Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.utn.edu.ec/handle/123456789/11675
Citar este ítem

Título : Gestión del mantenimiento vehicular a base del aprendizaje autónomo en motores de tractores agrícolas
Director: Mafla Yépez, Carlos Nolasco
Autor : Cangas Ortega, Héctor Enrique
Tipo docuemento: bachelorThesis
Palabras clave : VEHÍCULO AUTOMOTOR;TRACTORES AGRÍCOLAS;TRACTORES DE RUEDAS
Fecha de publicación : 17-nov-2021
Fecha de creación : 21-oct-2021
Resumen : El presente trabajo ha sido desarrollado con el objetivo de usar el Machine Learning como una herramienta de ayuda en la gestión del mantenimiento vehicular, por medio de las vibraciones captadas del motor de un tractor agrícola es posible conocer el estado real en el que este se encuentra, usando un algoritmo de clasificación proporcionado por MATLAB® esto se hace posible. El tipo de aprendizaje autónomo empleado es del tipo supervisado, es decir la intervención humana aquí es necesaria dentro de todo el proceso, inicialmente se caracterizó y etiqueto las muestras de datos para crear una tabla necesaria para la ejecución del entrenamiento del algoritmo de clasificación. En cuanto a la toma de datos, se optó por simular fallas dentro del sistema de alimentación de combustible del motor, al alterar dicho sistema hay anomalías dentro de la combustión de cada cilindro lo que ocasiona una falla fácilmente detectable por medio de las vibraciones captadas por un sensor. Para efectuar el entrenamiento del algoritmo de clasificación se ha usado 4 estados del motor, la etiqueta de BE pertenece a un estado óptimo de funcionamiento donde no se ha simulado ninguna falla, las etiquetas de ME, MEF1, MEF2, MEF3, pertenecen a las fallas simuladas las cuales tendrán valores distintos cada una. Los entrenamientos realizados dentro del algoritmo de clasificación poseen en todas las pruebas una eficiencia superior al 90%, esto quiere decir que esta alternativa tomada en cuenta es una opción viable capaz de ser usada dentro de la gestión del mantenimiento vehicular, siempre y cuando se contenga una biblioteca amplia de datos es posible predecir fallas en cuestión de minutos. La evolución dentro de la industria automotriz ha sido notoria dentro de los últimos años, de igual forma el mantenimiento vehicular necesita subir de nivel y cambiar los mantenimientos convencionales a uno basado en el estado real del automotor, en esta investigación se propone eso usando vibraciones como fuente de información, que por medio del Machine Learning sea posible predecir fallas y usar de mejor forma los recursos dentro del mantenimiento vehicular.
Descripción : Implementar el aprendizaje autónomo como herramienta en la gestión del mantenimiento predictivo vehicular, para monitorear en tiempo real las condiciones de funcionamiento de un motor diésel en un tractor agrícola.
URI : http://repositorio.utn.edu.ec/handle/123456789/11675
Ubicación: 04/MAUT/ 154
Ciudad. País: Ibarra. Ecuador.
Grado Académico: Ingeniería
Código MFN : 0000035932
Carrera Profesional: Mantenimiento Automotríz
Aparece en las colecciones: Ing. en Mantenimiento Automotriz

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
04 MAUT 154 logo.jpgLogo112.5 kBJPEGVista previa
Visualizar/Abrir
04 MAUT 154 TRABAJO GRADO.pdfTrabajo de Grado2.91 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons