Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.utn.edu.ec/handle/123456789/16381
Citar este ítem

Título : Sistema de conteo de cajas de cartón y botellas basado en visión artificial para tiendas de víveres
Director: Rosero Chandi, Carlos Xavier
Autor : Calle Cañar, Cristian David
Tipo docuemento: bachelorThesis
Palabras clave : AUTOMATIZACIÓN;FOTORRECEPCIÓN;DETECCIÓN
Fecha de publicación : 2-sep-2024
Fecha de creación : 5-ago-2024
Resumen : Hoy en día existen múltiples aplicaciones en las cuales se implementan sistemas de visión artificial que se enfocan en automatizar procesos y facilitar el trabajo a las personas en ciertas actividades, como es el caso del conteo de objetos. Esta actividad en particular se realiza regularmente en las tiendas de víveres, aunque de manera manual trayendo como consecuencia el empleo adicional de tiempo. En respuesta a esta necesidad, se plantea un sistema basado en visión artificial que permite el conteo y registro de botellas y cajas de cartón, que ingresan diariamente al establecimiento. Consta de una interfaz optimizada para computadora creada en Python, en donde el usuario puede contar, registrar y visualizar los datos almacenados de botellas de plástico y cajas de cartón al presionar un botón. Para la adquisición de video se emplea una cámara que está orientada hacia un espacio destinado a la recepción de productos. El reconocimiento de los objetos se realiza a través de la implementación de la red neuronal convolucional SSD MobileNet V2 entrenada mediante el framework de TensorFlow. El conjunto de datos empleado contine imágenes de botellas de agua y gaseosas, y cajas de cartón. La estrategia utilizada para el conteo de las botellas se basa en la identificación de las tapas, debido a que estas son más notorias, optimizando así el proceso. Los resultados de este trabajo muestran que el sistema diseñado facilita el ingreso de productos a través de las distintas funcionalidades implementadas. El entrenamiento de la red de detección de objetos condujo a una precisión general de 90.8%, evaluada mediante una matriz de confusión.
Descripción : Desarrollar un sistema de visión artificial para el conteo de cajas y botellas en tiendas de víveres.
URI : https://repositorio.utn.edu.ec/handle/123456789/16381
Ubicación: 04/MEC/ 562
Ciudad. País: Ibarra. Ecuador
Grado Académico: Ingeniería
Código MFN : 0000043419
Carrera Profesional: Mecatrónica
Aparece en las colecciones: Ing. en Mecatrónica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
04 MEC 562 logo.jpgLogo51.64 kBJPEGVista previa
Visualizar/Abrir
04 MEC 562 TRABAJO GRADO.pdfTrabajo de Grado2.84 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons