Please use this identifier to cite or link to this item: https://repositorio.utn.edu.ec/handle/123456789/14063
Citar este ítem

Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDe La Vega Quintero, Juan Carlos-
dc.contributor.authorMoreno Mendoza, Angelo Emanuel-
dc.date.accessioned2023-06-14T17:31:56Z-
dc.date.available2023-06-14T17:31:56Z-
dc.date.created2023-05-29-
dc.date.issued2023-06-14-
dc.identifier.other03/EIA/ 601es_EC
dc.identifier.urihttp://repositorio.utn.edu.ec/handle/123456789/14063-
dc.descriptionDesarrollar un método computacional que permita clasificar las naranjas (Citrus x sinensis Osbek), variedades Valencia y Washington según su índice de madurez.es_EC
dc.description.abstractLa naranja dulce (Citrus sinensis) se caracteriza por tener una gama de colores que no corresponde con su estado de madurez, ya que su corteza puede estar verde, pero en el interior madura. El objetivo de este estudio es desarrollar un método computacional que permita clasificar las naranjas (Citrus x sinensis Osbek), variedades Valencia y Washington mediante un sistema sencillo que no dependa del color de la fruta. A través del uso de técnicas de Machine Learning (Neural Net Fitting y Regression Learner) con el manejo de MATLAB, se logró relacionar el peso, diámetro ecuatorial, diámetro polar, la variedad y los sólidos solubles de la fruta. Como resultado final se entrenó cada uno de los métodos disponibles en el campo de inteligencia artificial. La validación de los métodos se cumplió con el 10% de datos como prueba real en campo. Finalmente se concluyó que el mayor coeficiente de determinación alcanzado fue 0.92 por el método de Regression Learner, representando así con fidelidad la clasificación de las naranjas (Citrus x sinensis) variedades Valencia y Washington, entre todos los modelos evaluados en este estudio.es_EC
dc.language.isospaes_EC
dc.rightsopenAccesses_EC
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/*
dc.subjectNARANJAes_EC
dc.subjectMATLABes_EC
dc.subjectAPLICACIONES TECNOLÓGICASes_EC
dc.subjectCLASIFICACIÓNes_EC
dc.subjectCÍTRICOSes_EC
dc.titleTitulo Desarrollo de un método computacional para la clasificación de naranjas (citrus x sinensis o.), variedades Valencia y Washingtones_EC
dc.typebachelorThesises_EC
dc.description.degreeIngenieríaes_EC
dc.contributor.deparmentAgroindustriaes_EC
dc.coverageIbarra. Ecuadores_EC
dc.identifier.mfn0000041197es_EC
Appears in Collections:Ing. Agroindustrial

Files in This Item:
File Description SizeFormat 
03 EIA 601 LOGO.jpgLogo267.31 kBJPEGThumbnail
View/Open
03 EIA 601 TRABAJO DE GRADO.pdfTrabajo de grado1.08 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons