0,24 82,82 0,2 0,14 0,24 82,82 M6T598 37,5 D 49 1 13 0,4271 0,2385 280 13447,16 0,968 0,28 0,2 0,34 82,34 0,28 0,2 0,34 82,34 R1T263 25 D 47 1 12 0,3472 0,1548 280 18582,95 0,978 0,28 0,16 0,32 85,95 0,28 0,16 0,32 85,95 R1T264 25 D 64 1 28 0,4601 0,2538 1750 31834,09 0,981 1,75 1,06 2,05 85,55 1,75 1,06 2,05 85,55 R2T300 37, 5 D 48 1 12 0,3804 0,1760 650 22758,24 0,986 0,65 0,39 0,76 85,96 0,65 0,39 0,76 85,96 R2T301 25 D 48 1 17 0,4267 0,2245 310 14172,44 0,996 0,31 0,19 0,36 84,94	230,8 438,7 541,7 908 536,8
M6T598 37,5 D 49 1 13 0,4271 0,2385 280 13447,16 0,968 0,28 0,2 0,34 82,34 R1T263 25 D 47 1 12 0,3472 0,1548 280 18582,95 0,978 0,28 0,16 0,32 85,95 R1T264 25 D 64 1 28 0,4601 0,2538 1750 31834,09 0,981 1,75 1,06 2,05 85,55 R2T300 37,5 D 48 1 12 0,3804 0,1760 650 22758,24 0,986 0,65 0,39 0,76 85,96 R2T301 25 D 48 1 17 0,4267 0,2245 310 14172,44 0,996 0,31 0,19 0,36 84,94	438,7 541,7 908 536,8
R1T263	541,7 908 536,8
R1T264	908 536,8
R2T300 37, 5 D 48 1 12 0,3804 0,1760 650 22758,24 0,986 0,65 0,39 0,76 85,96 R2T301 25 D 48 1 17 0,4267 0,2245 310 14172,44 0,996 0,31 0,19 0,36 84,94	536,8
R2T301 25 D 48 1 17 0,4267 0,2245 310 14172,44 0,996 0,31 0,19 0,36 84,94	
7,70 0,70 0,70 0,70	1045,8
R2T311 25 D 60 1 9 0,2489 0,0947 800 15348,58 1 0,8 0,53 0,96 83,65	340,6
R2T314 37,5 D 44 1 30 0,4137 0,1879 750 17936,08 0,99 0,75 0,52 0,91 82,31	1210,2
R4T5012 37,5 D 25 1 12 0,3309 0,1340 260 25277,13 0,99 0,26 0,21 0,34 77,81	294,1
R4T88 37,5 D 19 1 ₁₁ 0,4225 _{0,2007} 550 24130,4 0,994 _{0,55} _{0,3} _{0,62} _{87,95}	372,4
R4T95 37,5 D 35 1 9 0,3958 0,1889 400 22797,44 0,982 0,4 0,29 0,49 80,71	242,4
R5T11 25 D 59 1 ₁₉ 0,3540 _{0,1457} 1810 31912,5 0,996 _{1,81} _{1,05} _{2,09} _{86,56}	720,6
R5T38 25 D 29 1 15 0,4579 0,6757 940 28256,68 0,914 0,94 0,54 1,09 86,79	577,5
R5T4 25 D 45 1 8 0,4451 0,2425 350 20425,57 0,972 0,35 0,28 0,45 77,96	337,2
R5T5007 10 D 4 1 2 0,1473 0,0420 20 8732,81 0,998 0,02 0,01 0,02 86,9	79,2
R5T5036 10 D 6 1 3 0,2444 0,0948 50 5076,99 0,985 0,05 0,03 0,06 84,34	203,9
R5T76 50 D 31 1 10 0,4012 0,2153 220 16838,35 0,976 0,22 0,13 0,26 85,87	221,9
S2T499 25 D 30 1 4 0,3547 0,1811 100 13045,31 0,964 0,1 0,07 0,12 81,64	102,9
S2T534 37,5 D 27 1 10 0,4727 0,2684 190 17818,47 0,981 0,19 0,2 0,27 67,76	367,6
S3T23 50 D 285 3 18 0,6926 0,7822 2330 59865,34 0,789 2,33 0,98 2,52 92,15	345,2
S4T39 50 D 43 1 13 0,4813 0,2773 160 18837,78 0,915 0,16 0,15 0,22 73,9	363,7
S5T259 37,5 D 27 1 13 0,5374 0,3212 650 25933,81 0,951 0,65 0,4 0,76 85,07	432,9
S5T5002 25 D 19 1 9 0,4180 0,2148 360 19386,65 0,975 0,36 0,21 0,41 86,66	428,4
S5T5048 15 D 35 1 6 0,4002 0,2092 330 16563,92 0,984 0,33 0,19 0,38 86,34	179,7
S5T8007 25 D 32 1 25 0,3768 0,1823 350 16661,93 0,975 0,35 0,2 0,4 86,75	800,1

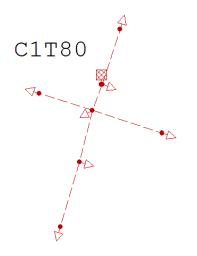

S5T92	37,5	D	25	1	24	0,2167	0,0825	160	8036,93	0,973	0,16	0,1	0,18	85,59	645,7
S5T93	37,5	D	60	1	19	0,3656	0,1931	180	12084,8	0,95	0,18	0,11	0,21	84,64	645,9
S5T94	25	D	20	1	7	0,3039	0,1215	360	12633,66	-1	0,36	0,22	0,42	85,59	358
V1T15	25	D	64	1	16	0,4542	0,2538	170	26002,41	0,966	0,17	0,07	0,18	92,76	796,4
V1T16	37,5	D	49	1	16	0,4348	0,2436	440	22111,36	0,954	0,44	0,29	0,52	83,41	734,1
V1T17	25	D	47	1	20	0,4279	0,2245	270	13888,21	0,973	0,27	0,19	0,33	81,69	838
V1T9	25	D	16	1	4	0,2882	0,1094	830	21846,73	0,982	0,83	0,51	0,97	85,4	124,1
V2T261	15	D	37	1	21	0,3333	0,1435	320	15858,24	0,988	0,32	0,2	0,38	85,49	820,6
V2T5115	15	D	13	1	10	0,2416	0,0853	110	8458,38	0,999	0,29	0,17	0,33	86,25	353,9
V3T11	30	D	46	3	34	0,5245	0,3415	490	28384,09	0,958	0,49	0,31	0,58	84,93	563,3
V4T20	10	D	14	1	8	0,4405	0,2332	100	6556,96	0,946	0,1	0,08	0,13	79,27	499,3
V4T24	37,5	D	18	1	11	0,3128	0,1351	300	16612,93	0,98	0,29	0,13	0,32	92,02	349,8
V4T25	25	D	11	1	8	0,3150	0,1445	70	8252,56	0,967	20,02	9,13	0,22	90,98	260,8
V4T26	37,5	D	23	1	11	0,3794	0,1833	220	13496,16	0,974	0,22	0,15	0,27	82,3	412
V5T22	15	D	35	1	10	0,3412	0,1387	800	22581,82	0,984	0,8	0,49	0,94	85,32	564,2
V5T24	15	D	44	1	9	0,4941	0,3716	400	22493,61	0,944	0,4	0,34	0,53	75,62	591,2
V5T30	37,5	D	64	1	11	0,4319	0,2366	840	20650,99	0,959	0,84	0,47	0,96	87,06	1008
V5T87	15	D	12	1	0	0,3377	0,1508	1060	15162,36	0,948	1,06	0,69	1,26	83,76	914,4
Z1T1060	15	D	8	1	9	0,2430	0,0756	370	17730,26	0,991	0,37	0,23	0,43	85,1	330
Z2T1001	25	D	19	1	0	0,2597	0,1113	160	8154,55	0,99	0,16	0,09	0,18	86,52	522,7
Z2T118	25	D	33	1	15	0,3612	0,1516	790	22042,76	0,993	0,79	0,48	0,93	85,54	618,9
Z2T119	25	D	56	1	18	0,4218	0,2107	950	23757,95	0,987	0,95	0,59	1,12	84,92	677,2
Z3T5006	10	D	0	1	23	0,2818	0,2029	120	6929,4	-0,971	0,12	0,07	0,14	86,62	843,7
Z3T5007	10	D	3	1	19	0,3182	0,1535	170	8732,81	0,991	0,17	0,1	0,2	86,09	727,9
Z3T86	15	D	28	1	0	0,2754	0,1124	190	9144,46	0,984	0,19	0,13	0,23	83,13	886,3
Z4T39	15	D	23	1	15	0,3526	0,1615	340	12104,4	0,984	0,34	0,24	0,42	82,28	1231


Anexo D Información de las redes del estrato E


							ESTRATO	DΕ							
CODIGO	POTENCIA	ESTRATO	ABONADOS	SISTEMA	LUMINARIAS	FAC	TORES	PÉRDIDA	REGIS	STRO	PÉRE	DIDAS TOT	TALES/SIN	IULACIÓN	DISTANCIA
	kVA		#	#	#	F. Carga	F Pérdidas	w	Demanda M.	F.P.	kW	kVAR	kVA	FP(%)	(m)
XC5T62	15	E	17	1	15	0,247	0,089	420	10399,01	-0,994	0,42	0,19	0,46	90,89	564,7
C5T64	15	Е	36	1	16	0,394	0,201	490	12937,5	0,964	0,49	0,33	0,6	82,72	1221,7
H1T352	15	E	19	1	9	0,331	0,128	80	5684,66	0,880	0,08	0,06	0,1	81,82	457,7
H1T354	15	E	26	1	19	0,478	0,280	400	13260,94	0,960	0,4	0,27	0,48	82,95	900,5
H3T136	15	E	29	1	16	0,324	0,151	140	9066,05	0,950	0,14	0,09	0,16	84,97	993,3
H3T190	15	E	48	1	28	0,460	0,254	610	14270,45	0,978	0,61	0,42	0,74	82,23	1338,4
I2T144	15	E	38	1	7	0,432	0,235	230	10134,38	0,956	0,23	0,15	0,27	83,49	767,5
I3T5002	10	E	18	1	15	0,352	0,167	170	7488,07	0,967	0,18	0,09	0,21	89,83	731,9
I3T5004	15	E	19	1	13	0,364	0,169	100	8281,96	0,920	0,1	0,06	0,12	84,66	546,9
I4T108	25	E	15	1	9	0,226	0,079	150	7801,7	0,986	0,15	0,09	0,17	84,75	395,2
I4T52	10	E	19	1	14	0,460	0,237	60	6213,92	0,965	0,06	0,04	0,07	85,98	457,2
I4T56	37,5	E	24	1	17	0,381	0,187	220	6929,4	0,998	0,22	0,16	0,27	80,76	836,5
J1T5061	37,5	E	25	1	6	0,572	0,392	870	24581,25	0,893	0,87	0,48	1	87,41	299,6
L4T100	25	E	32	1	8	0,312	0,146	890	26022,02	0,998	0,89	0,54	1,04	85,58	307,5
L4T5044	15	E	62	1	17	0,335	0,156	560	14309,66	0,994	0,56	0,38	0,68	83,11	832,7
M6T55	25	E	35	1	6	0,341	0,154	250	15966,05	0,991	0,25	0,15	0,29	85,82	245,9
M6T636	10	E	16	1	6	0,255	0,094	810	12545,45	0,984	0,81	0,56	0,99	82,5	335,9
R1T5123	10	E	12	1	17	0,280	0,132	290	10251,99	1	0,29	0,18	0,34	85,26	629,6
R1T5212	15	E	10	1	8	0,352	0,191	30	5341,62	0,933	0,03	0,02	0,04	90	384
R2T202	37,5	E	28	1	9	0,393	0,196	120	7723,3	0,997	0,12	0,08	0,14	83,15	1119,7
R2T235	15	Е	20	1	13	0,263	0,110	170	11722,16	0,987	0,17	0,1	0,2	85,47	632,9

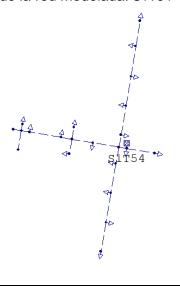
R2T255	10	E	21	1	0	0,315	0,141	180	10859,66	0,979	0,18	0,1	0,21	87,53	1084,1
R2T257	10	E	14	1	7	0,213	0,071	260	6958,81	0,982	0,26	0,16	0,3	85,04	868,3
R2T258	10	E	12	1	0	0,193	0,077	60	5027,98	0,985	0,06	0,04	0,07	83,07	646,5
R2T260	10	E	13	1	0	0,209	0,072	410	8605,4	0,992	0,41	0,27	0,49	83,71	546,7
R2T261	10	E	8	1	0	0,223	0,069	70	6566,76	0,924	0,07	0,04	0,08	87,72	498,8
R2T5062	10	E	12	1	0	0,280	0,112	480	8154,55	0,990	0,48	0,36	0,6	79,95	621,4
R2T5063	15	E	20	1	0	0,247	0,098	220	5469,03	0,986	0,22	0,16	0,27	80,54	948,6
R2T5065	15	E	15	1	0	0,305	0,133	40	9428,69	0,997	0,04	0,03	0,05	75,76	594,3
R2T5096	10	Е	7	1	0	0,096	0,022	180	5065,227	0,988	0,18	0,12	0,22	82,69	723,4
V2T242	10	E	22	1	0	0,325	0,022	400	7693,89	0,987	0,10	0,12	0,44	89,73	706,5
V2T244	10	Е	12	1	0	0,221	0,071	110	7586,08	0,986	0,11	0,08	0,14	79,53	593,7
V2T250	37,5	Е	45	1	14	0,284	0,108	910	18935,8	0,976	0,11			79,55 86,08	
V2T251	10	E	19	1		0,282	0,110	380	7488,07	0,996		0,54	1,06	•	856,8
V2T5094	15	E	14	1	0 11	0,415		270	12457,24	0,946	0,38	0,28	0,48	80,54	490,7
				·		,	0,203		•	•	0,27	0,21	0,34	80,03	492,9
Z2T81	15	E	18	1	13	0,286	0,117	140	6635,37	0,988	0,14	0,1	0,17	81,85	1018,2
Z3T13	25	E	41	1	17	0,348	0,152	370	13505,97	0,987	0,37	0,21	0,43	87,36	1100
Z3T16	15	E	20	1	16	0,308	0,126	630	12320,03	0,994	0,63	0,41	0,75	83,89	980,9
Z4T199	15	Е	25	1	0	0,276	0,097	260	9889,35	0,996	0,26	0,18	0,31	81,95	1132,4
Z4T200	15	E	17	1	0	0,320	0,132	80	3793,04	0,995	0,08	0,06	0,1	78,94	1654,2
Z4T93	15	Е	22	1	7	0,212	0,062	160	11565,34	0,998	0,16	0,1	0,19	84,61	232,2

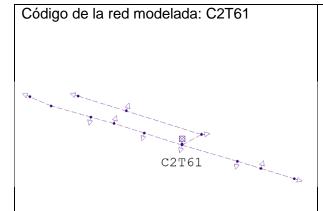
Anexo E Redes modeladas del estrato C



Alimentador: C1T79
Fuente: C1T79_64_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

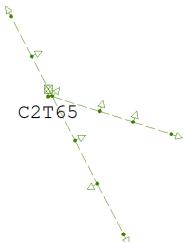
Resumen total	kW	kvar	kVA	FP(%)
Francis (Batanala da analizada)	27,21	3,89	27.49	98,99
Fuentes (Potencia de equilibrio) Generadores			0.00	
	0,00	0,00	-,	0,00
Producción total	27,21	3,89	27,49	98,99
Carga leída (no regulada)	30,03	3,74	30,26	99,23
Carga utilizada (regulada)	25,82	3,22	26,02	99,2
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	25,82	3,22	26,02	99,2
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	1,39	0,67	1,54	90,1
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,39	0,67	1,54	90,1


Código de la red modelada: C1T80


Alimentador: C1T80
Fuente: C1780_13_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17.25	3.77	17.65	97.70
Generadores	0,00	0.00	0,00	0.00
Producción total	17,25	3,77	17,65	97,7
Carga leída (no regulada)	17,04	3,61	17,42	97,8
Carga utilizada (regulada)	17,03	3,61	17,41	97,8
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	17,03	3,61	17,41	97,8
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,21	0,15	0,26	81,3
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,21	0,15	0,26	81,3

Código de la red modelada: S1T54


Generadores	3,87 0,00 3,87 3,04 3,04 0,00 0,00	7,66 0,00 7,66 6,97 6,97 0,00 0,00	34,73 0,00 34,73 33,76 33,76 0,00	97, 0, 97, 97, 97,
Generadores Producción total Carga leida (no regulada) Carga ulizada (regulada) 33 Carga ulizada (regulada) 38 Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las líneas	0,00 3,87 3,04 3,04 0,00	0,00 7,66 6,97 6,97 0,00	0,00 34,73 33,76 33,76 0,00	97, 97, 97,
Producción total 3 Carga leida (no regulada) 3 Carga utilizada (regulada) 3 Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	3,87 3,04 3,04 0,00 0,00	7,66 6,97 6,97 0,00	34,73 33,76 33,76 0,00	9 7 , 97, 97,
Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales 3 Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	3,04 0,00 0,00	6,97 0,00	33,76 0,00	97,
Condensadores shunt (regulados) Reactancias shunt(regulados) Motores Cargas totales Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	0,00 0,00	0,00	0,00	
Reactancias shunt(reguladas) Motores Cargas totales 3 Capacitancia del cable Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas	0,00		,	0
Motores Cargas totales 3 Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas		0,00	0.00	٠,
Cargas totales 3 Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	2.00		0,00	0,
Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	3,00	0,00	0,00	0,
Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas	3,04	6,97	33,76	97,
Capacitancia shunt total Pérdidas en las líneas	0,00	0,00	0,00	0,
Pérdidas en las líneas	0,00	-0,00	0,00	0,
	0,00	-0,00	0,00	0,
Pérdidas en los cables	0,84	0,70	1,09	76,
	0,00	0,00	0,00	0,
Pérdidas de carga del transformador	0,00	0,00	0,00	0,
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,
Pérdidas totales		0,70	1,09	76,

Alimentador: C2T61
Fuerte: C2T61_207_HEAD_0
Tensión de fuente: 0.21 kVLL, 0.00 Grad.

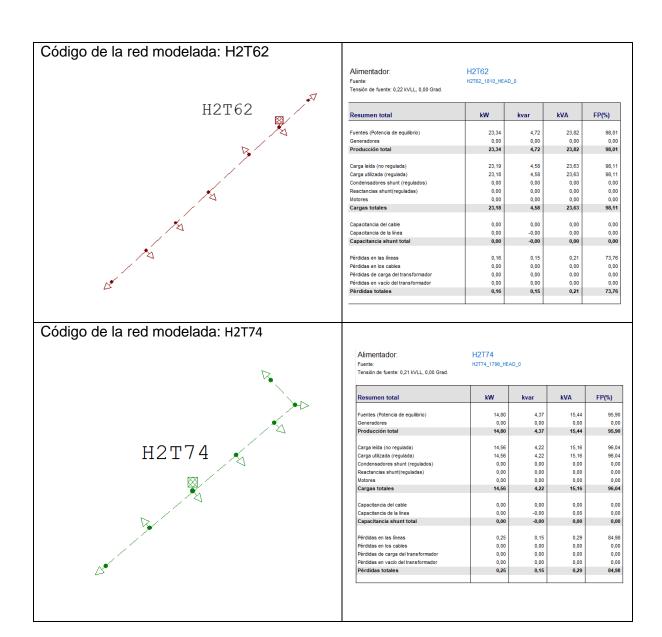
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	24,76	3,31	24,98	99,12
Generadores	0,00	0,00	0,00	0,00
Producción total	24,76	3,31	24,98	99,12
Carga leída (no regulada)	29,48	3,42	29,68	99,33
Carga utilizada (regulada)	23,93	2,83	24,10	99,3
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	23,93	2,83	24,10	99,3
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,83	0,47	0,96	86,8
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,83	0,47	0,96	86,8

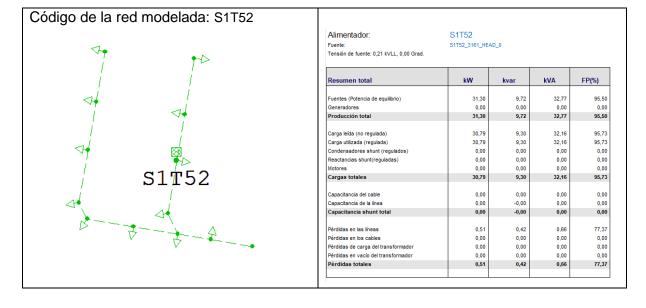
Código de la red modelada: C2T65

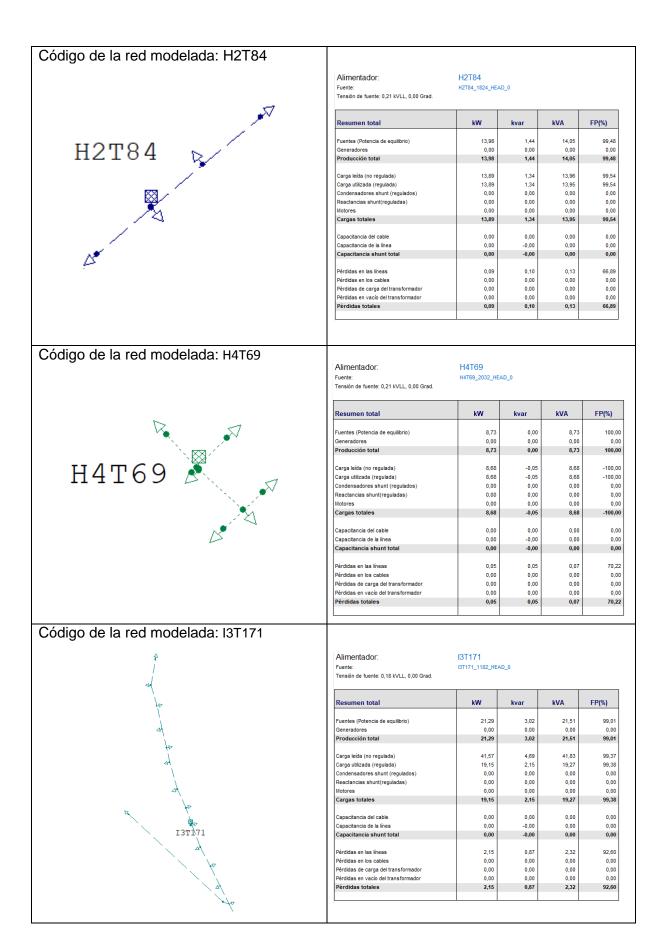
Alimentador: C2T65
Fuente: C2T65_85_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	19,41	4,79	20,00	97,09
Generadores	0,00	0,00	0,00	0,00
Producción total	19,41	4,79	20,00	97,09
Carga leida (no regulada)	19,17	4,58	19,71	97,26
Carga utilizada (regulada)	19,17	4,58	19,71	97,26
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	19,17	4,58	19,71	97,26
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,25	0,21	0,32	76,48
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,25	0,21	0,32	76,48

Código de la red modelada: C3T277




Alimentador: C3T277


Fuente: C3T277_1250_HEAD_0

Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	10,39	1,02	10,44	99,53
Generadores	0,00	0,00	0,00	0,00
Producción total	10,39	1,02	10,44	99,53
Carga leída (no regulada)	15,35	1,29	15,41	99,65
Carga utilizada (regulada)	10,18	0,89	10,22	99,6
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	10,18	0,89	10,22	99,6
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,21	0,12	0,25	86,7
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,21	0,12	0,25	86,7

Código de la red modelada: J1T420

J1T420

Alimentador:

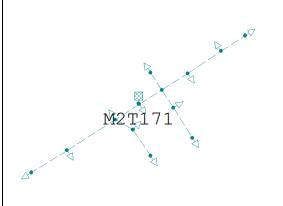
J1T420 J1T420_5334_HEAD_0

Fuente: Tensión de fuente: 0,21 kVLL, -120,00 Grad.

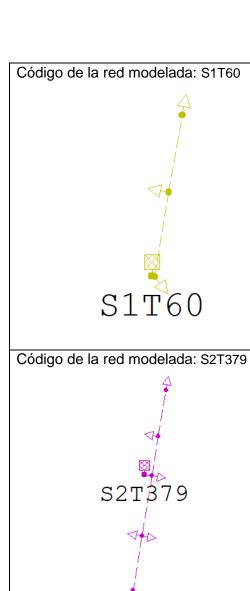
	_			
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	87,02	24,89	90,51	96,14
Generadores	0,00	0,00	0,00	0,00
Producción total	87,02	24,89	90,51	96,14
Carga leida (no regulada)	82,83	23,11	85,99	96,32
Carga utilizada (regulada)	82,80	23,10	85,97	96,32
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	82,80	23,10	85,97	96,32
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	4,21	1,79	4,58	92,00
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	4,21	1,79	4,58	92,00
		1		1

Código de la red modelada: J3T46

Alimentador:


J3T46 J3T46_5368_HEAD_0

Fuente: Tensión de fuente: 0,22 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	40,50	17,91	44,28	91,46
Generadores	0,00	0,00	0,00	0,00
Producción total	40,50	17,91	44,28	91,46
Carga leída (no regulada)	40,18	17,66	43,89	91,54
Carga utilizada (regulada)	40,17	17,66	43,88	91,54
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	40,17	17,66	43,88	91,54
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,33	0,25	0,41	79,90
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,33	0,25	0,41	79,90

Código de la red modelada: M2T171

Alimentador: M2T171 Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. M2T171_767_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Francis (Batanala da analista)	11,76	4,91	12.74	92.27
Fuentes (Potencia de equilibrio) Generadores	0.00	0.00	0.00	0.00
Producción total		-,	-,	
Produccion total	11,76	4,91	12,74	92,27
Carga leída (no regulada)	11,61	4,81	12,56	92,39
Carga utilizada (regulada)	11,60	4,81	12,56	92,38
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	11,60	4,81	12,56	92,38
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,15	0,10	0,18	82,33
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,15	0,10	0,18	82,33

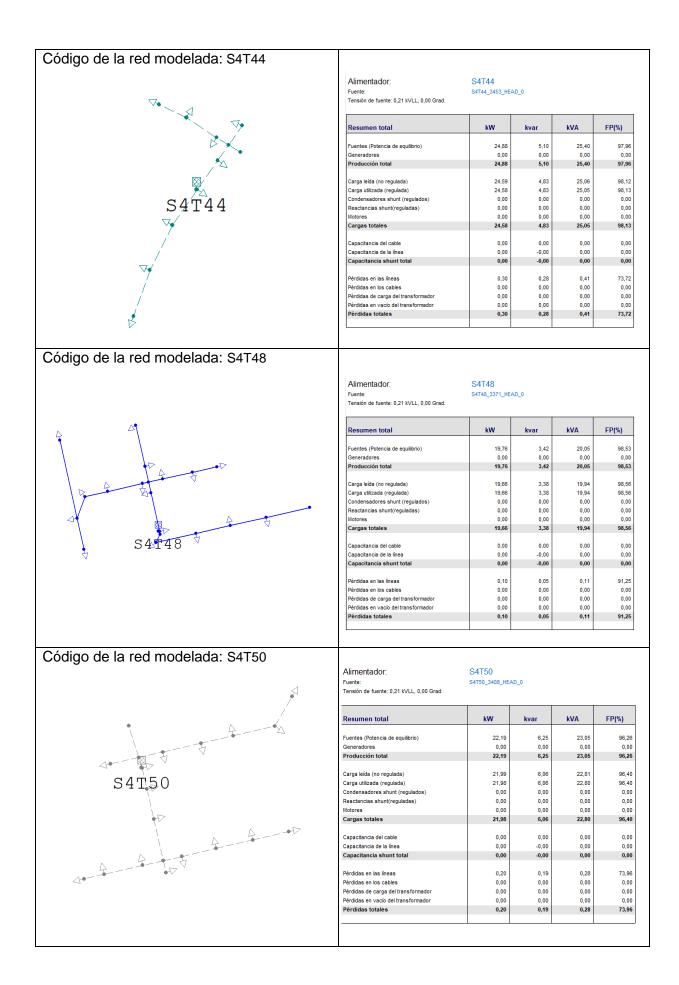
Alimentador: S1T60
Fuente: S1T60_3227_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	51,17	17,19	53,98	94,79
Generadores	0,00	0,00	0,00	0,00
Producción total	51,17	17,19	53,98	94,79
Carga leída (no regulada)	48,16	15,37	50,56	95,27
Carga utilizada (regulada)	48,15	15,36	50,54	95,27
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	48,15	15,36	50,54	95,27
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	3,02	1,83	3,54	85,54
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	3,02	1,83	3,54	85,54

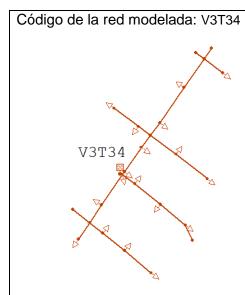
Alimentador: \$2T379

Fuente: \$2T379_3274_HEAD_0

Tensión de fuente: 0.21 kVLL, 0.00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Trocumon total		nrui	K 271	(///
Fuentes (Potencia de equilibrio)	15,10	8,41	17,28	87,37
Generadores	0,00	0,00	0,00	0,00
Producción total	15,10	8,41	17,28	87,37
Carga leída (no regulada)	14,91	8,31	17,07	87,34
Carga utilizada (regulada)	14,91	8,31	17,07	87,34
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	14,91	8,31	17,07	87,34
Capacitancia del cable	0.00	0.00	0.00	0.00
Capacitancia de la línea	0,00	-0,00	0,00	0.00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.19	0.10	0.21	89.32
Pérdidas en los cables	0.00	0.00	0.00	0.00
Pérdidas de carga del transformador	0,00	0,00	0,00	0.00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,19	0,10	0,21	89,32

Código de la red modelada: S3T25



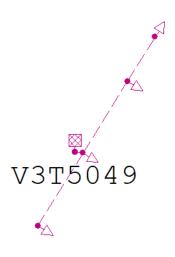
Alimentador: \$3T25
Fuente: \$3T25_3285_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	57,98	21,69	61,90	93,66
Generadores	0,00	0,00	0,00	0,00
Producción total	57,98	21,69	61,90	93,66
Carga leída (no regulada)	56,38	20,73	60,07	93,86
Carga utilizada (regulada)	56,37	20,73	60,06	93,86
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	56,37	20,73	60,06	93,86
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	1,60	0,97	1,87	85,63
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	1,60	0,97	1,87	85,63

Código de la red modelada: S4T5056					
	Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.	S4T5056 s4T5056_3588_	HEAD_0		
	Resumen total	kW	kvar	kVA	FP(%)
2.475.05.6	Fuentes (Potencia de equilibrio)	23,39	9,45	25,23	92,72
S4T5056	Generadores Producción total	0,00 23,39	0,00 9,45	0,00 25,23	0,00 92,72
4 9	Carga leida (no regulada) Carga utilizada (regulada)	26,38 22,94	10,56 9,18	28,41 24,71	92,83 92,84
14 to 1	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00 0,00	0,00	0,00	0,00
A A	Motores	0,00 0,00 22,94	0,00 0,00 9,18	0,00 0,00 24,71	0,00 0,00 92,84
1	Cargas totales	0,00	0,00	0,00	0,00
	Capacitancia del cable Capacitancia de la línea	0,00	-0,00	0,00	0,00
j	Capacitancia shunt total		-0,00	0,00	0,00
•	Pérdidas en las líneas Pérdidas en los cables	0,45 0,00	0,27 0,00	0,52 0,00	85,96 0,00
	Pérdidas de carga del transformador Pérdidas en vacío del transformador	0,00 0,00	0,00 0,00	0,00 0,00	0,00
	Pérdidas totales	0,45	0,27	0,52	85,96
Código do la rod modolada: SATO					
Código de la red modelada: S4T8					
	Alimentador:	S4T8			
∳	Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	S4T8_3307_HEA	AD_0		
•	Resumen total	kW	kvar	kVA	FP(%)
4	Fuentes (Potencia de equilibrio) Generadores	25,16 0,00	2,95 0,00	25,33 0,00	99,32 0,00
\ S4T8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Producción total	25,16	2,95	25,33	99,32
4 4 +- +	Carga leida (no regulada) Carga utilizada (regulada)	24,69 24,68	2,70 2,70	24,84 24,83	99,41 99,41
4 1 5 4	Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
The total state of the state of	Reactancias shunt(reguladas) Motores	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00
	Cargas totales	24,68	2,70	24,83	99,41
4	Capacitancia del cable Capacitancia de la línea	0,00 0,00	0,00 -0,00	0,00 0,00	0,00 0,00
	Capacitancia shunt total	0,00	-0,00	0,00	0,00
<u>L</u>	Pérdidas en las líneas Pérdidas en los cables	0,47 0,00	0,25 0,00	0,53 0,00	88,72 0,00
A	Pérdidas de carga del transformador Pérdidas en vacío del transformador	0,00	0,00 0,00	0,00 0,00	0,00 0,00
	Pérdidas totales	0,47	0,25	0,53	88,72
Código de la red modelada: S5T5099					
, ⁵⁴	Alimentador:	S5T5099			
A	Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	S5T5099_3118_HE	EAD_0		
4	Resumen total	kW	kvar	kVA	FP(%)
1	Fuentes (Potencia de equilibrio) Generadores	47,73 0,00	24,81 0,00	53,79 0,00	88,73 0,00
† ₽ 	Producción total	47,73	24,81	53,79	88,73
	Carga leída (no regulada) Carga utilizada (regulada)	63,97 45,26	32,29 22,83	71,66 50,69	89,27 89,28
A _ A _ A	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
S5T5099	Motores Cargas totales	0,00 45,26	0,00	0,00 50,69	0,00 89,28
\$	Capacitancia del cable	0,00	0,00	0,00	0,00
4.\	Capacitancia de la línea Capacitancia shunt total	0,00	-0,00 - 0,00	0,00	0,00
- + × ×	Pérdidas en las líneas	2,47	1,98	3,17	78,04
/ /	Pérdidas en los cables Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
<i>∱</i> >	Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
<i>!</i>	Pérdidas totales	2,47	1,98	3,17	78,04

Alimentador: V3T34
Fuente: V3T34_541_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	73,16	20.05	75.85	96,44
Generadores	0.00	0.00	0.00	0.00
Producción total	73.16	20.05	75.85	96.44
Producción total	75,10	20,03	10,00	30,44
Carga leida (no regulada)	69,02	17,34	71,16	96,99
Carga utilizada (regulada)	69,00	17,32	71,14	96,99
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	69,00	17,32	71,14	96,99
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	4,16	2,73	4,97	83,60
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	4,16	2,73	4,97	83,60


Código de la red modelada: V3T5016

Alimentador: V3T5016
Fuente: V3T5016_481_HEAD_0
Tensión de fuente: 0,22 KVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
resumen total	, , ,	RVUI	NVA	11 (70)
Fuentes (Potencia de equilibrio)	21,25	3,46	21,53	98,70
Generadores	0,00	0,00	0,00	0,00
Producción total	21,25	3,46	21,53	98,70
Carga leída (no regulada)	20,90	3,25	21,16	98,81
Carga utilizada (regulada)	20,90	3,25	21,15	98,81
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	20,90	3,25	21,15	98,81
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,36	0,20	0,41	86,87
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,36	0,20	0,41	86,87

Código de la red modelada: V3T5049

Alimentador: V3T5049
Fuente: V3T5049_488_HEAD
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	9.34	0.01	9.34	100.00
Generadores	0.00	0.00	0.00	0.00
Producción total	9,34	0,00	9.34	100,00
Producción total	9,34	0,01	9,34	100,00
Carga leida (no regulada)	9,17	-0,11	9,17	-99,99
Carga utilizada (regulada)	9,16	-0,11	9,16	-99,99
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	9,16	-0,11	9,16	-99,9
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,18	0,12	0,22	82,98
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,18	0,12	0,22	82,98

Código	de l	la red	d mode	lada.	71T132
Coulgo	ue i	aic	a iiiouc	iaua.	Z1113Z

₹ 21T132

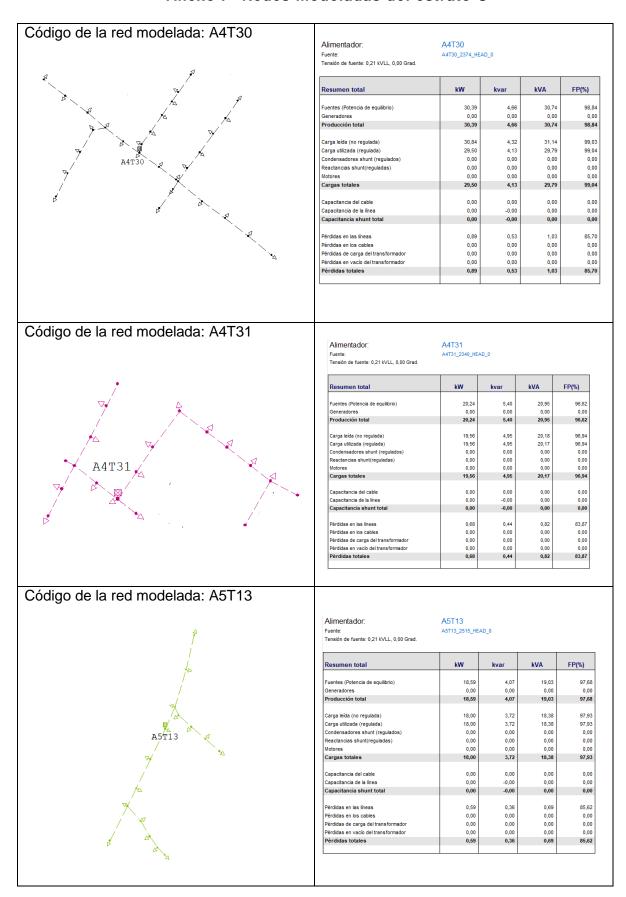
 Alimentador:
 Z1T132

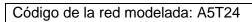
 Fuente:
 Z1T132_4464_HEAD_0

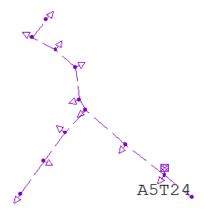
 Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	25,04	4,24	25,40	98,60
Generadores	0,00	0,00	0,00	0,00
Producción total	25,04	4,24	25,40	98,60
Carga leída (no regulada)	24,89	4,15	25,23	98,64
Carga utilizada (regulada)	24,88	4,15	25,23	98,64
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	24,88	4,15	25,23	98,64
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,16	0,09	0,18	86,66
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,16	0,09	0,18	86,66

Código de la red modelada: Z1T133

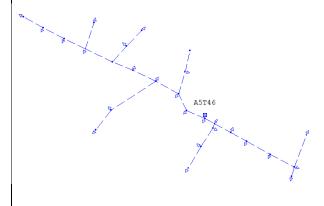

 Alimentador:
 Z1T133


 Fuente:
 Z1T133_4458_HEAD_0

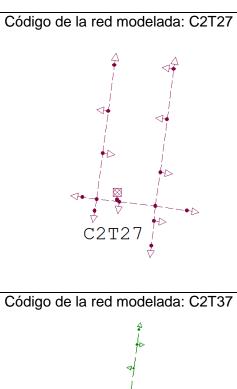

 Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	24.94	4.80	25.39	98.20
Generadores	0,00	0,00	0,00	0,00
Producción total	24,94	4,80	25,39	98,20
Carga leída (no regulada)	24,81	4,71	25,25	98,25
Carga utilizada (regulada)	24,80	4,71	25,25	98,25
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	24,80	4,71	25,25	98,25
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,13	0,10	0,16	80,89
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,13	0,10	0,16	80,89

Anexo F Redes modeladas del estrato C



Alimentador: A5T24
Fuente: A5T24_2437_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	7,95	1,17	8,04	98,94
Generadores	0,00	0,00	0,00	0,00
Producción total	7,95	1,17	8,04	98,94
Carga leída (no regulada)	7,75	1,04	7,82	99,11
Carga utilizada (regulada)	7,75	1,04	7,82	99,1
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	7,75	1,04	7,82	99,1
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,20	0,12	0,23	84,8
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,20	0,12	0,23	84,8

Código de la red modelada: A5T46

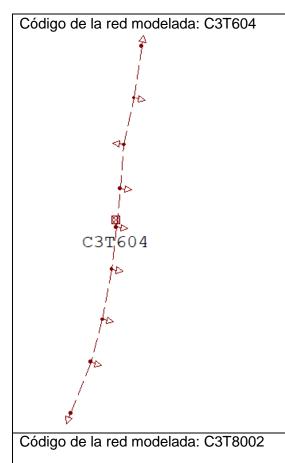
Alimentador: A5T46 Fuente: A5T46_2461_HEAD_0 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22.92	5.03	23.46	97.67
Generadores	0,00	0.00	0,00	0,00
Producción total	22,92	5,03	23,46	97,67
Carga leída (no regulada)	25,30	5,10	25,80	98,03
Carga utilizada (regulada)	21,90	4,43	22,34	98,02
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,90	4,43	22,34	98,02
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	1,02	0,60	1,18	85,97
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,02	0,60	1,18	85,97

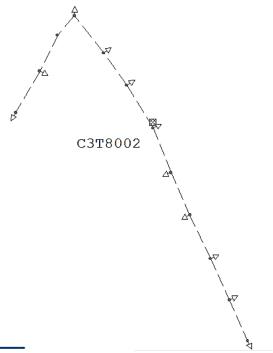
Alimentador:	C2T27
Fuente:	C2T27_1222_HEAD_0
Tensión de fuente: 0.21 W/LL 0.00 Grad	

Resumen total	kW	kvar	kVA	FP(%)
	40.40	. 70	40.77	07.04
Fuentes (Potencia de equilibrio)	19,18	4,78	19,77	97,04
Generadores	0,00	0,00	0,00	0,00
Producción total	19,18	4,78	19,77	97,04
Carga leída (no regulada)	18,95	4,57	19,50	97,21
Carga utilizada (regulada)	18,95	4,57	19,49	97,21
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	18,95	4,57	19,49	97,21
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.24	0,21	0,0000511484	75,29
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,24	0,21	0,31	75,29

C2T37 C2T37_119_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	25,36	5,18	25,88	97,98
Generadores	0,00	0,00	0,00	0,00
Producción total	25,36	5,18	25,88	97,98
Carga leída (no regulada)	34,31	6,51	34,92	98,24
Carga utilizada (regulada)	24,51	4,63	24,94	98,26
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	24,51	4,63	24,94	98,26
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,85	0,55	1,01	83,96
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,85	0,55	1,01	83,90
				Δ

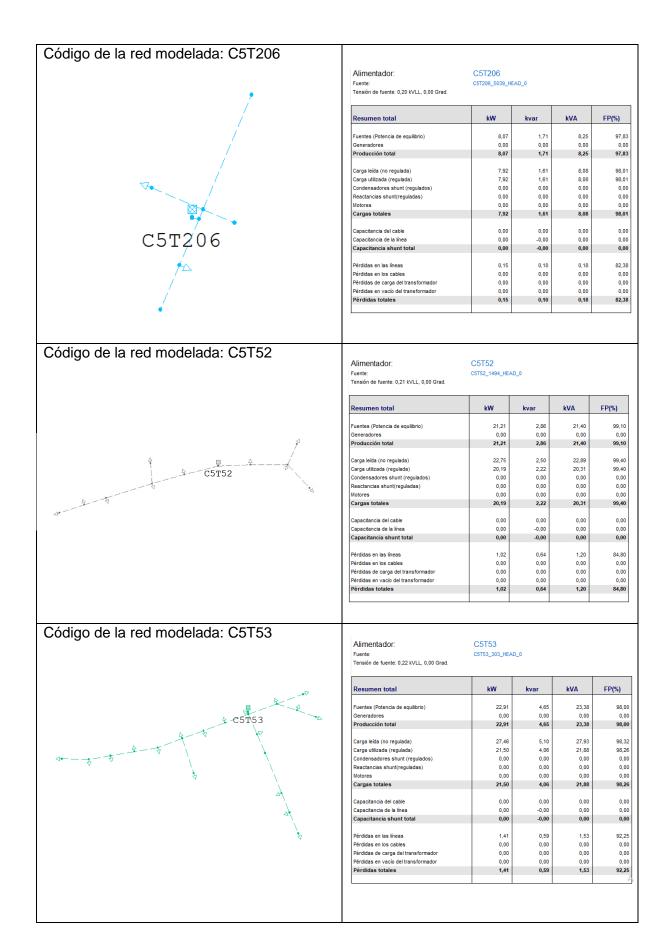
Código de la red modelada: C2T685

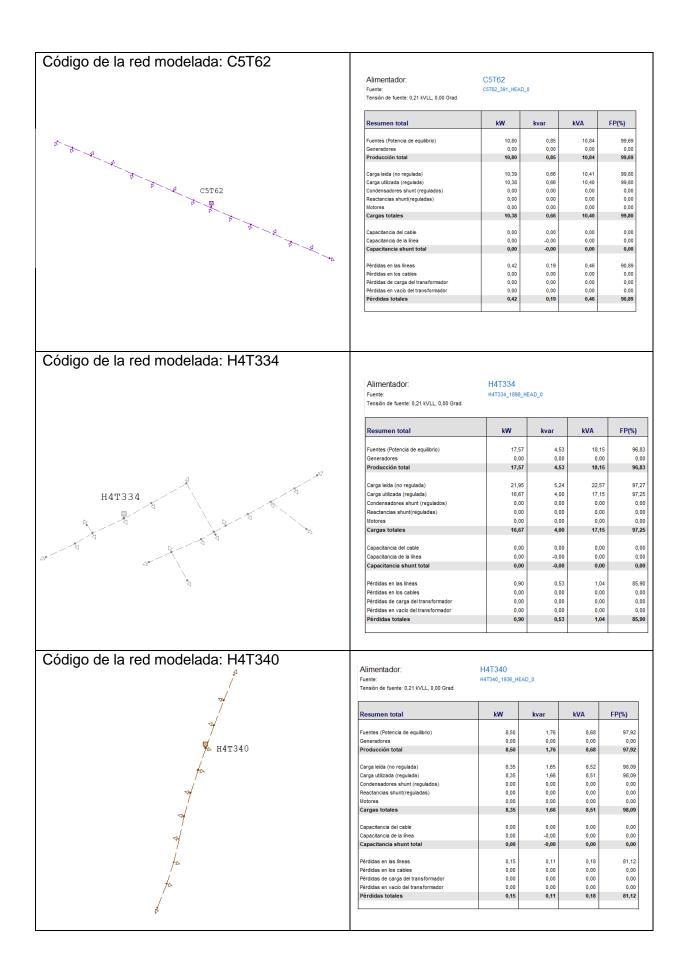

C2T685 C2T685_103_HEAD_0 Alimentador: Fuente:
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

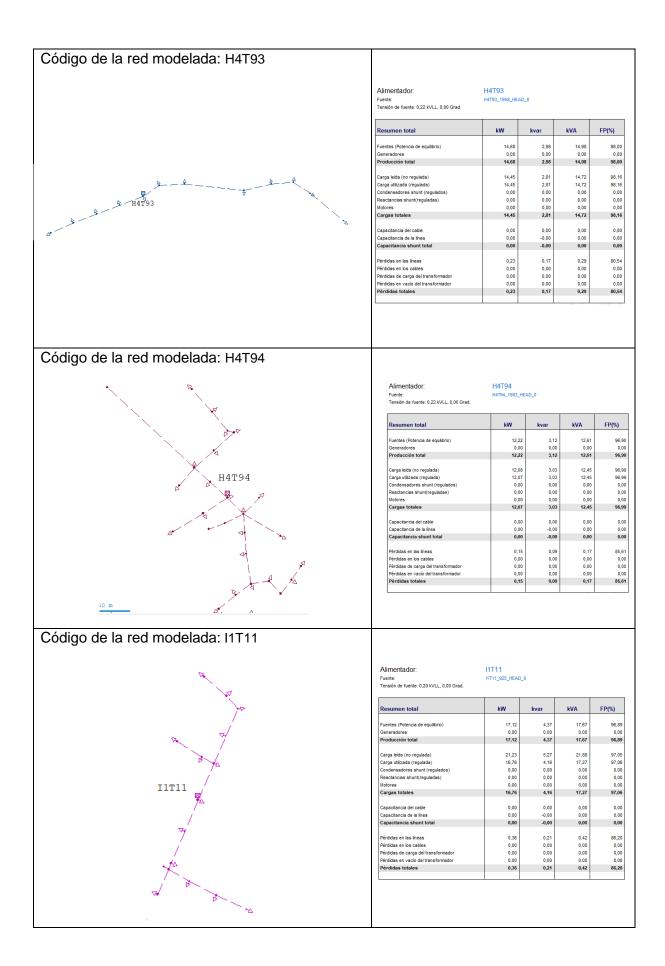
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	20,33	4,38	20,79	97,7
Generadores	0,00	0,00	0,00	0,0
Producción total	20,33	4,38	20,79	97,70
Carga leida (no regulada)	20,10	4,19	20,53	97,9
Carga utilizada (regulada)	20,09	4,19	20,53	97,9
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	20,09	4,19	20,53	97,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,23	0,19	0,30	76,9
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,23	0,19	0,30	76.9

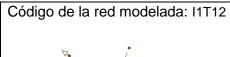
Alimentador: C3T604
Fuente: C3T604_241_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

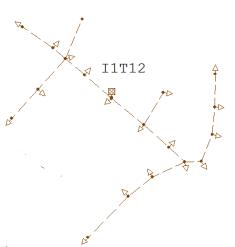
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	15,09	2,67	15,33	98,48
Generadores	0,00	0,00	0,00	0,00
Producción total	15,09	2,67	15,33	98,4
Carga leida (no regulada)	19,18	3,20	19,45	98,6
Carga utilizada (regulada)	14,78	2,47	14,98	98,6
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	14,78	2,47	14,98	98,6
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,32	0,20	0,37	85,2
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,32	0,20	0,37	85,2

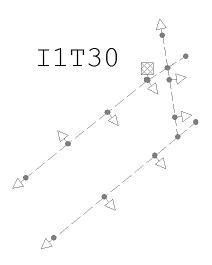



 Alimentador:
 C3T8002


 Fuente:
 C3T8002_1270_HEAD_0

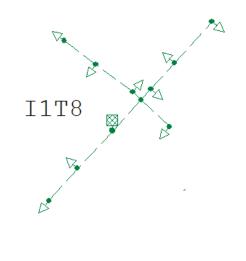

 Tensión de fuente:
 0,20 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,08	2,81	17,31	98,68
Generadores	0,00	0,00	0,00	0,00
Producción total	17,08	2,81	17,31	98,68
Carga leída (no regulada)	22,07	3,33	22,32	98,88
Carga utilizada (regulada)	16,60	2,50	16,79	98,88
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,60	2,50	16,79	98,88
Capacitancia del cable	0,00	0,00	0,00	0.00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.47	0.30	0.56	84.32
Pérdidas en los cables	0.00	0.00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,47	0,30	0,56	84,32

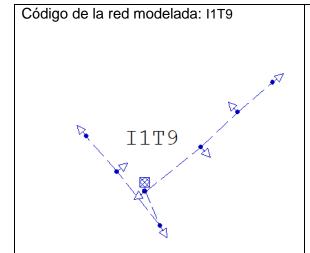


Alimentador:	I1T12
Fuente:	I1T12_792_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.	

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	16,75	3,91	17,20	97,38
Generadores	0,00	0,00	0,00	0,00
Producción total	16,75	3,91	17,20	97,38
Carga leída (no regulada)	17,39	3,92	17,82	97,55
Carga utilizada (regulada)	16,37	3,69	16,78	97,55
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,37	3,69	16,78	97,55
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,38	0,22	0,44	86,48
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,38	0,22	0,44	86,48

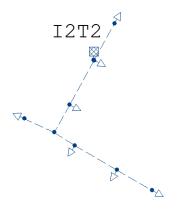

Código de la red modelada: I1T30

Alimentador: 11T30
Fuente: 11T30_957_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

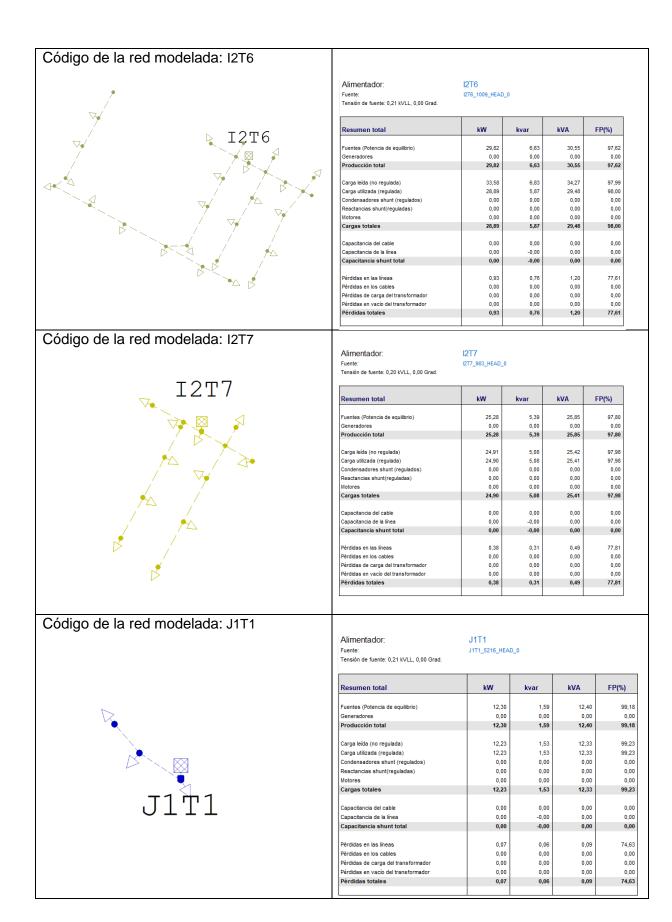

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	10,91	2,07	11,11	98,26
Generadores	0,00	0,00	0,00	0,00
Producción total	10,91	2,07	11,11	98,26
Carga leída (no regulada)	10,83	1,98	11,01	98,37
Carga utilizada (regulada)	10,83	1,98	11,01	98,37
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	10,83	1,98	11,01	98,3
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,09	0,09	0,12	70,20
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacio del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,09	0,09	0,12	70,2

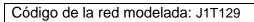
Código de la red modelada: I1T8

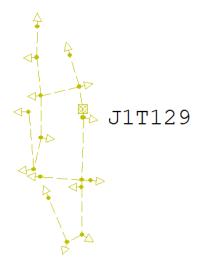
Alimentador: 11T8
Fuente: 11T8_831_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	10,92	2,03	11,11	98,31
Generadores	0,00	0,00	0,00	0,0
Producción total	10,92	2,03	11,11	98,3
Carga leída (no regulada)	10,78	1,94	10,95	98,4
Carga utilizada (regulada)	10,78	1,94	10,95	98,4
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	10,78	1,94	10,95	98,4
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,15	0,10	0,18	83,5
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,15	0,10	0,18	83,5

Alimentador: I1T9
Fuente: I1T9_855_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	10,96	1,73	11,10	98,77
Generadores	0,00	0,00	0,00	0,00
Producción total	10,96	1,73	11,10	98,77
Carga leída (no regulada)	10,78	1,62	10,90	98,89
Carga utilizada (regulada)	10,78	1,62	10,90	98,89
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	10,78	1,62	10,90	98,8
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,18	0,11	0,21	85,6
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,18	0,11	0,21	85,6


Código de la red modelada: I2T2



Alimentador: 12T2
Fuente: 12T2_1081_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	21,70	5,67	22,43	96,75
Generadores	0,00	0,00	0,00	0,00
Producción total	21,70	5,67	22,43	96,75
Carga leida (no regulada)	25,73	6,53	26,55	96,93
Carga utilizada (regulada)	21,21	5,38	21,89	96,93
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,0
Cargas totales	21,21	5,38	21,89	96,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,49	0,29	0,57	86,1
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,49	0,29	0,57	86,1



Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

J1T129 J1T129_5089_HEAD_0

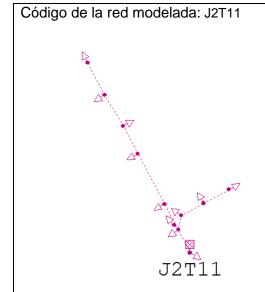
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	24,27	3,83	24,58	98,78
Generadores	0,00	0,00	0,00	0,00
Producción total	24,27	3,83	24,58	98,78
Carga leída (no regulada)	23,74	3,52	24,00	98,92
Carga utilizada (regulada)	23,74	3,52	24,00	98,92
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	23,74	3,52	24,00	98,92
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,54	0,31	0,62	86,43
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,54	0,31	0,62	86,43

Código de la red modelada: J1T135

Alimentador: J1T135
Fuente: J1T135_5135_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Resumen total	K**	KVUI	NVA	11 (70)
Fuentes (Potencia de equilibrio)	14,52	2,99	14,83	97,95
Generadores	0,00	0,00	0,00	0,00
Producción total	14,52	2,99	14,83	97,95
Carga leída (no regulada)	14,04	2,65	14,29	98,26
Carga utilizada (regulada)	14,04	2,65	14,28	98,26
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	14,04	2,65	14,28	98,26
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,49	0,34	0,59	82,24
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,49	0,34	0,59	82,24

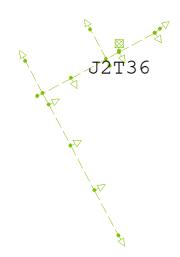
Código de la red modelada: J1T390



 Alimentador:
 J1T390

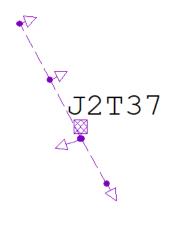
 Fuente:
 J1T390_3266_HEAD_0

 Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	31,11	9,04	32,39	96,03
Generadores	0,00	0,00	0,00	0,00
Producción total	31,11	9,04	32,39	96,03
Carga leída (no regulada)	30,73	8,67	31,93	96,24
Carga utilizada (regulada)	30,72	8,67	31,92	96,24
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	30,72	8,67	31,92	96,24
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,39	0,37	0,53	72,27
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,39	0,37	0,53	72,27

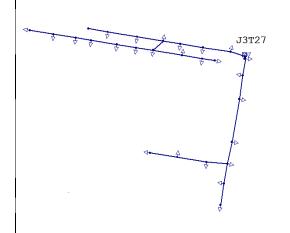
Alimentador: J2T11
Fuente: J2T11_5194_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	9,86	1,29	9,94	99,15
Generadores	0,00	0,00	0,00	0,00
Producción total	9,86	1,29	9,94	99,1
Carga leída (no regulada)	9,73	1,17	9,80	99,29
Carga utilizada (regulada)	9,73	1,17	9,80	99,2
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	9,73	1,17	9,80	99,2
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,13	0,13	0,18	70,2
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,13	0,13	0,18	70,2


Código de la red modelada: J2T36

Alimentador: J2T36
Fuente: J2T36_5162_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

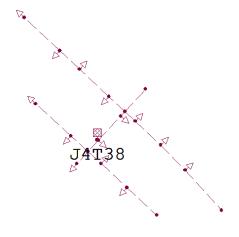
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	33,12	7,25	33,90	97,69
Generadores	0,00	0,00	0,00	0,00
Producción total	33,12	7,25	33,90	97,69
Carga leída (no regulada)	32,72	6,90	33,44	97,85
Carga utilizada (regulada)	32,72	6,90	33,44	97,85
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	32,72	6,90	33,44	97,85
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,39	0,35	0,53	74,44
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,39	0,35	0,53	74,44


Código de la red modelada: J2T37

Alimentador: J2T37
Fuente: J2T37_5186_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	28.25	6.03	28.89	97.79
Generadores	0.00	0.00	0.00	0.00
Producción total	28.25	6.03	28.89	97.79
Producción total	20,23	0,03	20,05	31,13
Carga leida (no regulada)	27,92	5,70	28,49	97,98
Carga utilizada (regulada)	27,91	5,70	28,49	97,9
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	27,91	5,70	28,49	97,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,34	0,34	0,48	70,6
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,34	0,34	0,48	70,6

Código de la red modelada: J3T27

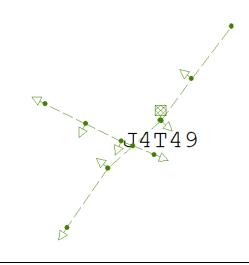

Alimentador:

Fuente: Tensión de fuente: 0,21 kVLL, -120,00 Grad.

J3T27 J3T27_5222_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	52,26	13,04	53,86	97,03
Generadores	0,00	0,00	0,00	0,00
Producción total	52,26	13,04	53,86	97,03
Carga leída (no regulada)	50,33	11,46	51,62	97,50
Carga utilizada (regulada)	50,33	11,45	51,61	97,51
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	50,33	11,45	51,61	97,5
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	1,94	1,59	2,50	77,32
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,94	1,59	2,50	77,3

Código de la red modelada: J4T38

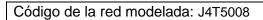


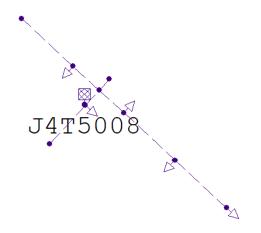
Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

J4T38_3756_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	20,50	6,07	21,38	95,89
Generadores	0,00	0,00	0,00	0,00
Producción total	20,50	6,07	21,38	95,8
Carga leída (no regulada)	19,93	5,72	20,73	96,11
Carga utilizada (regulada)	19,93	5,72	20,73	96,1
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	19,93	5,72	20,73	96,1
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,57	0,34	0,67	85,7
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,57	0,34	0,67	85,7

Código de la red modelada: J4T49

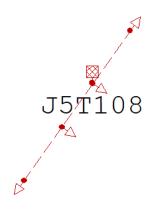



Alimentador:

Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

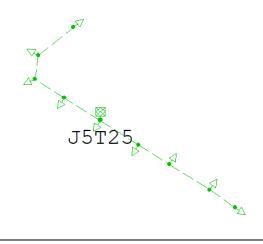
J4T49

Resumen total	kW	kvar	kVA	FP(%)
ntodamon total		nvui	NVA	11 (10)
Fuentes (Potencia de equilibrio)	22,27	6,74	23,27	95,72
Generadores	0,00	0,00	0,00	0,00
Producción total	22,27	6,74	23,27	95,72
Carga leída (no regulada)	22,15	6,63	23,12	95,80
Carga utilizada (regulada)	22,15	6,63	23,12	95,80
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	22,15	6,63	23,12	95,80
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,12	0,11	0,16	73,47
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,12	0,11	0,16	73,47

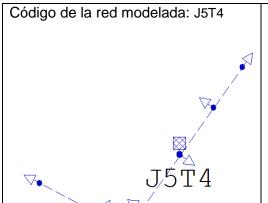


Alimentador: J4T5008 Fuente: Tensión de fuente: 0,22 kVLL, 0,00 Grad. J4T5008_3793_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	23,22	5,47	23,86	97.33
Generadores	0,00	0.00	0.00	0.00
Producción total	23,22	5,47	23,86	97,33
Carga leída (no regulada)	22,68	5,06	23,24	97,60
Carga utilizada (regulada)	22,68	5,06	23,24	97,60
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	22,68	5,06	23,24	97,60
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,54	0,41	0,68	79,76
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,54	0,41	0,68	79,76
	1	I	1	I


Código de la red modelada: J5T108

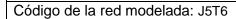
J5T108 Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. J5T108_3921_HEAD_0

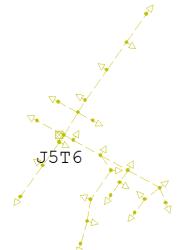

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	19,89	3,60	20,22	98,40
Generadores	0,00	0,00	0,00	0,00
Producción total	19,89	3,60	20,22	98,40
Carga leída (no regulada)	19,75	3,45	20,05	98,50
Carga utilizada (regulada)	19,75	3,45	20,05	98,50
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	19,75	3,45	20,05	98,50
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,15	0,15	0,21	70,70
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,15	0,15	0,21	70,70

Código de la red modelada: J5T25

Alimentador: J5T25 J5T25_4046_HEAD_0 Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	21,07	4,36	21,51	97,92
Generadores	0,00	0,00	0,00	0,00
Producción total	21,07	4,36	21,51	97,92
Carga leída (no regulada)	20,84	4,16	21,25	98,07
Carga utilizada (regulada)	20,83	4,15	21,24	98,0
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	20,83	4,15	21,24	98,0
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,23	0,21	0,31	75,1
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,23	0,21	0,31	75,1

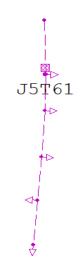



Alimentador:

Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

J5T4 J5T4_3906_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	21,67	4,12	22,06	98,24
Generadores	0,00	0,00	0,00	0,00
Producción total	21,67	4,12	22,06	98,24
Carga leída (no regulada)	21,34	3,88	21,69	98,38
Carga utilizada (regulada)	21,33	3,88	21,68	98,38
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,33	3,88	21,68	98,38
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.35	0.23	0.42	82.99
Pérdidas en los cables	0.00	0.00	0.00	0.00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,35	0,23	0,42	82,99


Alimentador:

Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

J5T6 J5T6_3857_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	33.22	10.08	34.72	95.69
Generadores	0,00	0,00	0,00	0,00
Producción total	33,22	10,08	34,72	95,69
Carga leída (no regulada)	32,57	9,53	33,93	95,98
Carga utilizada (regulada)	32,55	9,53	33,91	95,97
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	32,55	9,53	33,91	95,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,67	0,55	0,87	77,3
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,67	0,55	0,87	77,3

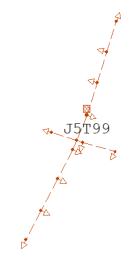
Código de la red modelada: J5T61


Alimentador:

Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

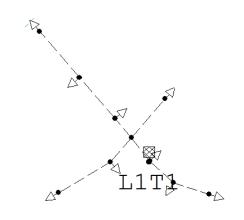
J5T61 J5T61_230_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	33,55	6,26	34,13	98,30
Generadores	0,00	0,00	0,00	0,00
Producción total	33,55	6,26	34,13	98,30
Carga leída (no regulada)	35,72	6,19	36,25	98,53
Carga utilizada (regulada)	32,44	5,62	32,93	98,5
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	32,44	5,62	32,93	98,5
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	1,10	0,65	1,28	86,3
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,10	0,65	1,28	86,3


Código de la red modelada: J5T98

Alimentador: J5T98
Fuente: J5T98_3985_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

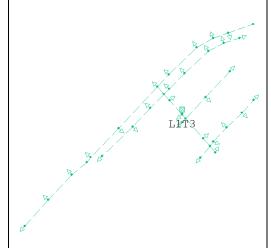
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	26,08	5,66	26,69	97,72
Generadores	0,00	0,00	0,00	0,00
Producción total	26,08	5,66	26,69	97,72
Carga leída (no regulada)	28,27	5,88	28,87	97,90
Carga utilizada (regulada)	25,38	5,28	25,93	97,9
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	25,38	5,28	25,93	97,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,70	0,38	0,79	87,9
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,70	0,38	0,79	87,9


Código de la red modelada: J5T99

Alimentador: J5T99
Fuente: J5T99_4023_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Frants (Potonia de acuillesia)	22.44	5.22	22.50	98,70
Fuentes (Potencia de equilibrio)	32,14	5,23	32,56	
Generadores	0,00	0,00	0,00	0,00
Producción total	32,14	5,23	32,56	98,70
Carga leída (no regulada)	31,63	4,80	32,00	98,87
Carga utilizada (regulada)	31,63	4,80	31,99	98,8
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	31,63	4,80	31,99	98,8
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,50	0,44	0,67	75,5
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,50	0,44	0,67	75,5

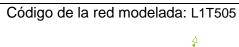
Código de la red modelada: L1T1


Alimentador:

L1T1 L1T1_4242_HEAD_0

Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

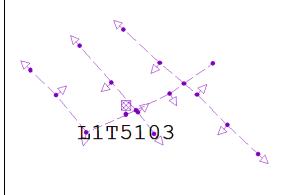
Resumen total	kW	kvar	kVA	FP(%)
noumen total		R. C.		(///
Fuentes (Potencia de equilibrio)	20,75	4,90	21,32	97,32
Generadores	0,00	0,00	0,00	0,00
Producción total	20,75	4,90	21,32	97,32
Carga leída (no regulada)	24,23	5,54	24,85	97,48
Carga utilizada (regulada)	20,33	4,65	20,86	97,48
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	20,33	4,65	20,86	97,48
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,42	0,25	0,49	85,98
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,42	0,25	0,49	85,98


Código de la red modelada: L1T3

Alimentador:

Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. L1T3 L1T3_4174_HEAD_0

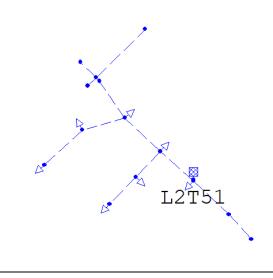
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	18,27	5,51	19,08	95,75
Generadores	0,00	0,00	0,00	0,00
Producción total	18,27	5,51	19,08	95,75
Carga leída (no regulada)	18,34	5,44	19,13	95,87
Carga utilizada (regulada)	17,95	5,33	18,72	95,86
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	17,95	5,33	18,72	95,86
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,32	0,18	0,37	87,65
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,32	0,18	0,37	87,65



Alimentador:	L1T505
Fuente:	L1T505_2046_HEAD_0
= ''	

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	26.96	4.50	27.34	98.63
Generadores	0.00	0,00	0.00	0.00
Producción total	26,96	4,50	27,34	98,63
Carga leída (no regulada)	33,24	5,03	33,62	98,8
Carga utilizada (regulada)	25,91	3,92	26,21	98,8
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	25,91	3,92	26,21	98,8
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	1,05	0,58	1,20	87,4
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,05	0,58	1,20	87,4

Código de la red modelada: L1T5103


Alimentador: L1T5103

Fuente: L1T5103_4280_HEAD_0

Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,16	1.31	17.21	99.71
Generadores	0.00	0.00	0.00	0,00
Producción total			-,	
Produccion total	17,16	1,31	17,21	99,71
Carga leída (no regulada)	16,78	1,08	16,82	99,79
Carga utilizada (regulada)	16,78	1,08	16,82	99,79
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	16,78	1,08	16,82	99,7
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0.38	0.23	0.44	86.0
Pérdidas en los cables	0,00	0.00	0.00	0,0
Pérdidas de carga del transformador	0.00	0.00	0.00	0.0
Pérdidas en vacío del transformador	0,00	0.00	0.00	0,0
Pérdidas totales	0,38	0,23	0.44	86,0

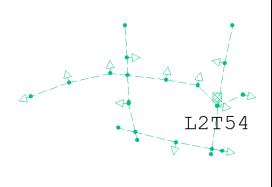
Código de la red modelada: L2T51

Alimentador: L2T51
Fuente: L2T51_4312_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13,59	1,08	13,63	99,69
Generadores	0,00	0,00	0,00	0,00
Producción total	13,59	1,08	13,63	99,69
Carga leída (no regulada)	13,03	0,67	13,05	99,87
Carga utilizada (regulada)	13,03	0,67	13,05	99,87
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	13,03	0,67	13,05	99,87
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,56	0,41	0,69	80,54
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,56	0,41	0,69	80,54

Código de la red modelada: L2T53

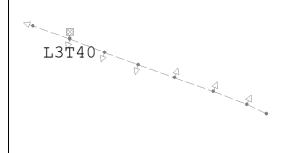
L2T53 Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. L2T53_4385_HEAD_0


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	21,55	2,47	21,69	99,35
Generadores	0,00	0,00	0,00	0,00
Producción total	21,55	2,47	21,69	99,35
Carga leída (no regulada)	27,12	2,49	27,24	99,58
Carga utilizada (regulada)	20,57	1,90	20,66	99,58
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	20,57	1,90	20,66	99,58
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,99	0,57	1,14	86,58
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0.99	0.57	1.14	86.5

Código de la red modelada: L2T54

Alimentador:

L2T54 L2T54_4422_HEAD_0

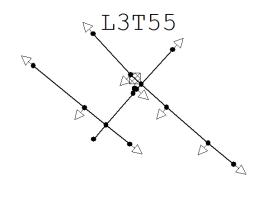

Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	14,93	0,71	14,95	99,89
Generadores	0,00	0,00	0,00	0,00
Producción total	14,93	0,71	14,95	99,89
Carga leída (no regulada)	14,81	0,64	14,82	99,91
Carga utilizada (regulada)	14,81	0,64	14,82	99,91
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,0
Cargas totales	14,81	0,64	14,82	99,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,12	0,07	0,14	87,19
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,12	0,07	0,14	87,19

Código de la red modelada: L3T40

Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. L3T40 L3T40_4334_HEAD_0

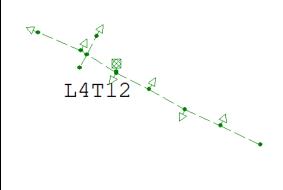
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	20,50	-0,28	20,51	-99,99
Generadores	0,00	0,00	0,00	0,00
Producción total	20,50	-0,28	20,51	-99,99
Carga leída (no regulada)	19.77	-0.76	19.79	-99.93
Carga utilizada (regulada)	19,77	-0,76	19,78	-99,93
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	19,77	-0,76	19,78	-99,93
Capacitancia del cable	0.00	0.00	0.00	0.00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.74	0.48	0.88	83.89
Pérdidas en los cables	0,00	0.00	0.00	0,00
Pérdidas de carga del transformador	0.00	0.00	0.00	0.00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
	0.74	0,48	0.88	83,89


Código de la red modelada: L3T5025

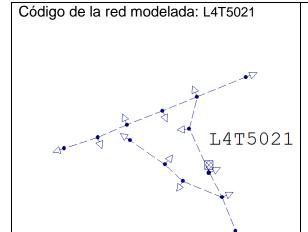
L3T5025

L3T5025 L3T5025_4349_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22,37	4,87	22,89	97,71
Generadores	0,00	0,00	0,00	0,00
Producción total	22,37	4,87	22,89	97,71
Carga leída (no regulada)	27,99	5,47	28,52	98,15
Carga utilizada (regulada)	21,32	4,18	21,72	98,14
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,32	4,18	21,72	98,14
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	1,05	0,69	1,26	83,63
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	1,05	0,69	1,26	83,63

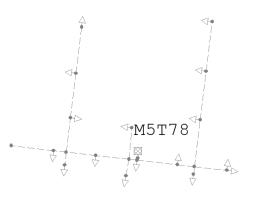

Código de la red modelada: L3T55

L3T55 L3T55_4361_HEAD_0 Fuente: Tensión de fuente: 0,23 kVLL, 120,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	25,79	2,54	25,92	99,52
Generadores	0,00	0,00	0,00	0,00
Producción total	25,79	2,54	25,92	99,52
Carga leída (no regulada)	25,40	2,31	25,50	99,59
Carga utilizada (regulada)	25,38	2,31	25,49	99,59
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	25,38	2,31	25,49	99,59
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,41	0,24	0,47	86,41
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,41	0,24	0,47	86,41

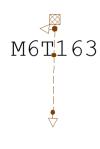
Código de la red modelada: L4T12

L4T12 L4T12_4579_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

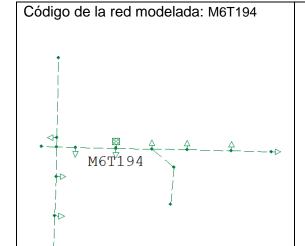

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	16.47	1.61	16.55	99.53
Generadores	0.00	0.00	0.00	0,00
Producción total	16,47	1,61	16,55	99,53
Carga leída (no regulada)	16,19	1,44	16,25	99,61
Carga utilizada (regulada)	16,19	1,44	16,25	99,61
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,19	1,44	16,25	99,61
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,28	0,17	0,33	85,70
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,28	0,17	0,33	85,70

Alimentador: L4T5021 Fuente: L4T5021_4553_HEAD_0 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	15,36	0,94	15,39	99,81
Generadores	0,00	0,00	0,00	0,00
Producción total	15,36	0,94	15,39	99,81
Carga leída (no regulada)	15,23	0,85	15,25	99,85
Carga utilizada (regulada)	15,23	0,85	15,25	99,85
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	15,23	0,85	15,25	99,85
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,14	0,09	0,17	82,56
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,14	0,09	0,17	82,56

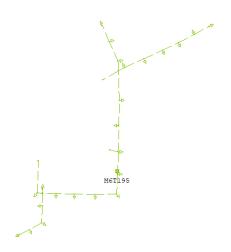

Código de la red modelada: M5T78

Alimentador: M5T78
Fuente: M5T78_166_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	20,69	3,60	21,01	98,52
Generadores	0,00	0,00	0,00	0,00
Producción total	20,69	3,60	21,01	98,52
Carga leída (no regulada)	22,00	3,62	22,29	98,67
Carga utilizada (regulada)	20,23	3,33	20,50	98,67
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	20,23	3,33	20,50	98,67
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,47	0,27	0,54	86,40
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,47	0,27	0,54	86,40

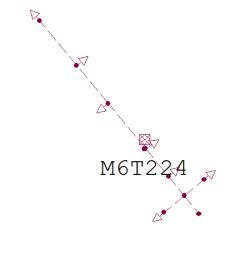
Código de la red modelada: M6T163

Alimentador: M6T163
Fuente: M6T163_3955_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	8,27	0.76	8.31	99,58
Generadores	0,00	0,00	0,00	0,00
Producción total	8,27	0,76	8,31	99,58
Carga leída (no regulada)	8,20	0,71	8,23	99,62
Carga utilizada (regulada)	8,20	0,71	8,23	99,62
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	8,20	0,71	8,23	99,62
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,08	0,05	0,09	85,49
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,08	0,05	0,09	85,49

Alimentador: M6T194
Fuente: M6T194_4064_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,34	1,28	17,38	99,73
Generadores	0,00	0,00	0,00	0,00
Producción total	17,34	1,28	17,38	99,73
Carga leída (no regulada)	17,09	0,98	17,12	99,84
Carga utilizada (regulada)	17,09	0,98	17,12	99,84
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	17,09	0,98	17,12	99,84
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,25	0,30	0,39	63,49
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,25	0,30	0,39	63,49


Código de la red modelada: M6T195

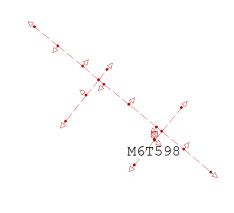
Alimentador: M6T195
Fuente: M6T195_4089_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	15,10	-3,53	15,51	-97,37
Generadores	0,00	0,00	0,00	0,00
Producción total	15,10	-3,53	15,51	-97,37
Carga leída (no regulada)	14,58	-3,83	15,08	-96,72
Carga utilizada (regulada)	14,58	-3,83	15,08	-96,71
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	14,58	-3,83	15,08	-96,71
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,52	0,30	0,60	86,41
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,52	0,30	0,60	86,41

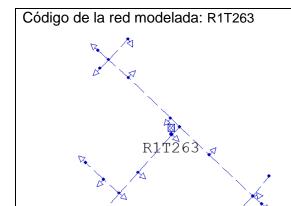
Código de la red modelada: M6T224

Alimentador: M6T224
Fuente: M6T224_5385_HEAD_
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

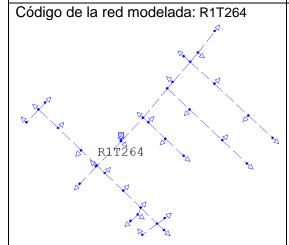
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	16,53	3,99	17,00	97,21
Generadores	0,00	0,00	0,00	0,00
Producción total	16,53	3,99	17,00	97,21
Carga leída (no regulada)	16,28	3,82	16,72	97,35
Carga utilizada (regulada)	16,27	3,82	16,71	97,35
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,27	3,82	16,71	97,35
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,26	0,17	0,31	83,66
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,26	0,17	0,31	83,66


	: M6T57
--	---------

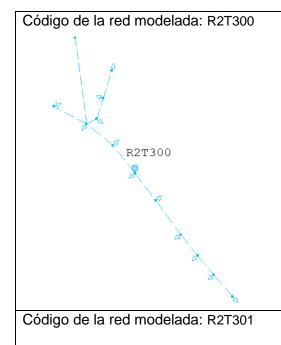
Alimentador:	M6T57
Fuente:	M6T57_3961_HEAD_
Tensión de fuente: 0,21 kVLL, 0,00 Grad.	


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	9,04	1,12	9,11	99,25
Generadores	0,00	0,00	0,00	0,00
Producción total	9,04	1,12	9,11	99,25
Carga leída (no regulada)	8,85	0,98	8,90	99,39
Carga utilizada (regulada)	8,84	0,98	8,90	99,39
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	8,84	0,98	8,90	99,39
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,20	0,14	0,24	82,82
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,20	0,14	0,24	82,82

Código de la red modelada: M6T598


Alimentador: M6T598
Fuente: M6T598_3726_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13,35	3,43	13,79	96,85
Generadores	0,00	0,00	0,00	0,00
Producción total	13,35	3,43	13,79	96,85
Carga leída (no regulada)	14,04	3,48	14,47	97,07
Carga utilizada (regulada)	13,07	3,24	13,47	97,07
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	13,07	3,24	13,47	97,07
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,28	0,20	0,34	82,34
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,28	0,20	0,34	82,34


Alimentador: R1T263
Fuente: R1T263_2547_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

				ED.001
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	18,52	3,95	18,93	97,80
Generadores	0,00	0,00	0,00	0,00
Producción total	18,52	3,95	18,93	97,80
Carga leída (no regulada)	18,25	3,78	18,64	97,92
Carga utilizada (regulada)	18,24	3,78	18,63	97,92
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	18,24	3,78	18,63	97,92
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,28	0,16	0,32	85,95
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,28	0,16	0,32	85,95

Alimentador: R1T264
Fuente: R1T264_2580_HEAD_0
Tensión de fuente: 0,20 KVLL, 0,00 Grad.

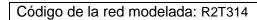
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	31,38	6,32	32,01	98,0
Generadores	0,00	0,00	0,00	0,0
Producción total	31,38	6,32	32,01	98,0
Carga leída (no regulada)	48,39	8,71	49,17	98,4
Carga utilizada (regulada)	29,63	5,26	30,10	98,4
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	29,63	5,26	30,10	98,4
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	1,75	1,06	2,05	85,5
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	1,75	1,06	2,05	85,5

Alimentador:	R2T300
Fuente:	R2T300_2922_HEAD_0

Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22,59	3,83	22,91	98,59
Generadores	0,00	0,00	0,00	0,00
Producción total	22,59	3,83	22,91	98,59
Carga leida (no regulada)	21,94	3,44	22,21	98,79
Carga utilizada (regulada)	21,94	3,44	22,21	98,79
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,94	3,44	22,21	98,79
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,65	0,39	0,76	85,96
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,65	0,39	0,76	85,96

R2T301 R2T301_2878_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

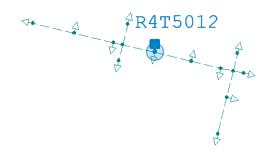


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	15.14	1.44	15.21	99.55
Generadores	0,00	0,00	0,00	0,00
Producción total	15,14	1,44	15,21	99,55
Carga leida (no regulada)	16,36	1,37	16,41	99,65
Carga utilizada (regulada)	14,83	1,25	14,89	99,65
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	14,83	1,25	14,89	99,65
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,31	0,19	0,36	84,94
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,31	0,19	0,36	84,94

Código de la red modelada: R2T311

Alimentador:	R2T311
Fuente:	R2T311_2859_HEAD_
Tensión de fuente: 0,22 kVLL, 0,00 Grad.	

Resumen total	kW	kvar	kVA	FP(%)
Franks (Balancia da con Baia)	16.12	0.45	16.13	-99.96
Fuentes (Potencia de equilibrio)		-0,45		
Generadores	0,00	0,00	0,00	0,00
Producción total	16,12	-0,45	16,13	-99,96
Carga leida (no regulada)	15,61	-0,99	15,64	-99,80
Carga utilizada (regulada)	15,32	-0,98	15,35	-99,80
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	15,32	-0,98	15,35	-99,80
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,80	0,53	0,96	83,65
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,80	0,53	0,96	83,65



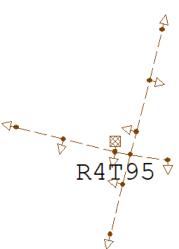
Alimentador: R2T314
Fuente: R2T314_2803_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17.89	-0,24	17.89	-99.99
Generadores	0.00	0.00	0.00	0.00
Producción total	17,89	-0,24	17,89	-99,99
Carga leída (no regulada)	17,86	-0,75	17,88	-99,91
Carga utilizada (regulada)	17,14	-0,75	17,16	-99,90
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	17,14	-0,75	17,16	-99,90
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,75	0,52	0,91	82,31
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,75	0,52	0,91	82,31

Código de la red modelada: R4T5012

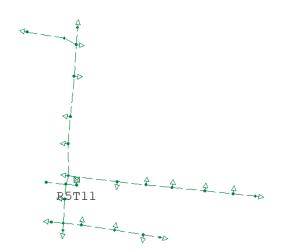
Alimentador: R4T5012
Fuente: R4T5012_2972_HEAD_0
Tensión de fuente: 0,21 KVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
	0.107		05.40	
Fuentes (Potencia de equilibrio)	24,87	3,62	25,13	98,95
Generadores	0,00	0,00	0,00	0,00
Producción total	24,87	3,62	25,13	98,95
Carga leida (no regulada)	24,61	3,41	24,85	99,05
Carga utilizada (regulada)	24,61	3,41	24,84	99,05
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	24,61	3,41	24,84	99,05
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,26	0,21	0,34	77,81
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,26	0,21	0,34	77,81


Código de la red modelada: R4T88

Alimentador: R4T88
Fuente: R4T88_2947_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	23,82	2,54	23,96	99,44
Generadores	0,00	0,00	0,00	0,00
Producción total	23,82	2,54	23,96	99,44
Carga leída (no regulada)	23,27	2,24	23,38	99,54
Carga utilizada (regulada)	23,27	2,24	23,38	99,54
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	23,27	2,24	23,38	99,54
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,55	0,30	0,62	87,9
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,55	0,30	0.62	87,9


Código de la red modelada: R4T95

Alimentador: R4T95
Fuente: R4T95_2998_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

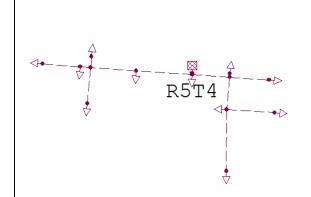
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22,54	3,87	22,87	98,56
Generadores	0,00	0,00	0,00	0,00
Producción total	22,54	3,87	22,87	98,56
Carga leída (no regulada)	22,14	3,58	22,43	98,72
Carga utilizada (regulada)	22,14	3,58	22,43	98,72
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	22,14	3,58	22,43	98,72
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,40	0,29	0,49	80,7
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,40	0,29	0,49	80,7

Código de la red modelada: R5T11

 Alimentador:
 R5T11

 Fuente:
 R5T11_3049_HEAD_0

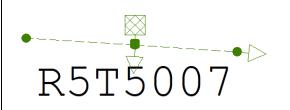
 Tensión de fuente: 0,20 KVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
	24.00	0.70	20.00	
Fuentes (Potencia de equilibrio)	31,92	2,73	32,03	99,64
Generadores	0,00	0,00	0,00	0,00
Producción total	31,92	2,73	32,03	99,64
Carga leída (no regulada)	46,54	2,58	46,61	99,85
Carga utilizada (regulada)	30,11	1,69	30,15	99,84
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	30,11	1,69	30,15	99,84
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	1,81	1,05	2,09	86,56
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	1,81	1,05	2,09	86,56

Código de la red modelada: R5T38

Alimentador: R5T38
Fuente: R5T38_4596_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

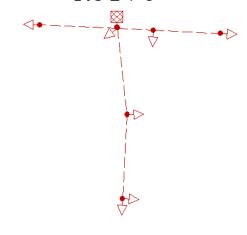
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	27,91	12,34	30,52	91,46
Generadores	0,00	0,00	0,00	0,00
Producción total	27,91	12,34	30,52	91,46
Carga leída (no regulada)	27,80	12,16	30,35	91,62
Carga utilizada (regulada)	26,97	11,80	29,44	91,61
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	26,97	11,80	29,44	91,61
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,94	0,54	1,09	86,79
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,94	0,54	1,09	86,79


Código de la red modelada: R5T4

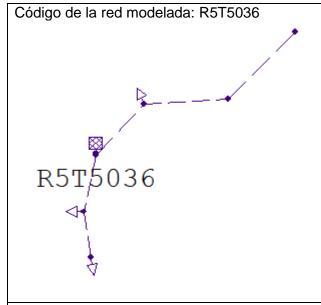
Alimentador: R5T4
Fuente: R5T4_3020_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	20.61	5.06	21.22	97.11
Generadores	0.00	0.00	0.00	0,00
Producción total	20,61	5,06	21,22	97,11
Carga leída (no regulada)	20,26	4,78	20,82	97,32
Carga utilizada (regulada)	20,26	4,78	20,82	97,32
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	20,26	4,78	20,82	97,32
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,35	0,28	0,45	77,96
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,35	0,28	0,45	77,96

Código de la red modelada: R5T5007

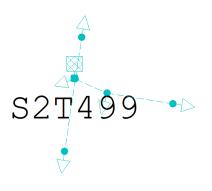

Alimentador: R5T5007
Fuente: R5T5007_RST5007_3044_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	9,49	0,62	9,51	99,79
Generadores	0,00	0,00	0,00	0,00
Producción total	9,49	0,62	9,51	99,79
Carga leida (no regulada)	9,47	0,61	9,49	99,79
Carga utilizada (regulada)	9,47	0,61	9,49	99,79
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	9,47	0,61	9,49	99,79
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,02	0,01	0,02	86,90
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,02	0,01	0,02	86,90


Código de la red modelada: R5T76

R5T76

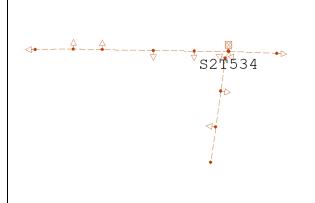
Alimentador: R5T76
Fuente: RST76_3105_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)	
Fuentes (Potencia de equilibrio)	16.69	3.74	17.11	97.58	
Generadores	0,00	0,00	0,00	0,00	
Producción total	16,69	3,74	17,11	97,58	
Carga leída (no regulada)	16,48	3,61	16,87	97,69	
Carga utilizada (regulada)	16,47	3,61	16,86	97,69	
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00	
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00	
Motores	0,00	0,00	0,00	0,00	
Cargas totales	16,47	3,61	16,86	97,69	
Capacitancia del cable	0,00	0,00	0,00	0,00	
Capacitancia de la línea	0,00	-0,00	0,00	0,00	
Capacitancia shunt total	0,00	-0,00	0,00	0,00	
Pérdidas en las líneas	0,22	0,13	0,26	85,87	
Pérdidas en los cables	0,00	0,00	0,00	0,00	
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00	
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00	
Pérdidas totales	0,22	0,13	0,26	85,87	

Alimentador: R5T5036
Fuente: RST5036_3096_HEAD
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
				()
Fuentes (Potencia de equilibrio)	5,46	-0,33	5,47	-99,81
Generadores	0,00	0,00	0,00	0,00
Producción total	5,46	-0,33	5,47	-99,81
Carga leída (no regulada)	5,41	-0,36	5,42	-99,78
Carga utilizada (regulada)	5,41	-0,36	5,42	-99,78
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	5,41	-0,36	5,42	-99,78
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,05	0,03	0,06	84,34
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,05	0,03	0,06	84,34

Código de la red modelada: S2T499

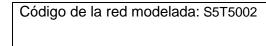

 Alimentador:
 \$2T499

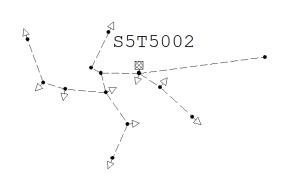
 Fuente:
 \$2T499_3235_HEAD_0

 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13,43	3,26	13,82	97,17
Generadores	0,00	0,00	0,00	0,00
Producción total	13,43	3,26	13,82	97,17
Carga leida (no regulada)	13,33	3,19	13,70	97,25
Carga utilizada (regulada)	13,33	3,19	13,70	97,25
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	13,33	3,19	13,70	97,2
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,10	0,07	0,12	81,64
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,10	0,07	0,12	81,64

Código de la red modelada: S2T534

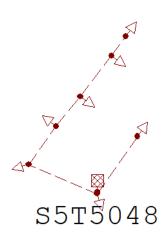

 Alimentador:
 \$27534


 Fuente:
 \$27534_3245_HEAD_0

 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,84	3,39	18,16	98,25
Generadores	0,00	0,00	0,00	0,00
Producción total	17,84	3,39	18,16	98,25
Carga leída (no regulada)	17,66	3,18	17,94	98,41
Carga utilizada (regulada)	17,66	3,18	17,94	98,41
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	17,66	3,18	17,94	98,41
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,19	0,20	0,27	67,76
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,19	0,20	0,27	67,76

Código de la red modelada: S3T23					
Sealge de la rea modelada. Ou 120	Alimentador:	S3T23			
	Fuente:	S3T23_3344_HE	AD_0		
	Tensión de fuente: 0,22 kVLL, 120,00 Grad.				
	Resumen total	kW	kvar	kVA	FP(%)
	Fuentes (Potencia de equilibrio)	59,35	45,86	75,00	79,13
	Generadores Producción total	0,00	0,00	0,00	0,00
7. 4		59,35	45,86	75,00	79,13
A A S	Carga leída (no regulada) Carga utilizada (regulada)	57,03 57,02	44,88 44,87	72,57 72,56	78,58 78,58
с 3 ^т 2 3 ф	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00	0,00 0,00	0,00 0,00	0,00 0,00
S3T23	Motores	0,00	0,00	0,00	0,00 78,58
♥	Cargas totales	57,02	44,87	72,56	
	Capacitancia del cable Capacitancia de la línea	0,00	0,00 -0,00	0,00 0,00	0,00
	Capacitancia shunt total	0,00	-0,00	0,00	0,00
	Pérdidas en las líneas	2,33	0,98	2,52	92,15
	Pérdidas en los cables Pérdidas de carga del transformador	0,00	0,00 0,00	0,00 0,00	0,00
	Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
	Pérdidas totales	2,33	0,98	2,52	92,15
		•			
Código de la red modelada: S4T39					
	A E	0.4700			
4	Alimentador:	S4T39 S4T39 3474 HE	AD 0		
№	Tensión de fuente: 0,22 kVLL, 0,00 Grad.				
• • /					
	Resumen total	kW	kvar	kVA	FP(%)
<u>",</u> *∆	Fuentes (Potencia de equilibrio)	18,51	8,19	20,24	91,45
<u>/</u> 4	Generadores Producción total	0,00 18,51	0,00 8,19	0,00 20,24	0,00 91,45
- /					
$\nabla \omega$	Carga leida (no regulada)	18,36	8,04	20,04	91,59
<u>"</u>	Carga utilizada (regulada)	18,35	8,04	20,04	91,59
7	Carga utilizada (regulada) Condensadores shunt (regulados)	18,35 0,00	8,04 0,00	20,04 0,00	91,59 0,00
7	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00
SATI 3 Q	Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
S4T39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00
S4T39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la linea	0,00 0,00 0,00 18,35 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00	0,00 0,00 0,00 20,04 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00
S4T39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable	0,00 0,00 0,00 18,35	0,00 0,00 0,00 8,04	0,00 0,00 0,00 20,04	0,00 0,00 0,00 91,59
SAT39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas	0,00 0,00 0,00 18,35 0,00 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00	0,00 0,00 0,00 20,04 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00
SAT39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del sinea Capacitancia shunt total Pérdidas en las lineas Pérdidas en las fineas Pérdidas de carga del transformador	0,00 0,00 0,00 18,35 0,00 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00	0,00 0,00 0,00 20,04 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00
S4T39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia de la línea Pérdidas en las líneas Pérdidas en las líneas Pérdidas de carga del transformador Pérdidas en vacio del transformador	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,22 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00
SAT39	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del sinea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador	0,00 0,00 0,00 18,35 0,00 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00	0,00 0,00 0,00 20,04 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00
SAT39 Código do la red modelada: SET359	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia de la línea Pérdidas en las líneas Pérdidas en las líneas Pérdidas de carga del transformador Pérdidas en vacio del transformador	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,22 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00
S4T39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales	0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,22 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00
SAT39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente:	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00 0,00	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,22 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00
SAT39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas Pérdidas de carga del transformador Pérdidas en vacio del transformador Pérdidas totales Alimentador:	0,00 0,00 18,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00 0,00	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,22 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00
SAT39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00 73,90 0,00 0,00 73,90
SAT39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del ainea Capacitancia del la inea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas en vacio del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE	0.00 0.00 0.00 8,04 0.00 -0.00 -0.00 0.15 0.00 0.00 0.15	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00 73,90 0,00 0,00 73,90
SAT39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00 73,90 0,00 0,00 73,90
	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio)	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE	0,00 0,00 0,00 8,04 0,00 -0,00 -0,00 0,15 0,00 0,00 0,15	0,00 0,00 0,00 20,04 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00 0,00 0,00 0,00 73,90 0,00 73,90 FP(%)
S4T39 Código de la red modelada: S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas Pérdidas en los cables Pérdidas en carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada)	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 73,90 0,00 0,00 73,90 FP(%)
	Condensadores shurit (regulados) Reactancias shurit(regulados) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del la linea Capacitancia shurit total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas de vacio del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga litizada (regulada)	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 20,04 0,00 0,00 0,00 0,00	0,00 0,00 0,00 91,59 0,00 0,00 0,00 0,00 0,00 0,00 73,90 95,05 0,00 95,05
▼ S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del sinea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas de vacio del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Canga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 SST259 SST259_3808_HE	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 EAD_0	0,00 0,00 20,04 0,00 0,00 0,00 0,00 0,00	FP(%) 95,05 0,00 95,26 95,26 95,26 0,00 0,00
▼ S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del la linea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(regulados) Reactancias shunt(regulados) Motores	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	FP(%) 95,05 0,00 95,26 0,00 0,00 0,00
	Condensadores shurit (regulados) Reactancias shurit(regulados) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del sinea Capacitancia shurit total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shurit (regulados) Motores Cargas totales	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 SST259 SST259_3808_H6 kW 26,26 0,00 26,26 25,61 25,61 0,00 0,00 0,00 25,61	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 91,59 0,00 0,00 0,00 0,00 0,00 0,00 73,90 95,05 0,00 95,05 95,26 95,26 0,00 0,00 0,00 95,26
▼ S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del la linea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(regulados) Reactancias shunt(regulados) Motores	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	FP(%) 95,05 0,00 95,26 0,00 0,00 0,00
▼ S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas en los cables Pérdidas de tarnsformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (reguladas) Motores Cargas totales Cargas totales Cargas totales Capacitancia del cable	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE kW 26,26 0,00 26,26 25,61 25,61 0,00 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 20,04 0,00 0,00 0,00 0,00	FP(%) 95,05 0,00 95,26 0,00 0,00 95,26 0,00 0,00
▼ S5T259	Condensadores shurit (regulados) Reactancias shurit/reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del la inea Capacitancia shurit total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas en vacio del transformador Pérdidas en vacio del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shurit (regulados) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shurit total Pérdidas en las lineas	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 SST259 SST259_3808_HE kW 26,26 0,00 26,26 25,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 8,58 8,58 0,00 0,00 6,58 8,18 8,18 0,00 0,00 0,00 0,00 0,00 0,0	kVA 27,63 0,00 26,89 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	FP(%) 95,05 0,00 95,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
▼ S5T259	Condensadores shunt(regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia de la linea Capacitancia de la linea Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 0,00 0,00	0,00 0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	FP(%) 95,05 0,00 95,26 0,00 0,00 95,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
▼ S5T259	Condensadores shunt(regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del sinea Capacitancia shunt total Pérdidas en las lineas Pérdidas en los cables Pérdidas de carga del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Canga utilizada (regulada) Condensadores shunt (regulados) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en las carga del transformador Pérdidas en las carga del transformador Pérdidas en vacio del transformador Pérdidas en vacio del transformador	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,00 0,00 0,16 0,00 0,00	0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 0,00 0,00	kVA 27,63 0,00 26,89 26,89 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	FP(%) 95,05 0,00 95,26 95,26 0,00 0,00 95,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
▼ S5T259	Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia del cable Capacitancia shunt total Pérdidas en las lineas Pérdidas en las lineas Pérdidas en vacio del transformador Pérdidas totales Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad. Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Carga utilizada (regulada) Notores Cargas totales Capacitancia shunt (reguladas) Motores Cargas totales Capacitancia de la linea Capacitancia de la linea Capacitancia de la linea Pérdidas en las lineas	0,00 0,00 0,00 18,35 0,00 0,00 0,00 0,16 0,16 0,00 0,00 0,16 S5T259 SST259_3808_HE kW 26,26 0,00 26,26 1,25,61 1,25,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 0,00 0,00 8,04 0,00 -0,00 0,15 0,00 0,00 0,15 0,00 0,00 0,15 8,58 0,00 0,00 8,18 8,18 8,18 0,00 0,00 0,0	0,00 0,00 0,00 20,04 0,00 0,00 0,00 0,00	FP(%) 95,05 0,00 95,26 0,00 0,00 95,26 0,00 0,00 0,00 95,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0



Alimentador: \$5T5002
Fuente: \$5T5002_3550_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	19,56	4,49	20,07	97,46
Generadores	0,00	0,00	0,00	0,00
Producción total	19,56	4,49	20,07	97,46
Carga leída (no regulada)	19,20	4,29	19,67	97,59
Carga utilizada (regulada)	19,20	4,29	19,67	97,59
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	19,20	4,29	19,67	97,5
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,36	0,21	0,41	86,6
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,36	0,21	0,41	86,6

Código de la red modelada: S5T5048

Alimentador: \$575048

Fuente: \$575048_3573_HEAD_

Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	16,77	3,10	17,06	98,33
Generadores	0,00	0,00	0,00	0,00
Producción total	16,77	3,10	17,06	98,33
Carga leída (no regulada)	16,45	2,91	16,71	98,47
Carga utilizada (regulada)	16,44	2,91	16,70	98,47
Condensadores shunt (regulados)	0,00	0,00	0.00	0,00
Reactancias shunt(reguladas)	0,00	0,00	16,697944625	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,44	2,91	16,70	98,47
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,33	0,19	0,38	86,34
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,33	0,19	0,38	86,34

Código de la red modelada: S5T5099

Alimentador: \$5T5099
Fuente: \$5T5099_3118_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
				. ,
Fuentes (Potencia de equilibrio)	47,73	24,81	53,79	88,73
Generadores	0,00	0,00	0,00	0,00
Producción total	47,73	24,81	53,79	88,73
Carga leída (no regulada)	63,97	32,29	71,66	89,27
Carga utilizada (regulada)	45,26	22,83	50,69	89,28
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	45,26	22,83	50,69	89,28
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	2,47	1,98	3,17	78,04
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	2,47	1,98	3,17	78,04

\$518007
A A
10 g

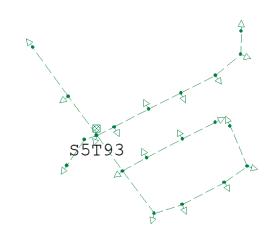
Código de la red modelada: S5T8007

Alimentador: \$5T8007

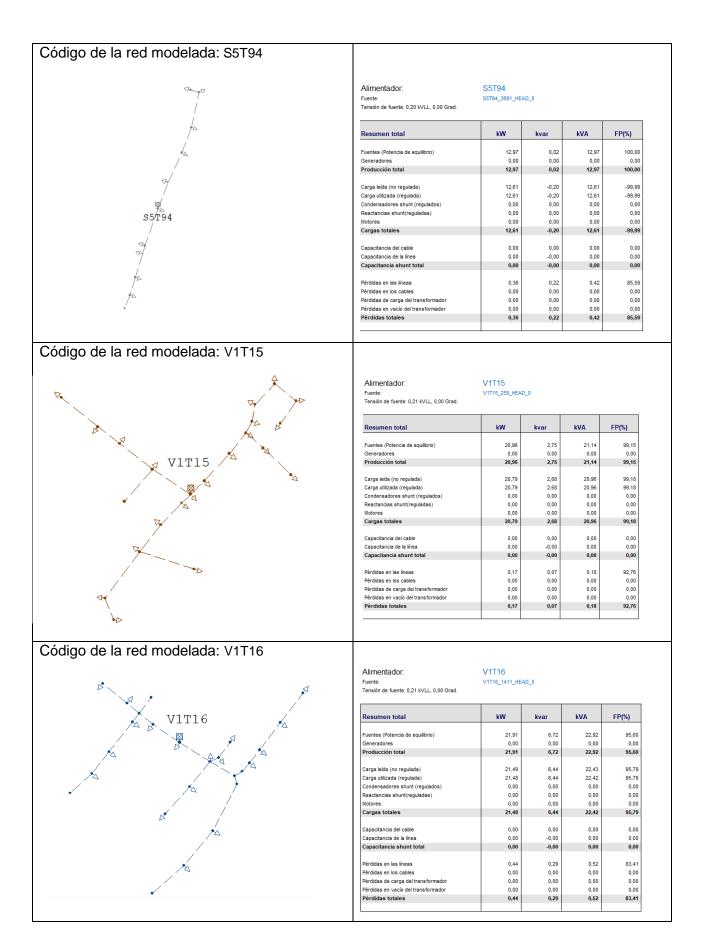
Fuente: \$5T8007_3501_HEAD

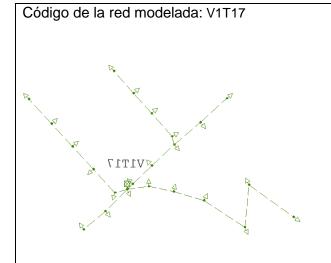
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	16,62	3,82	17,05	97,46
Generadores	0,00	0,00	0,00	0,00
Producción total	16,62	3,82	17,05	97,46
Carga leída (no regulada)	16,27	3,62	16,67	97,61
Carga utilizada (regulada)	16,27	3,62	16,67	97,61
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,27	3,62	16,67	97,61
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,35	0,20	0,40	86,75
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,35	0,20	0,40	86,7


Código de la red modelada: S5T92

Alimentador: S5T92
Fuente: SST92_3610_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	7,90	1,48	8,04	98,28
Generadores	0,00	0,00	0,00	0,00
Producción total	7,90	1,48	8,04	98,28
Carga leída (no regulada)	7,74	1,39	7,86	98,43
Carga utilizada (regulada)	7,74	1,39	7,86	98,43
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	7,74	1,39	7,86	98,43
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,16	0,10	0,18	85,5
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,16	0,10	0,18	85,5

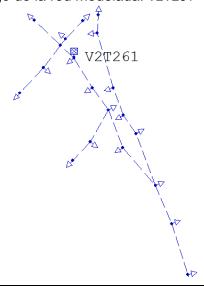

Código de la red modelada: S5T93

Alimentador: S5T93
Fuente: S5T93_3651_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	12,43	4,05	13,07	95,09
Generadores	0,00	0,00	0,00	0,00
Producción total	12,43	4,05	13,07	95,09
Carga leída (no regulada)	13,43	4,31	14,10	95,21
Carga utilizada (regulada)	12,25	3,93	12,87	95,21
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	12,25	3,93	12,87	95,21
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,18	0,11	0,21	84,64
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,18	0,11	0,21	84,64

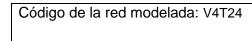
Alimentador: V1T17
Fuente: V1T17_5401_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

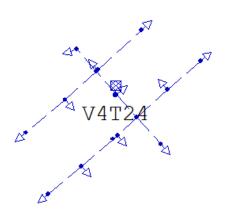
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13,83	3,33	14,23	97,22
Generadores	0,00	0,00	0,00	0,00
Producción total	13,83	3,33	14,23	97,22
Carga leída (no regulada)	13,57	3,14	13,93	97,42
Carga utilizada (regulada)	13,57	3,14	13,93	97,42
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	13,57	3,14	13,93	97,42
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,27	0,19	0,33	81,69
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,27	0,19	0,33	81,69


Código de la red modelada: V1T9

Alimentador: V1T9
Fuente: V1T9_1403_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	21,98	4,30	22,39	98,14
Generadores	0,00	0,00	0,00	0,00
Producción total	21,98	4,30	22,39	98,14
Carga leída (no regulada)	21,15	3,79	21,48	98,43
Carga utilizada (regulada)	21,14	3,79	21,48	98,43
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,14	3,79	21,48	98,43
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,83	0,51	0,97	85,40
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,83	0,51	0,97	85,40


Código de la red modelada: V2T261



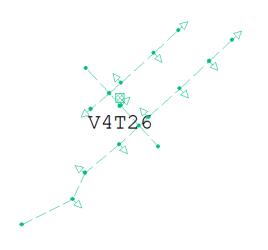
Alimentador: V2T261
Fuente: V2T281_1312_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
				()
Fuentes (Potencia de equilibrio)	15,79	2,45	15,98	98,82
Generadores	0,00	0,00	0,00	0,00
Producción total	15,79	2,45	15,98	98,82
Carga leída (no regulada)	15,47	2,26	15,64	98,95
Carga utilizada (regulada)	15,47	2,26	15,64	98,98
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	15,47	2,26	15,64	98,98
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,32	0,20	0,38	85,49
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,32	0,20	0,38	85,49

Of diagonal language de la 100 mm (100					
Código de la red modelada: V2T5115	AT				
Δ	Alimentador: Fuente:	V2T5115 V2T5115_487_H	EAD_0		
7	Tensión de fuente: 0,20 kVLL, 0,00 Grad.				
4	Resumen total	kW	kvar	kVA	FP(%)
₫	Fuentes (Potencia de equilibrio)	14,86	2,76	15,12	98,32
	Generadores Producción total	0,00 14,86	0,00 2,76	0,00 15,12	0,00 98,32
 	Carga leída (no regulada)	14,58	2,60	14,81	98,45
) pto	Carga utilizada (regulada)	14,58	2,59	14,81	98,45
V2T5115	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00 0,00	0,00	0,00 0,00	0,00
	Motores Cargas totales	0,00 14,58	0,00 2,59	0,00 14,81	0,00 98,45
→					
4•	Capacitancia del cable Capacitancia de la línea	0,00 0,00	0,00 -0,00	0,00 0,00	0,00
	Capacitancia shunt total	0,00	-0,00	0,00	0,00
49	Pérdidas en las líneas Pérdidas en los cables	0,29 0,00	0,17 0,00	0,33 0,00	86,25
4	Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
\	Pérdidas en vacío del transformador Pérdidas totales	0,00 0,29	0,00 0,17	0,00 0,33	0,00 86,25
4	- Constant Constant	0,20	٥,	0,00	00,20
Código de la red modelada: V3T11	Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.	V3T11 v3T11_510_HEA	.D_0		
		kW	byer	kVA	ED/9/1
	Resumen total		kvar		FP(%)
J. Company	Fuentes (Potencia de equilibrio) Generadores	28,01 0,00	8,22 0,00	29,19 0,00	95,95 0,00
	Producción total	28,01	8,22	29,19	95,95
V3T11	Carga leída (no regulada)	27,51	7,92	28,63	96,10
* D	Carga utilizada (regulada) Condensadores shunt (regulados)	27,51 0,00	7,92 0,00	28,63 0,00	96,10 0,00
	Reactancias shunt(reguladas) Motores	0,00 0,00	0,00 0,00	0,00	0,00
	Cargas totales	27,51	7,92	28,63	96,10
	Capacitancia del cable	0,00	0,00	0,00	0,00
To the state of th	Capacitancia de la línea Capacitancia shunt total	0,00	-0,00 - 0,00	0,00 0,00	0,00
	Pérdidas en las líneas Pérdidas en los cables	0,49 0,00	0,31 0,00	0,58 0,00	84,93 0,00
	Pérdidas de carga del transformador Pérdidas en vacío del transformador	0,00 0,00	0,00 0,00	0,00	0,00 0,00
	Pérdidas totales	0,49	0,31	0,58	84,93
Código de la red modelada: V4T20					
Cor.	Alimentador:	V4T20 V4T20_585_HEA			
₹	Tensión de fuente: 0,22 kVLL, 0,00 Grad.	V4120_303_112			
<u>,</u>	Resumen total	kW	kvar	kVA	FP(%)
<u>\</u>	Fuentes (Potencia de equilibrio)	6,57	2,03	6,88	95,55
<u></u> ⁄	Generadores Producción total	0,00 6,57	0,00 2,03	0,00 6,88	0,00 95,55
\					
	Carga leída (no regulada) Carga utilizada (regulada)	6,47 6,47	1,95 1,95	6,76 6,76	95,75 95,75
V4T20	Condensadores shunt (regulados)	0,00	0,00 0,00	0,00	0,00
At A	Reactancias shunt(reguladas) Motores	0,00	0,00	0,00	0,00
<u>`</u>	Cargas totales	6,47	1,95	6,76	95,75
<u>~</u>	Capacitancia del cable	0,00	0,00	0,00	0,00
_	Capacitancia de la línea Capacitancia shunt total	0,00 0,00	-0,00 - 0,00	0,00 0,00	0,00 0,00
₽ P	Pérdidas en las líneas	0,10	0,08	0,13	79,27
/	Pérdidas en los cables	0,00	0,00	0,00	0,00
	Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
<u> </u>	Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
/s			0,00 0,08	0,00 0,13	0,00 79,27

Alimentador: V4T24
Fuente: V4T24_639_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,26	3,48	17,60	98,03
Generadores	0,00	0,00	0,00	0,00
Producción total	17,26	3,48	17,60	98,03
Carga leída (no regulada)	16,96	3,35	17,29	98,10
Carga utilizada (regulada)	16,96	3,35	17,29	98,10
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	16,96	3,35	17,29	98,10
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,29	0,13	0,32	92,02
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,29	0,13	0,32	92,02


Código de la red modelada: V4T25

Alimentador: V4T25
Fuente: V4T25_667_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	68,91	179,59	192,36	35,83
Generadores	0,00	0,00	0,00	0,00
Producción total	68,91	179,59	192,36	35,83
Carga leída (no regulada)	67,71	228,20	238,04	28,44
Carga utilizada (regulada)	48,89	170,46	177,33	27,57
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	48,89	170,46	177,33	27,57
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	20.02	9.13	22.00	90.98
Pérdidas en los cables	0.00	0.00	0.00	0.00
Pérdidas de carga del transformador	0.00	0.00	0.00	0.00
Pérdidas en vacío del transformador	0,00	0.00	0.00	0.00
Pérdidas totales	20,02	9,13	22,00	90,98

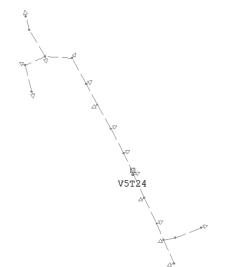
Código de la red modelada: V4T26

Alimentador: V4T26
Fuente: V4T26_608_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13.48	3.07	13.83	97.50
Generadores	0.00	0.00	0.00	0.00
Producción total	13,48	3,07	13,83	97,50
Carga leída (no regulada)	13,27	2,92	13,59	97,66
Carga utilizada (regulada)	13,26	2,92	13,58	97,66
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	13,26	2,92	13,58	97,6
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,22	0,15	0,27	82,3
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0.22	0,15	0.27	82.3

V5T22
V

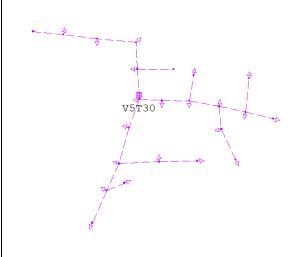
Código de la red modelada: V5T22


Alimentador: V5T22

Fuente: V5T22_887_HEAD_0

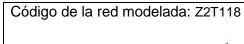
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

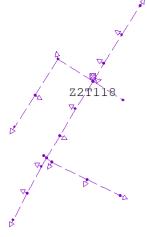
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22,43	4,15	22,81	98,33
Generadores	0,00	0,00	0,00	0,00
Producción total	22,43	4,15	22,81	98,33
Carga leída (no regulada)	21,63	3,66	21,94	98,60
Carga utilizada (regulada)	21,63	3,66	21,94	98,60
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,63	3,66	21,94	98,60
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,80	0,49	0,94	85,32
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,80	0,49	0,94	85,32


Código de la red modelada: V5T24

Alimentador: V5T24
Fuente: V5T24_669_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	17,50	15,10	23,12	75,71
Generadores	0,00	0,00	0,00	0,00
Producción total	17,50	15,10	23,12	75,71
Carga leída (no regulada)	20,12	17,19	26,47	76,03
Carga utilizada (regulada)	17,10	14,76	22,59	75,71
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	17,10	14,76	22,59	75,71
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,40	0,34	0,53	75,62
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,40	0,34	0,53	75,62

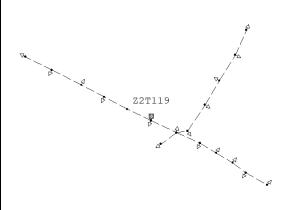

Código de la red modelada: V5T30



Alimentador: V5T30
Fuente: V5T30_719_HEAD_0
Tensión de fuente: 0.21 kVLL, 0,00 Grad.

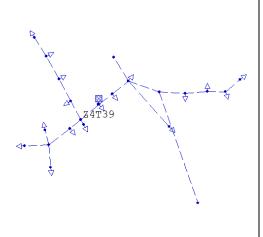
Resumen total	kW	kvar	kVA	FP(%)	
Fuentes (Potencia de equilibrio)	20,40	5,96	21,26	95,99	
Generadores	0,00	0,00	0,00	0,00	
Producción total	20,40	5,96	21,26	95,99	
Carga leída (no regulada)	20,88	5,84	21,68	96,30	
Carga utilizada (regulada)	19,57	5,48	20,32	96,29	
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00	
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00	
Motores	0,00	0,00	0,00	0,00	
Cargas totales	19,57	5,48	20,32	96,29	
Capacitancia del cable	0,00	0,00	0,00	0,00	
Capacitancia de la línea	0,00	-0,00	0,00	0,00	
Capacitancia shunt total	0,00	-0,00	0,00	0,00	
Pérdidas en las líneas	0,84	0,47	0,96	87,06	
Pérdidas en los cables	0,00	0,00	0,00	0,00	
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00	
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00	
Pérdidas totales	0,84	0,47	0,96	87,06	

Código de la red modelada: V5T87					
	Alimentador:	V5T87			
	Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.	V5T87_907_HEAD	_0		
	Resumen total	kW	kvar	kVA	FP(%)
	Fuentes (Potencia de equilibrio)	14,91	4,70	15,63	95,36
\$	Generadores Producción total	0,00 14,91	0,00 4,70	0,00 15,63	0,00 95,36
4 4 4 5167					
	Carga leída (no regulada) Carga utilizada (regulada)	19,60 13,85	5,41 4,02	20,34 14,42	96,39 96,05
	Condensadores shunt (regulados) Reactancias shunt(reguladas)	0,00 0,00	0,00	0,00	0,00
	Motores	0,00	0,00	0,00	0,00
/	Cargas totales	13,85	4,02	14,42	96,05
	Capacitancia del cable Capacitancia de la línea	0,00	0,00	0,00	0,00
	Capacitancia shunt total	0,00	-0,00	0,00	0,00
	Pérdidas en las líneas	1,06	0,69	1,26	83,76
	Pérdidas en los cables	0,00	0,00	0,00	0,00
	Pérdidas de carga del transformador Pérdidas en vacío del transformador	0,00 0,00	0,00	0,00	0,00
	Pérdidas totales	1,06	0,69	1,26	83,76
odigo de la red modelada: Z1T1060					
	lar de	7474000			
	Alimentador: Fuente:	Z1T1060 Z1T1060_4751	_HEAD 0		
	Tensión de fuente: 0,22 kVLL, 0,00 Grad.				
	Resumen total	kW	kvar	kVA	FP(%)
4₹-₹-₹-₹1T1060 \	Fuentes (Potencia de equilibrio)	18,22			99,0
4	Generadores Producción total	0,00 18,22			
lo-	Production total	10,22	2,52	10,33	33,
T	Carga leída (no regulada) Carga utilizada (regulada)	17,85 17,85			
1	Condensadores shunt (regulados)	0,00			
	Reactancias shunt(reguladas) Motores	0,00			
Ţ	Cargas totales	17,85			
	Capacitancia del cable	0,00	0,00	0,00	0,0
8 →>	Capacitancia de la línea	0,00			
	Capacitancia shunt total	0,00	-0,00	0,00	0,0
	Pérdidas en las líneas	0,37	-0,000045	9708 0,43	85,
	Pérdidas en los cables Pérdidas de carga del transformador	0,00			
	Pérdidas de carga del transformador Pérdidas en vacío del transformador	0,00			1
	Pérdidas totales	0,37	0,23	0,43	85,
ódigo de la red modelada: Z2T1001	Alimentador:	Z2T1001			
	Fuente: Tensión de fuente: 0,22 kVLL, 0,00 Grad.		ZZT1001_4630_HEAD_0		
			kvar	kVA	FP(%)
.	Resumen total	kW			00.05
	Fuentes (Potencia de equilibrio)	9,14	1,27	9,22	99,05
	Fuentes (Potencia de equilibrio) Generadores	9,14 0,00	0,00	0,00	0,00
7271001	Fuentes (Potencia de equilibrio) Generadores Producción total	9,14 0,00 9,14	0,00 1,27	0,00 9,22	0,00 99,05
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada)	9,14 0,00 9,14 8,98	0,00 1,27 1,18	0,00 9,22 9,06	0,00 99,05 99,15
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total	9,14 0,00 9,14 8,98 8,98 0,00	0,00 1,27 1,18 1,18 0,00	9,06 9,06 0,00	0,00 99,05 99,15 99,15 0,00
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas)	9,14 0,00 9,14 8,98 8,98 0,00	1,27 1,18 1,18 0,00 0,00	9,06 9,06 9,06 0,00 0,00	0,00 99,05 99,15 99,15 0,00 0,00
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados)	9,14 0,00 9,14 8,98 8,98 0,00	0,00 1,27 1,18 1,18 0,00	9,06 9,06 0,00	0,00 99,05 99,15 99,15 0,00 0,00
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales	9,14 0,00 9,14 8,98 8,98 0,00 0,00 0,00	0,00 1,27 1,18 1,18 0,00 0,00 0,00 1,18	9,06 9,06 9,06 0,00 0,00 0,00 9,06	0,00 99,05 99,15 99,15 0,00 0,00 0,00 99,15
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores	9,14 0,00 9,14 8,98 8,98 0,00 0,00	0,00 1,27 1,18 1,18 0,00 0,00 0,00	9,22 9,06 9,06 0,00 0,00 0,00	0,00 99,05 99,15 99,15 0,00 0,00 99,15
₹ A	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable	9,14 0,00 9,14 8,98 0,00 0,00 0,00 8,98	0,00 1,27 1,18 1,18 0,00 0,00 0,00 1,18	9,06 9,06 9,06 0,00 0,00 0,00 9,06	0,00 99,05 99,15 99,15 0,00 0,00 99,15
Z2T1001	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la linea	9,14 0,00 9,44 8,98 0,00 0,00 8,98	0,00 1,27 1,18 1,18 0,00 0,00 0,00 1,18	9,06 9,06 9,06 0,00 0,00 0,00 9,06	0,00 99,05 99,15 99,15 0,00 0,00 99,15 0,00 0,00
A A	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (reguladas) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia de la línea Capacitancia de la línea Capacitancia shunt total Pérdidas en las líneas Pérdidas en los cables	9,14 0,00 9,14 8,98 8,98 0,00 0,00 0,00 0,00 0,00 0,00	0,00 1,27 1,18 1,18 0,00 0,00 1,18 0,00 -0,00 -0,00 -0,00 0,00 0,00	0,00 9,22 9,06 9,06 0,00 0,00 9,06 0,00 0,00 0,00	0,00 99,05 99,15 99,15 0,00 0,00 0,00 99,15 0,00 0,00 0,00 0,00 0,00 0,00
A A	Fuentes (Potencia de equilibrio) Generadores Producción total Carga leida (no regulada) Carga utilizada (regulada) Condensadores shunt (regulados) Reactancias shunt(reguladas) Motores Cargas totales Capacitancia del cable Capacitancia de la linea Capacitancia shunt total Pérdidas en las lineas	9,14 0,00 9,14 8,98 0,00 0,00 0,00 0,00 0,00 0,00	0,00 1,27 1,18 1,18 0,00 0,00 1,18 0,00 -0,00	0,00 9,22 9,06 9,06 0,00 0,00 9,06 0,00 0,00 0,00	0,00

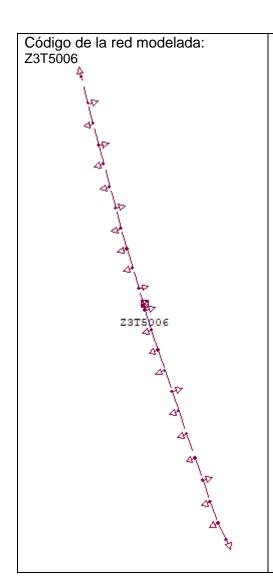


Alimentador: Z2T118
Fuente: Z2T118_4649_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

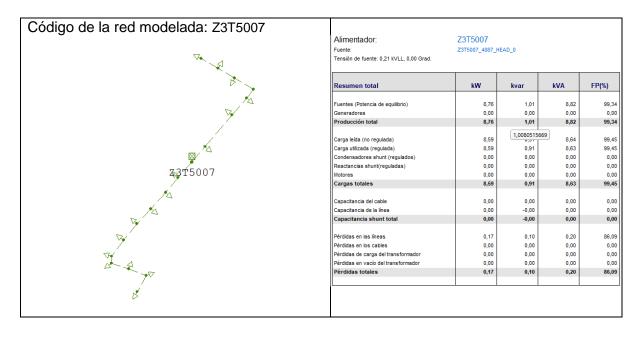
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	22.16	2.56	22.31	99.34
Generadores	0.00	0,00	0.00	0.00
Producción total	22,16	2,56	22,31	99,34
Carga leída (no regulada)	21,37	2,08	21,47	99,53
Carga utilizada (regulada)	21,36	2,08	21,47	99,53
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	21,36	2,08	21,47	99,53
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,79	0,48	0,93	85,54
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,79	0,48	0,93	85,54

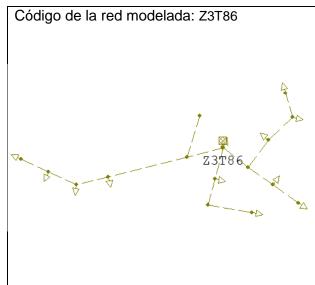

Código de la red modelada: Z2T119

Alimentador: Z2T119
Fuente: Z2T119_4683_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

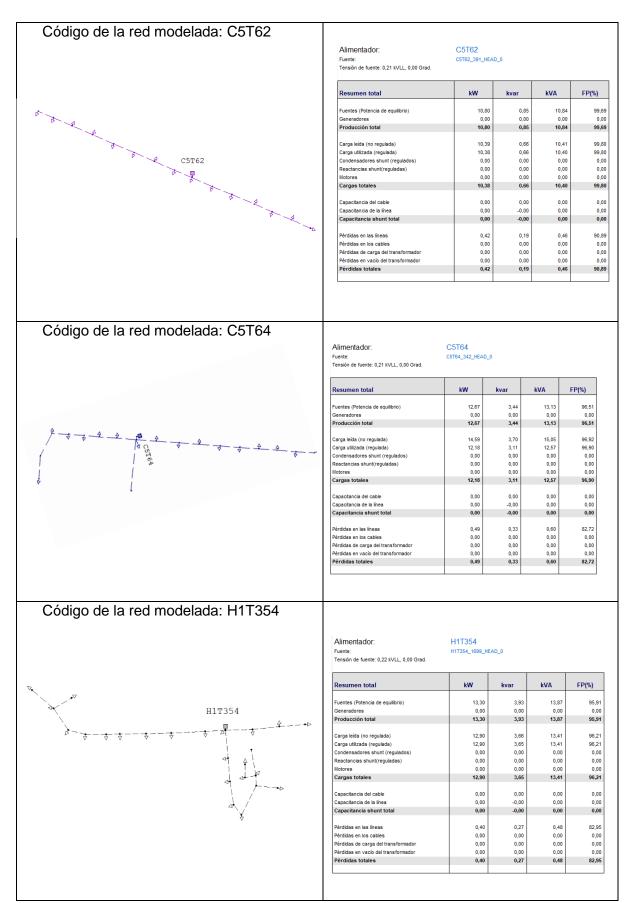

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	24.22	3.92	24.54	98.71
Generadores	0.00	0.00	0.00	0.00
Producción total	24,22	3,92	24,54	98,71
Carga leída (no regulada)	23,27	3,34	23,51	98,99
Carga utilizada (regulada)	23,27	3,33	23,51	98,9
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	23,27	3,33	23,51	98,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,95	0,59	1,12	84,9
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,95	0,59	1,12	84,9

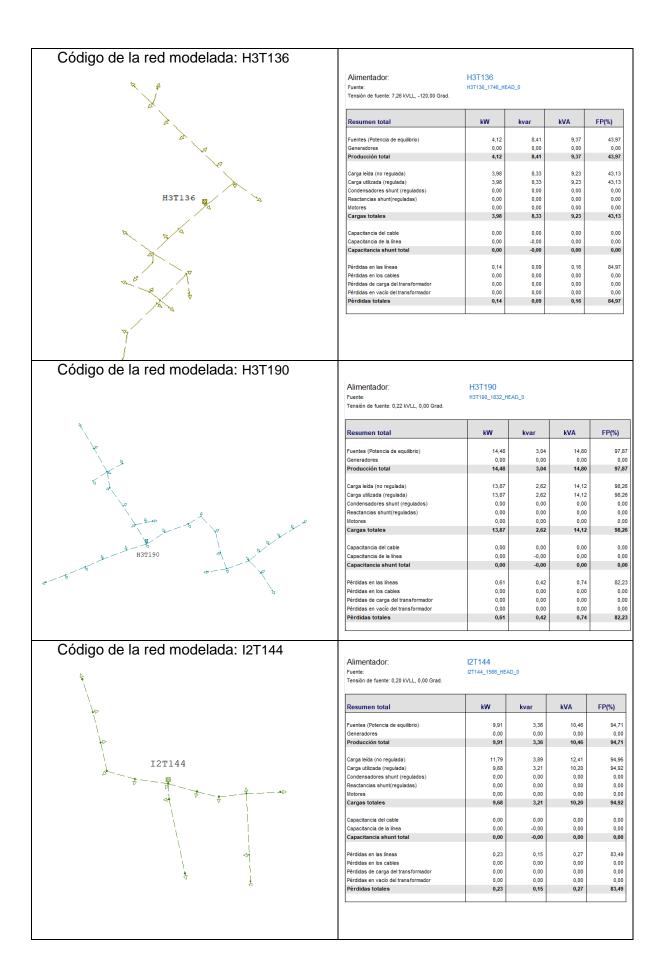
Código de la red modelada: Z4T39

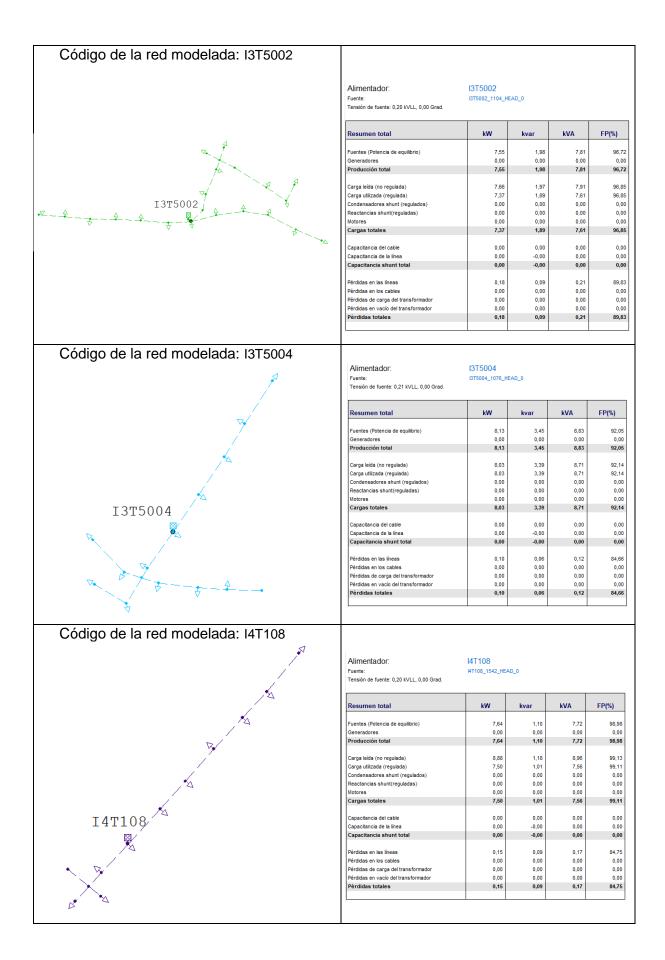

Alimentador: Z4T39
Fuente: Z4T39_5048_HEAD_0
Tensión de fuente: 0,20 KVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	12,48	2,24	12,68	98,42
Generadores	0,00	0,00	0,00	0,00
Producción total	12,48	2,24	12,68	98,42
Carga leída (no regulada)	12,14	2,01	12,31	98,66
Carga utilizada (regulada)	12,14	2,01	12,31	98,66
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	12,14	2,01	12,31	98,66
Capacitancia del cable	0.00	0.00	0.00	0.00
Capacitancia de la línea	0.00	-0.00	0.00	0.00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.34	0.24	0.42	82.28
Pérdidas en los cables	0,00	0,00	0,00	0.00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,34	0,24	0,42	82,28

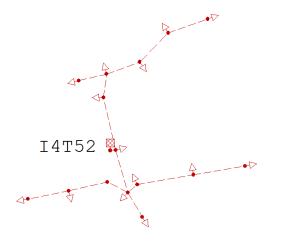
Alimentador: Z3T5006
Fuente: Z3T5006_4922_HEAD_0
Tensión de fuente: 0,22 kVLL, 0,00 Grad.

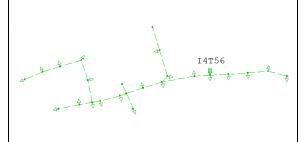

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	7,09	-1,65	7,28	-97,40
Generadores	0,00	0,00	0,00	0,00
Producción total	7,09	-1,65	7,28	-97,40
Carga leída (no regulada)	6,97	-1,72	7,18	-97,09
Carga utilizada (regulada)	6,97	-1,72	7,18	-97,09
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	6,97	-1,72	7,18	-97,09
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,12	0,07	0,14	86,62
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,12	0,07	0,14	86,62





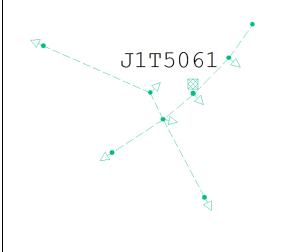
Alimentador:	Z3T86			
Fuente:	Z3T86_4857_HE/	AD_0		
Tensión de fuente: 0,21 kVLL, 0,00 Grad.				
Resumen total	kW	kvar	kVA	FP(%
Fuentes (Potencia de equilibrio)	9,69	1,78	9,85	
Generadores	0,00	0,00	0,00	
Producción total	9,69	1,78	9,85	
Carga leída (no regulada)	9,50	1,65	9,65	
Carga utilizada (regulada)	9,50	1,65	9,65	
Condensadores shunt (regulados)	0,00	0,00	0,00	
Reactancias shunt(reguladas)	0,00	0,00	0,00	
Motores	0,00	0,00	0,00	
Cargas totales	9,50	1,65	9,65	
Capacitancia del cable	0,00	0,00	0,00	
Capacitancia de la línea	0,00	-0,00	0,00	
Capacitancia shunt total	0,00	-0,00	0,00	
Pérdidas en las líneas	0,19	0,13	0,23	
Pérdidas en los cables	0,00	0,00	0,00	
Pérdidas de carga del transformador	0,00	0,00	0,00	
Pérdidas en vacío del transformador	0,00	0,00	0,00	
Pérdidas totales	0.19	0.13	0.23	


Anexo G Redes modeladas del estrato E

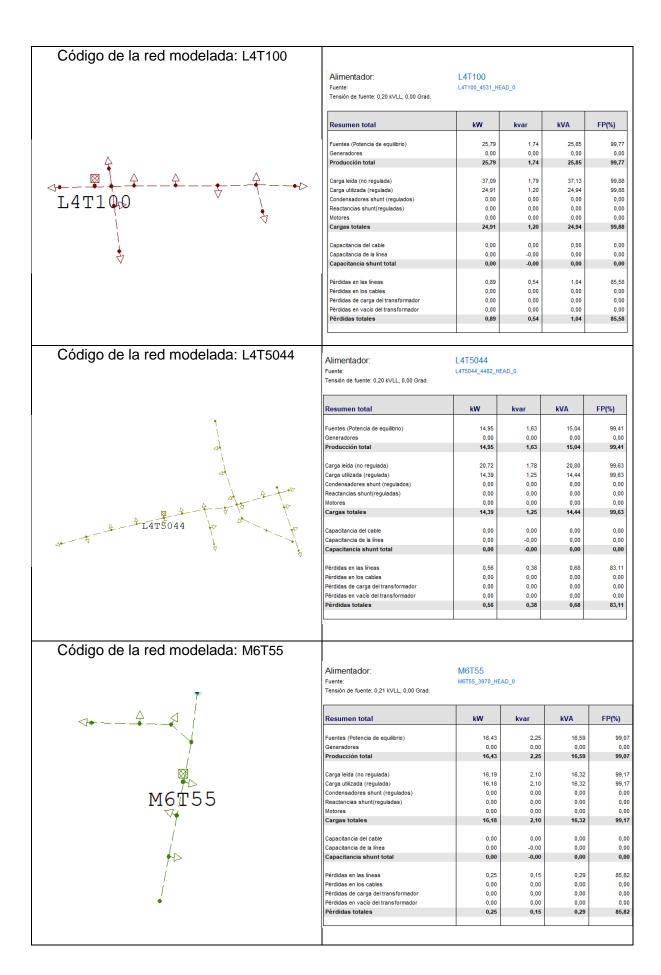

Código de la red modelada: I4T52

Alimentador: I4T52
Fuente: HT52_5256_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

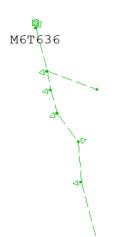
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	6.11	1.65	6.33	96.53
Generadores	0.00	0.00	0.00	0.00
Producción total	6,11	1,65	6,33	96,53
Carga leída (no regulada)	6,05	1,62	6,26	96,61
Carga utilizada (regulada)	6,05	1,62	6,26	96,6
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	6,05	1,62	6,26	96,6
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,06	0,04	0,07	85,9
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,06	0,04	0,07	85,98


Código de la red modelada: I4T56

Alimentador: I4T56
Fuente: I4T56_S285_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

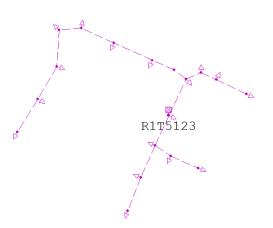

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	6,68	-0,36	6,69	-99,85
Generadores	0,00	0,00	0,00	0,00
Producción total	6,68	-0,36	6,69	-99,85
Carga leída (no regulada)	7,14	-0,54	7,16	-99,71
Carga utilizada (regulada)	6,46	-0,52	6,48	-99,68
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	6,46	-0,52	6,48	-99,68
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,22	0,16	0,27	80,76
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,22	0,16	0,27	80,76

Código de la red modelada: J1T5061



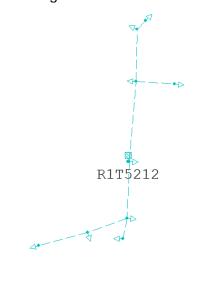
Alimentador: J1T5061
Fuente: J1T5081_5120_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	24,05	12,07	26,90	89,38
Generadores	0,00	0,00	0,00	0,00
Producción total	24,05	12,07	26,90	89,38
Carga leída (no regulada)	30,71	15,30	34,31	89,50
Carga utilizada (regulada)	23,18	11,58	25,91	89,45
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	23,18	11,58	25,91	89,45
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,87	0,48	1,00	87,41
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacio del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,87	0,48	1,00	87,41

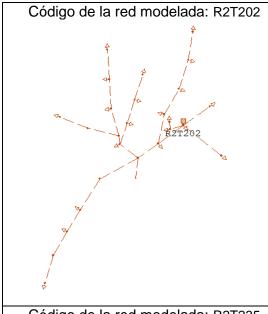

Código de	la red	modelada:	M6T636
-----------	--------	-----------	--------

Alimentador: M6T636
Fuente: M6T636_3712_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	12,14	2,20	12,33	98,40
Generadores	0,00	0,00	0,00	0,00
Producción total	12,14	2,20	12,33	98,40
Carga leída (no regulada)	20,44	2,83	20,64	99,05
Carga utilizada (regulada)	11,32	1,64	11,44	98,97
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	11,32	1,64	11,44	98,97
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,81	0,56	0,99	82,50
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,81	0,56	0,99	82,50

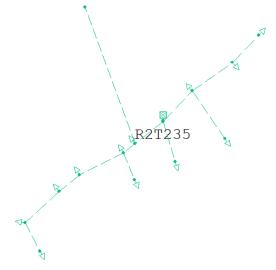

Código de la red modelada: R1T5123

Alimentador: R1T5123
Fuente: R1T5123_2646_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	10,53	0,01	10,53	100,00
Generadores	0,00	0,00	0,00	0,00
Producción total	10,53	0,01	10,53	100,00
Carga leída (no regulada)	12,68	-0,21	12,68	-99,99
Carga utilizada (regulada)	10,24	-0,17	10,24	-99,99
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	10,24	-0,17	10,24	-99,99
Capacitancia del cable	0.00	0.00	0.00	0.00
Capacitancia de la línea	0.00	-0.00	0.00	0.00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
nt ni				25.00
Pérdidas en las líneas	0,29	0,18	0,34	85,26
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,29	0,18	0,34	85,26

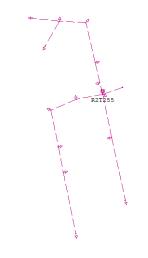
Código de la red modelada: R1T5212

Alimentador: R1T5212
Fuente: R1T5212_2706_HEAD_0
Tensión de fuente: 0,21 KVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	5,48	1,73	5,75	95,37
Generadores	0,00	0,00	0,00	0,00
Producción total	5,48	1,73	5,75	95,37
Carga leída (no regulada)	5,45	1,71	5,71	95,40
Carga utilizada (regulada)	5,45	1,71	5,71	95,40
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	5,45	1,71	5,71	95,40
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,03	0,02	0,04	90,00
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,03	0,02	0,04	90,00

Alimentador: R2T202
Fuente: R2T202_2725_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

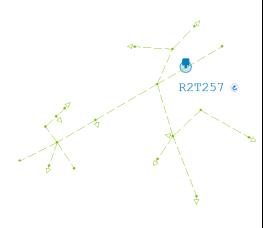
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	8,20	0,34	8,20	99,91
Generadores	0,00	0,00	0,00	0,00
Producción total	8,20	0,34	8,20	99,91
Carga leida (no regulada)	8,08	0,26	8,08	99,95
Carga utilizada (regulada)	8,08	0,26	8,08	99,95
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	8,08	0,26	8,08	99,95
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,12	0,08	0,14	83,15
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,12	0,08	0,14	83,18


Código de la red modelada: R2T235

Alimentador: R2T235
Fuente: R2T235_2775_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	11,57	1,89	11,72	98,69
Generadores	0.00	0.00	0.00	0.00
Producción total	11,57	1,89	11,72	98,69
Carga leída (no regulada)	11,40	1,79	11,54	98,79
Carga utilizada (regulada)	11,40	1,79	11,54	98,79
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	11,40	1,79	11,54	98,79
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,17	0,10	0,20	85,47
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,17	0,10	0,20	85,47

Código de la red modelada: R2T255


 Alimentador:
 R2T255

 Fuente:
 R2T255_2228_HEAD_0

 Tensión de fuente: 0,22 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	11,59	2,31	11,82	98,06
Generadores	0,00	0,00	0,00	0,00
Producción total	11,59	2,31	11,82	98,06
Carga leída (no regulada)	11,40	2,21	11,62	98,17
Carga utilizada (regulada)	11,40	2,21	11,62	98,17
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	11,40	2,21	11,62	98,17
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,18	0,10	0,21	87,53
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,18	0,10	0,21	87,53

Código de la red modelada: R2T257

R2T257 R2T257_2162_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,21 kVLL, 0,00 Grad.

kVA Resumen total Fuentes (Potencia de equilibrio) Generadores Producción total 7,81 1,30 7,91 98,65 1,14 1,14 0,00 Carga leída (no regulada) 7,64 98.88 Carga letida (no regulada)
Carga utilizada (regulada)
Condensadores shunt (regulados)
Reactancias shunt(reguladas)
Motores 7,55 0,00 7,64 0,00 0,00 0,00 0,00 0,00 Cargas totales 7,55 1,14 7,64 98,88 0,00 0,00 **0,00** 0,00 0,00 **0,00** 0,00 Capacitancia del cable 0,00 Capacitancia de la línea
Capacitancia shunt total -0,00 0,00

0,26 0,00 0,00

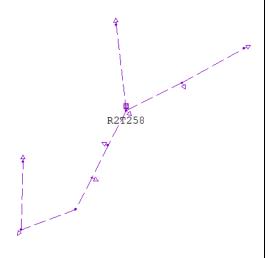
0,16

0,00

0,00 **0,16**

0,30

0,00

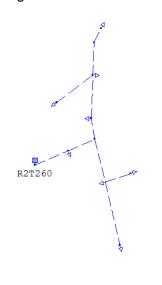

0,00

85,04

0,00

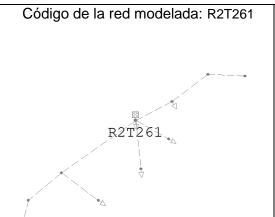
0,00 **85,04**

Código de la red modelada: R2T258


Alimentador: R2T258 Fuente: Tensión de fuente: 0,22 kVLL, 0,00 Grad. R2T258_2144_HEAD_0

Pérdidas en las líneas

Pérdidas en los cables Pérdidas de carga del transformador Pérdidas en vacio del transformador **Pérdidas totales**


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	5,60	1,01	5,69	98,41
Generadores	0,00	0,00	0,00	0,0
Producción total	5,60	1,01	5,69	98,4
Carga leida (no regulada)	5,54	0,97	5,63	98,5
Carga utilizada (regulada)	5,54	0,97	5,63	98,5
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	5,54	0,97	5,63	98,5
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,06	0,04	0,07	83,0
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,06	0,04	0,07	83,0

Código de la red modelada: R2T260

R2T260 Alimentador: R2T260_2125_HEAD_0 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

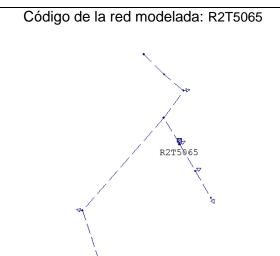
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	8.80	0.99	8.85	99,38
Generadores	0.00	0.00	0.00	0.00
Producción total	8,80	0,99	8,85	99,38
Carga leída (no regulada)	8,39	0,72	8,42	99,6
Carga utilizada (regulada)	8,39	0,72	8,42	99,6
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	8,39	0,72	8,42	99,6
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,41	0,27	0,49	83,7
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,41	0,27	0,49	83,7

Alimentador:	R2T261
Fuente:	R2T261_2093_HEAD_0

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	7.74	3.09	8.33	92.87
Generadores	0.00	0.00	0.00	0,00
Producción total				
Produccion total	7,74	3,09	8,33	92,87
Carga leída (no regulada)	7,67	3,05	8,25	92,91
Carga utilizada (regulada)	7,67	3,05	8,25	92,91
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	7,67	3,05	8,25	92,91
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.07	0.04	0.08	87.72
Pérdidas en los cables	0.00	0.00	0.00	0.00
Pérdidas en los cables Pérdidas de carga del transformador	0,00	0.00	0.00	0,00
Pérdidas de carga del transformador	0.00	0,00	0.00	0,00
Pérdidas totales	0,00	0.04	0.08	87.72

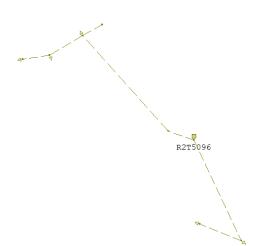
Código de la red modelada: R2T5062

Alimentador:	R2T5062
Fuente:	R2T5062_2257_HEAD_I
Tensión de fuente: 0.22 kVI I 0.00 Grad	


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	8,43	1,22	8,52	98,97
Generadores	0,00	0,00	0,00	0,00
Producción total	8,43	1,22	8,52	98,97
Carga leida (no regulada)	7,96	0,86	8,00	99,42
Carga utilizada (regulada)	7,95	0,86	8,00	99,42
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	7,95	0,86	8,00	99,42
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0.48	0.36	0.60	79.95
Pérdidas en los cables	0.00	0.00	0.00	0.00
Pérdidas de carga del transformador	0.00	0.00	0.00	0.00
Pérdidas en vacío del transformador	0,00	0,00	0.00	0.00
Pérdidas totales	0,48	0,36	0,60	79,95

Código de la red modelada: R2T5063

Alimentador:	R2T5063
Fuente:	R2T5063_2197_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.	

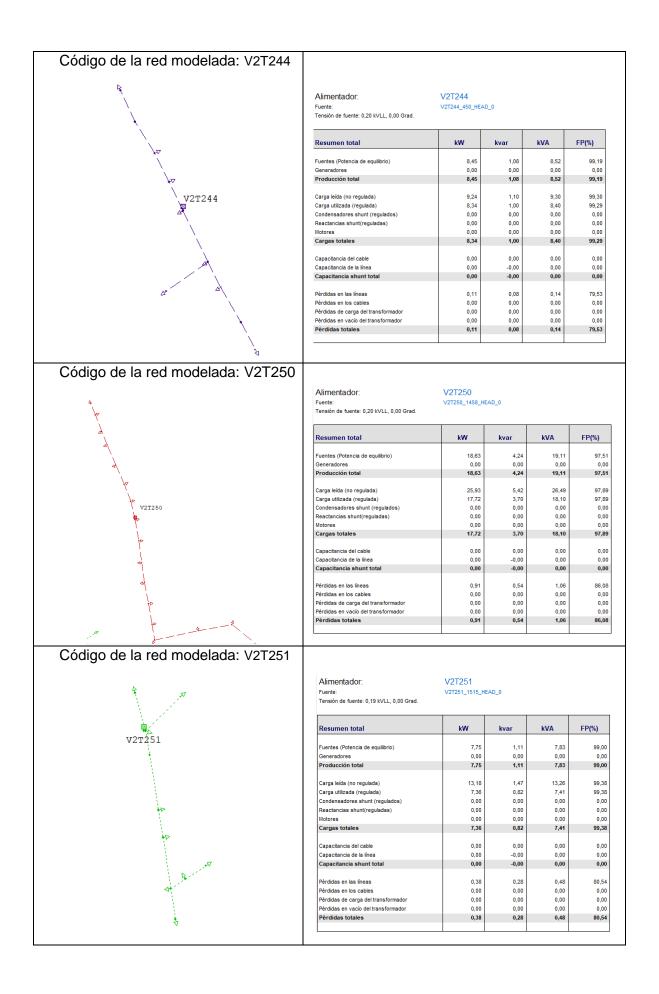

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	5.61	0.99	5.69	98.48
Generadores	0.00	0.00	0.00	0.00
Producción total	5,61	0,99	5,69	98,48
Carga leída (no regulada)	5,39	0,83	5,45	98,84
Carga utilizada (regulada)	5,39	0,83	5,45	98,84
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	5,39	0,83	5,45	98,84
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,22	0,16	0,27	80,54
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,22	0,16	0,27	80,54

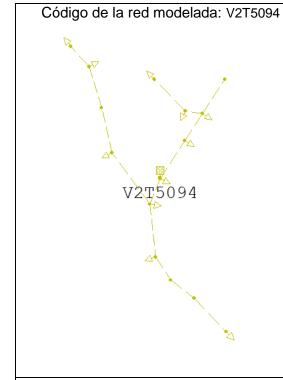
Alimentador: R2T5065
Fuente: R2T5085_2109_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	5,19	-3,66	6,36	-81,71
Generadores	0,00	0,00	0,00	0,00
Producción total	5,19	-3,66	6,36	-81,71
Carga leída (no regulada)	5,15	-3,70	6,34	-81,23
Carga utilizada (regulada)	5,15	-3,70	6,34	-81,23
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	5,15	-3,70	6,34	-81,23
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,04	0,03	0,05	75,76
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,04	0,03	0,05	75,76

Código de la red modelada: R2T5096

Alimentador: R2T5096
Fuente: R2T5096_2079_HEAD_0
Tensión de fuente: 0,21 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	6,18	0,92	6,25	98,92
Generadores	0,00	0,00	0,00	0,00
Producción total	6,18	0,92	6,25	98,93
Carga leída (no regulada)	6,00	0,79	6,05	99,14
Carga utilizada (regulada)	6,00	0,79	6,05	99,14
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	6,00	0,79	6,05	99,1
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,18	0,12	0,22	82,6
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,18	0,12	0,22	82,6


Código de la red modelada: V2T242

Alimentador: V2T242
Fuente: V2T242_422_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	9,81	1,53	9,93	98.8
Generadores	0,00	0,00	0,00	0,0
Producción total	9,81	1,53	9,93	98,8
Carga leída (no regulada)	15,28	2,17	15,43	99,0
Carga utilizada (regulada)	9,41	1,33	9,51	99,0
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	9,41	1,33	9,51	99,0
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,40	0,20	0,44	89,7
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,40	0,20	0,44	89,7

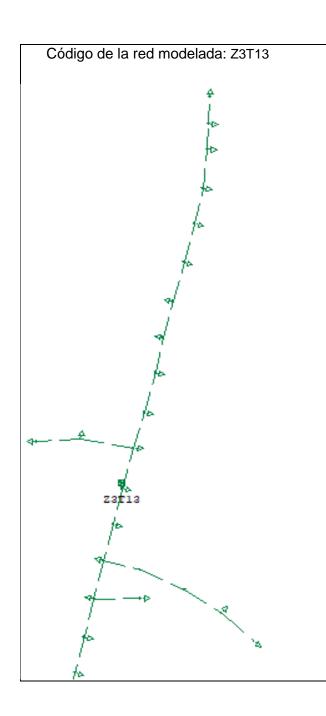
 Alimentador:
 V2T5094

 Fuente:
 V2T5094_3929_HEAD_0

 Tensión de fuente: 0,21 kVLL, 0,00 Grad.

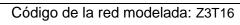
Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	12,30	3,55	12,81	96,07
Generadores	0,00	0,00	0,00	0,00
Producción total	12,30	3,55	12,81	96,07
Carga leida (no regulada)	12,03	3,35	12,49	96,33
Carga utilizada (regulada)	12,03	3,35	12,49	96,34
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	12,03	3,35	12,49	96,34
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,27	0,21	0,34	80,03
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,27	0,21	0,34	80,03

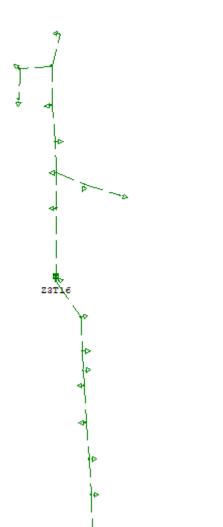
Código de la red modelada: Z2T81


Z2781

Alimentador: Z2T81

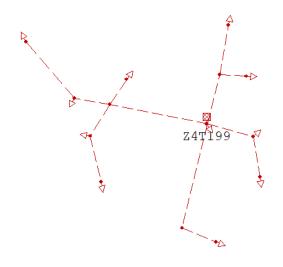
Fuente: Z2T81_4721_HEAD_0


Tensión de fuente: 0,21 kVLL, 0,00 Grad.

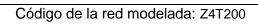

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	6,67	0,98	6,74	98,94
Generadores	0,00	0,00	0,00	0,00
Producción total	6,67	0,98	6,74	98,94
Carga leída (no regulada)	6,54	0,89	6,59	99,09
Carga utilizada (regulada)	6,53	0,89	6,59	99,09
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	6,53	0,89	6,59	99,0
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,14	-0,0001337113	0,17	81,8
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,14	0,10	0,17	81,8

Alimentador: Z3T13
Fuente: Z3T13_4810_HEAD_0
Tensión de fuente: 0,20 kVLL, 0,00 Grad.

	kW	kvar	kVA	FP(%)
uentes (Potencia de equilibrio)	13,23	2,00	13,38	98,87
Generadores	0,00	0,00	0,00	0,00
Producción total	13,23	2,00	13,38	98,87
Carga leída (no regulada)	14,96	2,07	15,11	99,06
arga utilizada (regulada)	12,86	1,80	12,98	99,04
condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
lotores	0,00	0,00	0,00	0,00
Cargas totales	12,86	1,80	12,98	99,04
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
rérdidas en las líneas	0,37	0,21	0,43	87,36
érdidas en los cables	0,00	0,00	0,00	0,00
érdidas de carga del transformador	0,00	0,00	0,00	0,00
érdidas en vacío del transformador	0,00	0,00	0,00	0,00
redidas totales	0,37	0,21	0,43	87,36



Alimentador: Z3T16 Z3T16_4771_HEAD_0 Fuente: Tensión de fuente: 0,22 kVLL, 0,00 Grad.


Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	13.03	1.48	13.11	99.3
Generadores	0.00	0.00	0.00	0.0
Producción total	13,03	1,48	13,11	99,3
Carga leída (no regulada)	12,83	1,10	12,88	99,6
Carga utilizada (regulada)	12,40	1,07	12,44	99,6
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,
Motores	0,00	0,00	0,00	0,
Cargas totales	12,40	1,07	12,44	99,
Capacitancia del cable	0,00	0,00	0,00	0,
Capacitancia de la línea	0,00	-0,00	0,00	0,
Capacitancia shunt total	0,00	-0,00	0,00	0,
Pérdidas en las líneas	0,63	0,41	0,75	83,
Pérdidas en los cables	0,00	0,00	0,00	0,
Pérdidas de carga del transformador	0,00	0,00	0,00	0,
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,
Pérdidas totales	0,63	0,41	0,75	83,

Código de la red modelada: Z4T199

Z4T199 Z4T199_4999_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
	40.00		40.44	
Fuentes (Potencia de equilibrio)	10,38	0,82	10,41	99,69
Generadores	0,00	0,00	0,00	0,00
Producción total	10,38	0,82	10,41	99,69
Carga leída (no regulada)	13,47	0,87	13,49	99,79
Carga utilizada (regulada)	10,12	0,64	10,14	99,80
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	10,12	0,64	10,14	99,80
Capacitancia del cable	0,00	0,00	0.00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,26	0,18	0,31	81,95
Pérdidas en los cables	0,00	0,00	0.00	0.00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,26	0,18	0,31	81,95

Z4T200 Z4T200_5447_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	4,19	0,23	4,20	99,85
Generadores	0,00	0,00	0,00	0,00
Producción total	4,19	0,23	4,20	99,85
Carga leída (no regulada)	5,52	0,23	5,53	99,91
Carga utilizada (regulada)	4,12	0,17	4,12	99,9
Condensadores shunt (regulados)	0,00	0,00	0,00	0,0
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,0
Motores	0,00	0,00	0,00	0,0
Cargas totales	4,12	0,17	4,12	99,9
Capacitancia del cable	0,00	0,00	0,00	0,0
Capacitancia de la línea	0,00	-0,00	0,00	0,0
Capacitancia shunt total	0,00	-0,00	0,00	0,0
Pérdidas en las líneas	0,08	0,06	0,10	78,9
Pérdidas en los cables	0,00	0,00	0,00	0,0
Pérdidas de carga del transformador	0,00	0,00	0,00	0,0
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,0
Pérdidas totales	0,08	0,06	0,10	78,9

Código de la red modelada: Z4T93

Z4T93 z4T93_5025_HEAD_0 Alimentador: Fuente: Tensión de fuente: 0,20 kVLL, 0,00 Grad.

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	11,56	1,03	11,60	99,61
Generadores	0,00	0,00	0,00	0,00
Producción total	11,56	1,03	11,60	99,61
Carga leída (no regulada)	12,75	1,03	12,79	99,68
Carga utilizada (regulada)	11,39	0,92	11,43	99,67
Condensadores shunt (regulados)	0,00	0,00	0,00	0,00
Reactancias shunt(reguladas)	0,00	0,00	0,00	0,00
Motores	0,00	0,00	0,00	0,00
Cargas totales	11,39	0,92	11,43	99,67
Capacitancia del cable	0,00	0,00	0,00	0,00
Capacitancia de la línea	0,00	-0,00	0,00	0,00
Capacitancia shunt total	0,00	-0,00	0,00	0,00
Pérdidas en las líneas	0,16	0,10	0,19	84,61
Pérdidas en los cables	0,00	0,00	0,00	0,00
Pérdidas de carga del transformador	0,00	0,00	0,00	0,00
Pérdidas en vacío del transformador	0,00	0,00	0,00	0,00
Pérdidas totales	0,16	0,10	0,19	84,61