|
Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.utn.edu.ec/handle/123456789/10860
Título : | Detección de patrones de contrabando para la gestión de aprehensiones y retenciones, utilizando técnicas predictivas de clasificación y regresión de minería de datos |
Director: | García Santillán, Iván Danilo |
Autor : | Mancero Menoscal, Tommy Bryan |
Tipo docuemento: | bachelorThesis |
Palabras clave : | SISTEMA INFORMÁTICO;DATOS ESTADÍSTICOS;COMERCIO;FRAUDE |
Fecha de publicación : | 20-ene-2021 |
Fecha de creación : | 15-ene-2021 |
Resumen : | El contrabando en el ecuador es un problema que afecta al comercio y a la economía ecuatoriana; teniendo como causas probables que ocasionan esta problemática pueden ser la falta de empleo, el alto precio de los productos, falta de educación y situación socioeconómica desfavorable. El propósito de esta investigación es tratar de reducir los niveles de ingreso de mercadería de contrabando, mediante la obtención de patrones de contrabando y los principales factores que contribuyen a esta problemática en el Ecuador, aplicando técnicas predictivas de minería de datos (clasificación y regresión), a datos históricos (2015-2020) provenientes de la entidad aduanera. Siguiendo el proceso KDD (Proceso de descubrimiento de conocimiento) el cual sirvió para la obtención de una vista minable, al cual se le pudo aplicar modelos de regresión y árboles de decisión en la herramienta KNIME y WEKA. Para la selección del mejor algoritmo se evaluó cuantitativamente cada uno de ellos, mediante las métricas estadísticas que muestra cada algoritmo como resultado, demostrando que el algoritmo J48 y Logistic Regression son los mejores algoritmos para compararlos y así obtener el conocimiento. |
Descripción : | Identificar patrones de contrabando para la gestión de aprehensiones y retenciones utilizando técnicas predictivas de clasificación y regresión en minería de datos. |
URI : | http://repositorio.utn.edu.ec/handle/123456789/10860 |
Ubicación: | 04/ISC/ 572 |
Ciudad. País: | Ibarra. Ecuador. |
Grado Académico: | Ingeniería |
Código MFN : | 0000031946 |
Carrera Profesional: | Sistemas Computacionales |
Aparece en las colecciones: | Ing. en Sistemas Computacionales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
04 ISC 572 logo.jpg | Logo | 146.38 kB | JPEG | Visualizar/Abrir |
04 ISC 572 TRABAJO GRADO.pdf | Trabajo de Grado | 3.29 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons