

UNIVERSIDAD TÉCNICA DEL NORTE FACULTAD DE INGENIERÍA EN CIENCIAS APLICADAS CARRERA DE INGENIERÍA EN MECATRÓNICA

TEMA

ANÁLISIS DINÁMICO DE UNA ARTICULACIÓN DE RODILLA EXTERNA COMERCIAL, PARA MEJORAR LA CINEMÁTICA RESPECTO A LA MARCHA HUMANA, PARA PERSONAS CON AMPUTACIÓN TRANSFEMORAL DE LA ZONA 1 DEL ECUADOR MEDIANTE HERRAMIENTAS COMPUTACIONALES.

TRABAJO DE GRADO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN MECTARÓNICA

AUTOR

CARLOSAMA SÁNCHEZ ALEXANDER IVÁN

DIERECTOR

MSc. FERNANDO VINICIO VALENCIA AGUIRRE

IBARRA, AGOSTO 2021

UNIVERSIDAD TÉCNICA DEL NORTE BIBLIOTECA UNIVERSITARIA

AUTORIZACIÓN DE USO Y PUBLICACIÓN A FAVOR DE LA UNIVERSIDAD TÉCNICA DEL NORTE

1. Identificación de la obra

En cumplimiento del Art. 144 de la Ley de Educación Superior, hago la entrega del presente trabajo a la Universidad Técnica del Norte para que sea publicado en el Repositorio Digital Institucional, para lo cual pongo a disposición la siguiente información:

DATOS DE CONTACTO					
Cédula de Identidad:	1004153027				
Apellidos y Nombres:	Carlosama Sánchez	z Alexander Iván			
Dirección:	Ibarra- El Tejar	Ibarra- El Tejar			
Email:	aicarlosamas@utn.	edu.ec			
Teléfono Fijo:	-	Teléfono Móvil:	0939474438		
	DATOS DE L	A OBRA			
Título:	"Análisis dinámico de una articulación de rodilla externa comercial, para mejorar la cinemática respecto a la marcha humana, para personas con amputación transfemoral de la zona 1 del Ecuador mediante herramientas computacionales"				
Autor:	Carlosama Sánchez Alexander Iván				
Fecha:	22 de agosto del 2	2021			
Programa:	Pregrado				
Título por el que Opta:	Ingeniero en Mecatrónica				
Director:	Ing. Fernando Va	lencia, MSc.			

2. Constancias

El autor manifiesta que la obra objeto de la presente autorización es original y se desarrolló, sin violar derechos de autor de terceros, por lo tanto, la obra es original y que es el titular de los derechos patrimoniales, por lo que se asume la responsabilidad sobre el contenido de la misma y saldrá en defensa de la Universidad en caso de reclamos por parte de terceros.

Ibarra, a los 28 días del mes de septiembre del 2021.

Firma:

Nombre: Carlosama Sánchez Alexander Iván Cédula: 100415302-7

Declaración

Yo, Carlosama Sánchez Alexander Iván, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que este no ha sido previamente presentado para ningún grado o calificación profesional; y que he consultado las referencias bibliográficas que se incluyen en este documento.

Carlosama Sánchez Alexander Iván 100415302-7

Certificación

En calidad de tutor del trabajo de grado titulado: "ANÁLISIS DINÁMICO DE UNA ARTICULACIÓN DE RODILLA EXTERNA COMERCIAL, PARA MEJORAR LA CINEMÁTICA RESPECTO A LA MARCHA HUMANA, PARA PERSONAS CON AMPUTACIÓN TRANSFEMORAL DE LA ZONA 1 DEL ECUADOR MEDIANTE HERRAMIENTAS COMPUTACIONALES" certifico, que el presente trabajo fue desarrollado por el egresado Carlosama Sánchez Alexander Iván, bajo mi supervisión.

Ing. Fernando Valencia, MSc. DIRECTOR DEL PROYECTO

Agradecimientos

A mis padres, por todo el esfuerzo que han realizado para que pueda estudiar y lograr conseguir un título universitario, por todos los consejos, enseñanzas y motivaciones en momentos difíciles, que me han servido para no rendirme y realizar todo con la mayor dedicación posible.

Al MSc. Fernado Valencia, por su dedicación y apoyo en el desarrollo de este proyecto, dando parte de su tiempo y entusiasmo en la elaboración de cada una de las actividades que se han realizado durante este proceso.

A mis cotutores de tesis, ing. Víctor Erazo y ing. David Ojeda, por los consejos y observaciones para un adecuado desarrollo de los distintos trabajos que componen esta investigación.

Al señor Jairo Collahuazo protesista de la fundación Prótesis Imbabura, por colaborar con datos relevantes en el proceso de cotización de prótesis comerciales en el país.

Dedicatorias

A mis padres por ser el apoyo en cada fase de mi vida, a mi madre por el amor que demuestra cuando me ayuda en mis actividades, a mi padre, por todo lo que ha luchado bajo el sol y la lluvia para que pueda estudiar y no nos falte nada en la familia.

A Dios porque sin el nada sería posible en este mundo, por cada día de vida, por la salud de mis padres y hermanos.

A mi novia por su apoyo en los momentos difíciles y ser parte de cada una de las actividades que realizo.

Resumen

Este trabajo tiene como finalidad analizar dos modelos comerciales de prótesis de rodilla para amputados transfemorales unilaterales, para obtener sus principales características, como es el comportamiento del Centro instantáneo de rotación (CIR), el modelo matemático, la cinemática y dinámica, sus dimensiones, peso y materiales de los cuales están construidos, para luego compararlos entre ellos y seleccionar un modelo base, al cual se le realizado una serie de ajuste que permitan emular de mejor manera el comportamiento del CIR de una rodilla sana y así proponer una nueva alternativa de prótesis de rodilla, tomando como parámetros de diseño las características antropométricas de la población ecuatoriana, y de igual forma seleccionando elementos y materiales presentes en el mercado nacional que permitan su construcción, a la vez que se ha realizado la validación comparando la curva del CIR descrita por la propuesta y el modelo comercial en función del ciclo de la marcha humana, con una curva obtenida en una investigación en un laboratorio de marcha.

Índice

Introducción	
CAPÍTULO I	16
El Problema	16
1.1 Planteamiento del problema	16
1.2 Objetivos	16
1.2.1 Objetivo general	16
1.2.2 Objetivos específicos	16
1.3 Justificación	17
1.4 Alcance	17
1.5 Antecedentes	17
CAPÍTULO II	
Marco Teórico	19
2.1 Prótesis transfemoral	19
2.2 Rodilla protésica	19
2.3 Articulación de rodilla	19
2.3.1 Flexión	20
2.3.2 Extensión	20
2.4 Tipos de articulación de rodilla externa.	21
2.4.1 Rodilla de un solo eje	21
2.4.2 Rodilla policéntrica	21
2.5 Cinemática de la marcha humana	21
2.5.1 Curva característica de la marcha humana	
2.6 Gasto energético	23
2.7 Estándares para prótesis de rodilla	23
2.7.1 Norma ISO 14243-1	23
2.7.2 Norma ASTM F3141	23
2.7.3 Comparación entre ISO 141443-1 y ASTM F3141	23
2.8 Antropometría	24
2.8.1 Variabilidad antropométrica	24
2.9 Datos antropométricos	25
2.10 Modelos protésicos de rodilla	
2.10.1 Knee joint Ossur 2000	
2.10.2 Streifeneder 3A20 Knee joint	27

2.11 Mecanismos de rodilla	27
2.11.1 Mecanismos de 4 barras	
2.11.2 Mecanismos de 6 barras	
2.11.3 Condición de Grashof	
2.11.4 Clasificación de los mecanismos de 4 barras	
2.11.5 Grados de libertad	
2.11.6 Ecuación de Gruebler	
2.12 Parámetros cinemáticos	
2.12.1 Centro Instantáneo de rotación (CIR)	
2.12.2 Centro de equilibrio de referencia	
2.13 Cinemática de una articulación de rodilla	
2.14 Materiales usados en prótesis de rodilla	
2.15 Rodamientos	
2.15.1 Criterios para la selección de rodamientos	
CAPÍTULO III	
Marco Metodológico	
3.1 Modelo de investigación	
3.2 Estructura de la investigación	
3.2.1 Fase 1: Investigación	
3.2.2 Fase 2: Análisis cinemático y dinámico de las articulaciones de rodilla	
3.2.3 Fase 3: Desarrollo de la propuesta de prótesis de rodilla	
CAPÍTULO IV	
Resultados y Análisis	
4.1 Análisis de articulación de rodilla Streifeneder 3A20	
4.1.1 Condición de Grashof para Streifeneder 3A20	
4.1.2 Grados de libertad para Streifeneder 3A20	40
4.1.3 Cinemática para el modelo de 4 barra de Streifeneder 3A20	41
4.1.4 Validación del modelo matemático del mecanismo de 4 barras	42
4.1.5 Simulación del CIR para la prótesis de 4 barras	43
4.1.6 Análisis Dinámico de la prótesis de rodilla Streifeneder 3A20	45
4.2 Prótesis de rodilla Ossur Total Knee 2000	47
4.2.1 Grados de libertad de OSSUR 2000	47
4.2.2 Cinemática para el modelo de 6 barras Total Knee 2000 de Ossur	48
4.2.3 CIR de la Ossur total Knee 2000	49
4.2.4 Análisis de dinámico de la prótesis de rodilla Ossur 2000	51

4.3 Comparación del CIR de las prótesis de rodilla	53
4.4 Definición de los parámetros antropométricos de la zona 1 del Ecuador	55
4.5 Desarrollo de la propuesta de prótesis de rodilla	57
4.5.2 Modificaciones para mejorar la trayectoria del CIR	58
4.5.3 Selección de rodamientos	60
4.5.4 Selección de acoples de unión para la prótesis de rodilla	61
4.5.4 Análisis dinámico de la propuesta	63
4.6 Matriz QFD de la propuesta	68
CAPÍTULO V	69
Conclusiones y Recomendaciones	69
5.1 Conclusiones	69
5.2 Recomendaciones	69
Referencias	70
Anexos	74
Anexo 1: Tabla de valores del CIR de la prótesis de rodilla de Streifeneder	74
Anexo 2: Tabla de valores del CIR de la prótesis de rodilla Ossur 2000	75
Anexo 3: Datos de la curva ajustada al CIR de una rodilla sana.	77
Anexo 4: Matriz QFD	823
Anexo 5: Planos de la propuesta de prótesis de rodilla	824

Índice de Figuras

Figura 1. Articulación de rodilla [24]	19
Figura 2. Movimiento de flexión [23]	20
Figura 3. Movimiento de extensión [23]	20
Figura 4. Cinemática de rodilla en el primer intervalo de marcha [25]	21
Figura 5. Cinemática de rodilla en el segundo intervalo de marcha [25]	22
Figura 6. Cinemática de rodilla en el tercer intervalo de marcha [25]	22
Figura 7. Movimiento de flexo-extensión de una rodilla [26]	22
Figura 8. Comparación de curvas de los estándares ISO 14243-1 y ASTM F3141 [29]	24
Figura 9. Össur 2000 Knee joint [32]	26
Figura 10. Streifeneder 3A20 Knee joint	27
Figura 11. Mecanismo de cuatro barras [40]	28
Figura 12. Mecanismo de seis barras [40].	28
Figura 13. Rotación pura [41]	30
Figura 14. Traslación pura [41]	30
Figura 15. Rotación y traslación de un cuerpo rígido [41].	30
Figura 16. Ubicación del CIR y su desplazamiento según el ángulo de la rodilla	32
Figura 17. CIR de una rodilla humana	32
Figura 18. Posición del CIR posterior al CER que determina la estabilidad de la rodilla	33
Figura 19. Simplificación de una articulación de 4 barras [44]	33
Figura 20. Simplificación del mecanismo de 6 barras [44]	34
Figura 21. Sistema de los rodamientos [46]	35
Figura 22. Componentes de un rodamiento [46].	35
Figura 23. Herramienta para selección de rodamientos de SKF	36
Figura 24. Metodología aplicada	37
Figura 25. Simplificación del mecanismo de 4 barras de Streifeneder	39
Figura 26. Mecanismo de 4 barras	40
Figura 27. Modelo simplificado de la articulación de 4 barras Streifeneder	41
Figura 28. Validación del modelo matemático obtenido	42
Figura 29. Simulación del modelo matemático con un ángulo diferente	43
Figura 30. Configuración del ciclo de la marcha humana	43

Figura 31. Trazo del CIR de la prótesis de 4 barras	44
Figura 32. Trayectoria del CIR, en el plano xy	44
Figura 33. Cargas anterior posterior en función del ciclo de la marcha humana	45
Figura 34. Análisis dinámico de prótesis de rodilla Streifeneder 3A20	47
Figura 35. Modelo simplificado de 6 barras.	48
Figura 36. Modelo esquemático de Ossur 2000	48
Figura 37. CIR por el método de tendones cruzados.	49
Figura 38. Curva de la marcha humana ingresado en SolidWorks	50
Figura 39. Curva del CIR de Ossur 2000	50
Figura 40. CIR de Ossur 2000, respecto al CMH.	51
Figura 41. Análisis dinámico para obtener los factores de seguridad en el ciclo de la	a marcha
humana	52
Figura 42. Comparación de CIR´s en función de la marcha humana.	53
Figura 43. Comparación entre el CIR de Streifeneder 3A20 con el CIR de una rodil	la sana. 54
Figura 44. Comparación entre el CIR de Ossur 2000 con el CIR de una rodilla sana	a55
Figura 45. Pesos promedios de diferentes países	56
Figura 46. Datos de peso de la población de objeto	57
Figura 47. Modificaciones en las dimensiones de los eslabones	58
Figura 48. CIR de las modificaciones y de una rodilla sana	59
Figura 49. Comparación entre el CIR de la propuesta y el de una rodilla sana	60
Figura 50. Acople piramidal de desplazamiento diagonal	61
Figura 51. Acople de encaje	61
Figura 52. Acople piramidal rotativo	62
Figura 53. Propuesta de prótesis de rodilla	63
Figura 54. Análisis dinámico, a) Cuando la persona se encuentra totalmente erguida	a, en este
punto se produce la máxima carga. b) En 6% del CMH. c) Para el 13% del CMH. d) 50% del
CMH. e) 56% del CMH. f) 66% del CMH.	65
Figura 55. Análisis de fatiga.	66

Índice de tablas

Tabla 1. Datos antropométricos [32].	25
Tabla 2. Datos antropométricos de la población objeto [32].	25
Tabla 3. Estudio antropométrico	26
Tabla 4. Condiciones de Grashof	29
Tabla 5. Valores obtenidos en la investigación [38]	32
Tabla 6. Cargas máximas en el ciclo de la marcha humana	45
Tabla 7. Resultados del análisis dinámico de la prótesis de Streifeneder 3A20	47
Tabla 8. Datos antropométricos de diferentes regiones del mundo [33].	56
Tabla 9. Propiedades mecánicas de las alternativas de materiales	58
Tabla 10. Simulación del rodamiento SKF 619/5-2Z.	60
Tabla 11. Resumen de características de los acoples	62
Tabla 12. Resultados del análisis dinámico.	65
Tabla 13. Análisis de costos de la alternativa propuesta.	67
Tabla 14. Comparación de la alternativa con modelos comerciales en Ecuador	67
Tabla 15. CIR de Streifeneder	74
Tabla 16. CIR de Ossur 2000	75
Tabla 17. CIR de una rodilla	77

Introducción

Según la definición de la real academia española (RAE) una prótesis es: "Pieza o aparato empleados para sustituir un órgano o un miembro del cuerpo" para este caso sería, para remplazar la articulación de rodilla de un amputado transfemoral.

Se ha demostrado que el uso de una prótesis de rodilla altera la biomecánica de los pacientes, por diferentes factores que impiden una emulación adecuada del ciclo de la caminata humana, lo que conlleva a afecciones del miembro residual, de entre las más importantes el desarrollo de osteoartritis de la rodilla y cadera, lo que afecta a la calidad de vida de los pacientes protésicos [1, 2].

La fabricación de este tipo de prótesis ha ido evolucionando a través del tiempo por diferentes factores como son la fabricación de nuevos materiales que presentan características más apropiadas para esta aplicación [3], también se ha desarrollado estudios cinemáticos y dinámicos desde perspectivas clínicas, donde se determinó como afecta la asimetría de la caminata humana a los miembros residuales [4].

Por los problemas que se han venido dando en los pacientes protésicos, es que investigadores como A. Silverman, R. Neptune, D. Lacroix y J. Patiño [2, 5], recomiendan ir más allá de los tradicionales factores de confort, movilidad, resistencia y durabilidad, y se trabajen también con criterios que evalúen la idoneidad de los diseños de las prótesis, como son los estudios cinemáticos y dinámicos desde el punto de una perspectiva ingenieril, siendo estos el objetivo de este proyecto.

CAPÍTULO I

El Problema

En el presente capítulo se detallan y definen las posibles causas de la problemática encontrada y se estructuran los objetivos y antecedentes y toda información que sea relevante para justificar la investigación

1.1 Planteamiento del problema

De acuerdo con S. Roa [6], en el Ecuador existe un déficit de producción de prótesis superior al 90%, por lo que más de 15.000 personas continúan en espera de una prótesis que le permita reactivar su vida laboral, así mismo en CONADIS [7], se muestra que, 218.927 personas en el Ecuador presentan discapacidades físicas, por otro lado J. Sánchez [8], indica que una prótesis de rodilla externa puede rondar entre los \$ 60.000, lo que dificulta el acceso a ellas, así por ejemplo una prótesis Ossur 2000, se encuentra entre los \$ 20.500 a \$ 40.000 [9].

Las personas con amputaciones transfemorales, presentan mayor desgaste de la pierna sana y de la cadera, debido a la caminata asimétrica que llegan a desarrollar, como se determina en las investigaciones [1, 10, 11], por ello se identifica que el problema es la falta de estudios de la cinemática y dinámica de las prótesis, en función de la marcha humana, siendo ese el motivo para que las articulaciones de rodilla no logren emular ese comportamiento de forma correcta [4], y al contrario aportan al incremento de la asimetría de la marcha [12, 13]. Por otra parte se determina como el sobre dimensionamiento incrementa el gasto energético de los pacientes [14, 15, 16, 17].

El análisis cinemático y dinámico de una prótesis de rodilla ayuda a entender el funcionamiento de los mecanismo, y verificar si se ajustan al modelo matemático de la marcha humana [4]. Al tener estos datos permitirá al grupo de investigación de la carrera de Ingeniería en Mecatrónica de la Universidad Técnica del Norte (SIBI), tener modelos de prótesis más optimizados y que emulen de mejor manera la marcha humana, para la población objeto.

Debido al déficit de prótesis en el país [7], y los problemas que producen las prótesis que aún tienen varios aspectos por mejorar, el grupo de investigación ha visto necesario contar con el análisis cinemático y dinámico de un modelo comercial que emule la marcha humana, para realizar modificaciones que permitan tener nuevos prototipos que se ajusten a la antropometría de la población protésica del país, ya que por lo general estas articulaciones de rodilla externas se fabrican para soportar 100 kg de peso.

1.2 Objetivos

1.2.1 Objetivo general

Realizar el análisis dinámico de una articulación de rodilla externa comercial, para mejorar la cinemática respecto a la marcha humana, para personas con amputación transfemoral de la zona 1 del Ecuador mediante herramientas computacionales.

1.2.2 Objetivos específicos

- a) Obtener la cinemática y dinámica de la articulación de rodilla comercial, para definir los criterios de diseño.
- b) Desarrollar un modelo de articulación de rodilla incluyendo características antropométricas de la población objeto, como parámetros de diseño.

- c) Realizar el análisis cinemático de la alternativa propuesta, para obtención del modelo matemático y curvas de comportamiento.
- d) Validar la cinemática y dinámica de la alternativa seleccionada, comparando con las curvas obtenidas del laboratorio de marcha.

1.3 Justificación

Como se indica en [12, 4], realizar el análisis cinemático y dinámico de una prótesis, permite solucionar una serie de problemas que afectan a las personas con amputaciones transfemorales, tales como, ajustar el comportamiento de las prótesis para que emulen la marcha humana, así reduciendo el riesgo de enfermedades degenerativas de los miembros residuales, por ello se pretende realizar este estudio en articulaciones de rodilla, para determinar estos factores, necesarios para la presente investigación.

Como indica J. Sánchez [8], las prótesis comerciales presentan factores de seguridad muy altos. Por estar diseñadas para rangos de pesos muy grandes (por lo general 100 kg), por lo que se evidencia la posibilidad de realizar variaciones a parámetros de diseño, generando nuevas alternativas de diseño de menor costo, peso y gasto energético para personas protésicas.

Los resultados obtenidos en esta investigación, aportan con nuevas alternativas de diseño de articulaciones de rodilla ajustadas al ciclo de la caminata humana, además al contar con datos cinemáticos, dinámicos y especificaciones de los mecanismos, permitirán una posible fabricación, que ayude a satisfacer los requerimientos de la población, porque, en el Ecuador más de 15.000 personas necesitan una prótesis [6], de las cuales solo en Imbabura, en la fundación "Prótesis para la Vida" hay 201 personas en espera de una prótesis transfemoral [14].

1.4 Alcance

Basados en el estudio del estado del arte se selecciona al menos una articulación de rodilla para estudiar la cinemática y dinámica de dicha articulación comercial, en función del ciclo de la caminata humana y los parámetros antropométricos de la población. Mediante la configuración de varios parámetros de diseño se podrá mejorar la curva del ciclo de la marcha humana (CMH) y proponer una nueva alternativa de diseño, más acorde a la población de estudio.

1.5 Antecedentes

En el estudio realizado por L. Broche [4], se desarrolló el análisis cinemático y dinámico de una articulación de rodilla comercial, en este estudio se realizó pruebas mediante simulación y con el uso de voluntarios, llegando a determinar factores que influían negativamente a la marcha humana, con esos datos se procedieron a realizar un ajuste de la articulación, mejorando así el comportamiento de esta.

Igualmente T. Soo [18], se realizó el análisis dinámico de una articulación de rodilla comercial, mediante electromiografía, con modelos musculo-esqueléticos y mediante simulación, con este estudio se pudo determinar el desgaste de las articulaciones de los miembros residuales, y el aporte de cada uno de los músculos al realizar la caminata. Con este estudio se dejó como base para el desarrollo de prótesis funcionales.

En [19] se realizó el diseño de una articulación de rodilla mediante herramientas computacionales, tomando en cuenta ciertos parámetros antropométricos, además se determinó la cinemática de la articulación para verificar que su comportamiento se acerque al siclo de la marcha humana y así mismo poder dimensionar los actuadores que componen el sistema.

En [20] se ha realizado un estudio minucioso sobre la importancia de los mecanismos de 4 y 6 barras en el desarrollo de prótesis de rodilla y ha encontrado que el modelo de 4 barras tiene un mejor ajuste del CIR respecto al de una rodilla sana, por otro lado también determinan que el correcto ajuste del CIR aumenta la capacidad de soportar grandes cargas y mejorar el rendimiento de la prótesis, finalmente aclara que los diferentes mecanismos de articulación de rodilla son diseñados siempre basándose en seguir la trayectoria del CIR que describe una especie de J curveada.

En [21] se ha encontrado que al realizar el diseño de una articulación de rodilla o incluso un exoesqueleto en base al CIR se puede mejorar el confort y lo más importante, se puede llegar a emular de mejor manera el ciclo de la marcha humana, además en esta investigación se propone un modelo comercial de visión para determinar de forma más fácil el comportamiento de este parámetro.

CAPÍTULO II

Marco Teórico

En este capítulo se describen conceptos básicos que ayudan a tener una mejor perspectiva para el desarrollo de una alternativa de prótesis de rodilla considerando las características, los tipos, los movimientos que realiza esta articulación respecto al ciclo de la marcha humana, la normativa que rige a los miembros protésicos, las curvas características, curvas del CIR así como datos antropométricos de investigaciones previas, conocimientos que permiten el correcto desarrollo de las actividades de los siguientes capítulos.

2.1 Prótesis transfemoral

Las prótesis transfemorales son dispositivos diseñados para adaptarse a las necesidades de un paciente con amputación por arriba de la rodilla, es decir, para una persona que ha perdido el pie, tobillo y rodilla, pero aún conserva la articulación de la cadera, estas prótesis constan de diferentes componentes como: el socket, articulación de rodilla y pie protésico [22].

Siendo el propósito de esta investigación generar una nueva alternativa de articulación de rodilla para amputados transfemorales.

2.2 Rodilla protésica

Este elemento juega un papel importante en factores como el equilibrio, amortiguación de choques de impacto y desarrollo del ciclo de la marcha humana de un paciente con amputación transfemoral, estas pueden ser mecánicas, articulaciones de control de fase de apoyo, de control de fase de balaceo y control tanto de apoyo y de balanceo [22, 23].

2.3 Articulación de rodilla

Comúnmente se la conoce como articulación bisagra, por los movimientos de flexión y extensión que permite realizar, pero adicional a estos posee las capacidades de rotar y trasladarse, esta articulación está formada por la tibia y por la rótula, ligamentos cruzados anterior posterior, un ligamento transversal, el extremo de cada hueso integrante está cubierto por una capa de cartílago que amortigua y lubrica el sistema evitando el desgaste y fricción o menisco [23], como se muestra en la figura 1.

Figura 1. Articulación de rodilla [24].

2.3.1 Flexión

La articulación de rodilla en su fase de flexión, posee 140° y 160° grados articulares en modalidad pasiva y activa respectivamente. Este movimiento se genera primero con el rodamiento del cóndilo seguido del desplazamiento de este, con lo cual se provoca el retroceso de los meniscos, en la figura 2, se ilustra este movimiento [23].

Figura 2. Movimiento de flexión [23].

2.3.2 Extensión

La extensión de rodilla es el movimiento de retorno desde la posición de flexión a la posición anatómica, con 0° grados de movilidad, y de 5° o 10° en el caso de la hiperextensión que a su vez debe ser simétrica en las dos rodillas, caso contrario la persona tendrá un problema patológico en dichas articulaciones, este movimiento es impulsado por el cuádriceps, esto se puede ver mejor en la figura 3 [23].

Figura 3. Movimiento de extensión [23].

2.4 Tipos de articulación de rodilla externa.

En esta sección se pretende dar a conocer las clases de articulaciones de rodilla que se puede encontrar y sus características.

2.4.1 Rodilla de un solo eje

Este mecanismo es considerado como una bisagra simple, económico y ligero, por los pocos elementos que intervienen, pero tiene ciertas limitantes que son: como la falta de un sistema de control de postura, el paciente debe estar ejerciendo fuerza constante al mantenerse de pie para mantener el equilibrio, por lo que consta de un seguro manual y un sistema de fricción constante para evitar un balanceo rápido a cada paso [23].

2.4.2 Rodilla policéntrica

Este mecanismo posee varios ejes de rotación y su movimiento es más complejo, el modelo más común es el de cuatro barras, que consta que cuatro ejes de rotación conectados por medio de cuatro eslabones rígidos y a su vez cuatro puntos de pivote, este diseño posee dos ventajas dominantes que son: la estabilidad en la fase de postura y la naturalidad del movimiento de flexión, adicionalmente la capacidad de proporcionar una separación del pie obteniendo una óptima flexión [23].

2.5 Cinemática de la marcha humana

La cinemática de la marcha humana es el estudio que se enfoca en el movimiento, sin tomar en cuenta las fuerzas que lo generan [25].

En la figura 4, se muestra la cinemática de la rodilla en el primer intervalo, donde se observa cómo se inicia con el contacto del talón y la rodilla con un ángulo de 0°, pasando a una posición plana del pie mientas el ángulo de la rodilla varía según cada etapa de este intervalo [26].

Figura 4. Cinemática de rodilla en el primer intervalo de marcha [25].

En la figura 5, se muestra el segundo intervalo de la rodilla, empezando con una posición plana del pie y un ángulo de 10° en la rodilla que pasando a 4° antes de que el talón se despegue del suelo, y por último a 40° cuando se despega tanto el talón como los dedos del suelo [26].

Figura 5. Cinemática de rodilla en el segundo intervalo de marcha [25].

En la figura 6, se muestra el tercer intervalo de la rodilla, aquí se da el despegue de los dedos, además se pasa a flexionar la rodilla a 40° y una flexión de 65°, luego se pasa a la parte faltante del balanceo y se termina con el contacto del talón con el suelo, en esta parte la rodilla termina con un ángulo de 10° [26].

Figura 6. Cinemática de rodilla en el tercer intervalo de marcha [25].

2.5.1 Curva característica de la marcha humana

Durante el ciclo de marcha la rodilla de una persona describe los ángulos mostrados en la figura 7, las curvas punteadas representan el comportamiento de la rodilla durante un ciclo de marcha mientras que la línea continua es el promedio de las diferentes mediciones.

Figura 7. Movimiento de flexo-extensión de una rodilla [26].

En esta gráfica se puede observar que a pesar de ser la misma persona a la que se le realiza el estudio de marcha, las curvas varían de un experimento a otro.

2.6 Gasto energético

Los distintos seres vivos requieren de energía metabólica para realizar sus actividades diarias, por esa razón las prótesis deben ser lo más ligeras posibles, ya que según estudios se ha demostrado que una persona con una amputación transfemoral requiere de entre 10% al 60% más de energía para realizar sus actividades, lo que resulta en que los pacientes se agoten con facilidad [14, 27], por este motivo se ve la importancia de reducir el peso de las prótesis.

2.7 Estándares para prótesis de rodilla

Como en otros campos de la ciencia, en el proceso de diseño de una prótesis de rodilla se requiere apegarse a ciertos estándares y normas, por ello se presenta las normas más utilizadas para este proceso.

2.7.1 Norma ISO 14243-1

Esta norma define las cargas a las que se somete una articulación de rodilla para las pruebas de desgaste, como es la fuerza axial, carga anterior posterior (a/p) y el par de rotación. Esta norma solo describe dichas cargas durante el ciclo de marcha.

Esta norma fue generada a partir de estudios musculo-esqueléticos, modelos analíticos y datos de marcha, realizándose algunas ediciones y pruebas en el año 2000 ya que los modelos matemáticos han avanzado mucho desde sus inicios, por ende se puede esperar que los datos se desvíen de la expectativa planteada por la ISO con forme a la mejora de dichos modelos [28].

2.7.2 Norma ASTM F3141

Esta norma es otra opción para el diseño de prótesis de rodilla, requiere datos y entradas similares a los de la ISO, para simuladores de uso de una articulación de rodilla durante el ciclo de la caminata humana, esta norma se basa en estudios científicos de los últimos años [29].

2.7.3 Comparación entre ISO 141443-1 y ASTM F3141

Según un estudio realizado en [29], las diferencias entre ISO 14243-1 y ASTM F3141 no son claras respecto al uso de prótesis de rodilla, así también a pesar que las limitaciones de los tejidos blandos han cambiado, las curvas de entrada siguen siendo las mismas tanto para la ISO como para la ASTM, las entradas de estas son: flexión, carga axial, interno externo (EI), toque y la carga anteroposterior (AP).

Las tres primeras entradas son similares para los dos estándares, pero difieren en la definición de AP, tal como se muestra en la figura 8.

Figura 8. Comparación de curvas de los estándares ISO 14243-1 y ASTM F3141 [29].

Se puede apreciar como en las curvas de la parte superior, de la figura 7, son prácticamente similares, mientras que las curvas de abajo, difieren en gran medida, ASTM proporciona de forma correcta la AP para la tibia en dirección anterior, mientras que la ISO indica en dirección posterior [29].

2.8 Antropometría

Es la ciencia que estudia las características físicas del ser humano, como son las proporciones y medidas del cuerpo humano [30].

Conocer estos datos aporta a este proceso de diseño con variables como la masa corporal promedio de la población y así poder definir el límite de peso que soportará sin fallar la prótesis de rodilla planteada y así tener modelos más personalizados acorde a la realidad antropométrica de la zona 1 del Ecuador, ya que los modelos comerciales están fabricados para pesos de hasta 100 kg.

2.8.1 Variabilidad antropométrica

Las medidas antropométricas varían de una población a otra por los siguientes factores que son:

Género: Entre hombres y mujeres se puede encontrar diferencias antropométricas considerables en especial en datos de estatura y dimensiones corporales, aunque pueden asemejarse en pocas ocasiones por el estilo de vida [31].

Edad: Es de los factores más notorios ya que una persona al nacer mide aproximadamente 50 cm y con forme su edad avanza su estatura y peso lo hacen de igual forma, y aun al llegar a una condición de adulto, estos datos no se estabilizan ya que empiezan a variar según el estilo de vida de cada persona y por el envejecimiento [31].

Origen y etnia: Según el estudio realizado en [31], las características físicas varían entre grupos étnicos, y asentamientos de distintas zonas geográficas, por aspectos como, la genética, la alimentación y factores ambientales, siendo estos de los más significativos.

2.9 Datos antropométricos

En estudios realizados por distintos investigadores se obtuvieron los datos mostrados en la tabla 1, de distintas características antropométricas de varios países del mundo.

Detalle	Edad	Peso Kg	Estatura cm	Muestra
The committe of the Rehabilitation Hospital of National	24-39	61.8-73.3	166.8-174.1	10
Research Center for Rehabilitation Technical Aids.				
(with amputation) [33]				
The commite of the Rehabilitation Hospital of National	34.4-25.4	56.63-	161.6-176.3	10
Research Center for Rehabilitation Technical Aids.		72.9		
(without amputation) [33]				
Caucasian ethnic groups from 61 surveys of Americans,	21-36	61.9	173.5	87-10042
Greeks, Czechoslovaks, Italians, Swedes, British, New				
Zealanders, Medeurs. (without amputación) [34]				
Caucasian ethnic groups from 61 surveys of Americans,	22-33	73	174.1s	87-10047
Greeks, Czechoslovaks, Italians, Swedes, British, New				
Zealanders, Medeurs. (without amputación) [34]				
Hispanic, Non-Hispanic White, Non-Hispanic Black,	20-59	73.39-	161.8-163.4	3670-3796
Non-Hispanic Asian, Mexican American [35, 33]		79.1		
Hispanic [35, 33]	20-59	74.25-	157.3-158.9	825-845
		76.7		
Mexican americans [35, 33]	20-59	74.9-78.4	156.9-158.4	458-467
Hispanic, Non-Hispanic White, Non-Hispanic Black,	20-59	84.7-90.5	176-176.6e	3576-3575
Non-Hispanic Asian, Mexican American [35]				
Hispanic [35, 33]	20-59	87.2-86.2	170.8-172.4	766
Mexican americans [35, 33]	20-59	86.4-88.2	169.8-172.2	461

Tabla 1. Datos antropométricos [32].

En la misma investigación se presentan los datos antropométricos mostrados en la tabla 2, de pacientes de Prótesis Imbabura, que se ajustan a los requerimientos de este trabajo al estar dentro de la zona 1 del Ecuador.

Nombres Peso (kg) Estatura (cm) Edad (años) Uso de prótesis Sexo Edgar Flores 60 153 43 11 años Η 100 176 41 24 años Robinson Folleco Η 85 65 Luis Foncea 172 9 años Η Fabián Tates 81.6 165 58 10 años Η Mario Guerrón 72.57 165 53 18 años Η Rene Hidrobo 77.11 165 81 6 años Η Wiliam Ipiales 72 164 26 3 meses Η Jhonatan Risueño 65 170 16 6 años Η Segundo Suarez 68 156 66 3 años Η Gabriela Pozo 52 1 año y 7 meses 157 38 Μ Mirian Torres 84 160 42 8 meses Μ Dayana Yépez 42 26 150 11 años Μ Judith Guerrero 52 150 56 -М

Tabla 2. Datos antropométricos de la población objeto [32].

Por otra parte en [36] se ha realizado el estudio de 217 personas de nacionalidad ecuatoriana de las provincias de Quito y del Carchi, entre hombre y mujeres de 18 y 19 años, encontrando los datos mostrados en la tabla 3.

Genero	Cantidad	Estatura (cm)	Peso (kg)	
Hombres	95	153-178	50-75	
Mujeres	128	141-165	57-69	

Tabla 3. Estudio antropométrico.

De este estudio se puede evidenciar que los hombres tienen mayor índice de masa corporal que las mujeres, llenado hasta los 75 kg mientras que las mujeres a un máximo de 69 kg.

2.10 Modelos protésicos de rodilla

Para este estudio se tomarán como referencia los modelos proporcionados por el grupo de investigación SIBI, los mismos que se detallan a continuación.

2.10.1 Knee joint Ossur 2000

En la figura 9 se presenta una articulación policéntrica de seis barras con gran similitud respecto a la marcha humana, absorción de impactos, sistema de bloqueo geométrico, flexión de postura ajustable, con un ángulo de flexión de rodilla de hasta 150° está diseñada para pesos de hasta 100 kg y su peso es de 690 g [37].

Este modelo actualmente se encuentra entre los \$ 20.500 a \$ 40.000, lo que dificulta su acceso a personas de escasos recursos y de países como el Ecuador, por el pago adicional de impuestos por la importación, adicionalmente por estar diseñadas para rangos de pesos muy altos, lo que incrementa su precio y peso [9].

Figura 9. Össur 2000 Knee joint [32].

2.10.2 Streifeneder 3A20 Knee joint

La figura 10 muestra una articulación de rodilla policéntrica de cuatro barras, con un sistema de asistencia de extensión integrada, posee un ángulo de flexión máximo de 120°, diseñada para un peso máximo de 100 kg, fabricada en titanio y acero con un peso total de 704 g [38].

Figura 10. Streifeneder 3A20 Knee joint.

- Este Sistema de cuatro barras, proporciona mayor estabilidad al golpear el talón al inicio de la fase de apoyo.
- Disminución del uso de energía por reducir la actividad muscular.
- Acortamiento de la prótesis durante la fase de oscilación.
- Mejor control de la flexión de rodilla en la fase final.
- Mejora la estética al sentarse.

Debido a estas características el diseño de estos sistemas de cuatro barras se ha ganado una gran aceptación en el campo protésico [39].

En base a estos modelos se pretende obtener el modelo cinemático y dinámico, con el fin de reducir el rango de peso en función de los datos antropométricos de la población objeto, para generar una nueva alternativa de prótesis de rodilla.

2.11 Mecanismos de rodilla

Las prótesis de rodilla están conformadas por mecanismos ya sea de 4, 5, 6 o más barras, que intentan emular el movimiento de la rodilla durante el CMH, para este caso se detallarán los mecanismos de 4 y 6 barras, que corresponden a las prótesis antes mencionadas.

2.11.1 Mecanismos de 4 barras

La sencillez es la marca de un buen diseño. La menor cantidad de partes que puede realizar el trabajo en general será la solución menos cara y más confiable. Por lo tanto, el eslabonamiento de cuatro barras deberá estar entre las primeras soluciones a problemas de control de movimiento a ser investigados [40].

El eslabonamiento de cuatro barras es el mecanismo articulado más simple posible para movimiento controlado con un grado de libertad, como se muestra en la figura 11. De hecho, es el dispositivo más común utilizado en maquinaria. También es extremadamente variado en función de los tipos de movimiento que puede generar [40].

Figura 11. Mecanismo de cuatro barras [40].

2.11.2 Mecanismos de 6 barras

El mecanismo de Watt se puede considerar como dos mecanismos de 4 barras en serie que comparten dos eslabones en común, o el modelo de Stephenson que se considera como dos eslabonamientos de 4 barras conectados en paralelo y que a su vez comparten dos eslabones en común, estos y más mecanismos se pueden obtener combinando varios mecanismos de 4 barras como se muestra en la figura 12 [40].

Figura 12. Mecanismo de seis barras [40].

2.11.3 Condición de Grashof

Esta condición indica si por lo menos un eslabón del mecanismo será capaz de realizar una revolución completa respecto a la bancada, en caso de cumplir con la condición será de clase I, de lo contrario el eslabonamiento no será de Grashof y ninguno de los eslabones podrá realizar una revolución completa, y se denomina como cadena cinemática de clase II [40]; la condición con la que se debe cumplir es:

$$S + L \le P + Q$$

Donde:

S: es el eslabón más corto.

L: es el eslabón más largo.

P: es un eslabón restante.

Q: longitud del otro eslabón restante.

2.11.4 Clasificación de los mecanismos de 4 barras

En la tabla 4, se muestra la clasificación de Grashof para los mecanismos de 4 barras, según cada configuración.

Tipo	s + 1 vs. p + q	Inversión	Clase	Designación de Barker	Código	También conocido como
1	<	$L_1 = s = bancada$	I-1	manivela-manivela de Grashof	GCCC	doble manivela
2	<	$L_2 = s = \text{entrada}$	I-2	manivela-balancín-balancín de Grashof	GCRR	manivela-balancín
3	<	$L_3 = s = acoplador$	I-3	balancín-manivela-balancín de Grashof	GRCR	doble balancín
4	<	$L_4 = s = $ salida	1-4	balancín-balancín-manivela de Grashof	GRRC	balancín-manivela
5	>	$L_1 = l = bancada$	II-1	balancin-balancin-balancin clase 1	ISISIS 1	triple balancin
6	>	$L_2 = l = entrada$	II-2	balancín-balancín-balancín clase 2	RRR2	triple balancín
7	>	$L_3 = l = acoplador$	II-3	balancín-balancín-balancín clase 3	RRR3	triple balancín
8	>	$L_4 = l = \text{salida}$	II-4	balancín-balancín-balancín clase 4	RRR4	triple balancín
9	=	$L_1 = s = bancada$	III-1	manivela-manivela con punto de cambio	SCCC	doble manivela SC*
10	=	$L_2 = s = \text{entrada}$	III-2	manivela-balancín-balancín con punto de cambio	SCRR	manivela-balancín SC
11	=	$L_3 = s = acoplador$	III-3	balancín-manivela-balancín con punto de cambio	SRCR	doble balancín SC
12	=	$L_4 = s = $ salida	III-4	balancín-balancín-manivela con punto de cambio	SRRC	balancín-manivela SC
13	=	dos pares iguales	III-5	punto de cambio doble	S2X	paralelogramo

Tabla 4. Condiciones de Grashof.

Mediante esta tabla se podrá ver qué tipo de mecanismo tiene la prótesis se 4 barras planteada como modelo base.

2.11.5 Grados de libertad

Los grados de libertad (GDL) son utilizados para medir la movilidad de un sistema, un GDL es igual al número de parámetros independientes que se requieren para definir de manera única su posición en el espacio en cualquier instante de tiempo, este se define a partir de un sistema de referencia seleccionado [40].

Los tipos de movimientos que se pueden tener son:

• Rotación pura

Cuando el cuerpo posee un centro de rotación que no se mueve con respecto al marco de referencia. El resto de puntos del cuerpo describen arcos alrededor del centro tal como se muestra en la figura 13.

Figura 13. Rotación pura [41].

Traslación pura

Todos los puntos del cuerpo describen trayectorias paralelas (curvilíneas o rectilíneas). Una línea de referencia trazada en el cuerpo cambia su posición lineal pero no su orientación angular [40], tal como se muestra en la figura 14.

Figura 14. Traslación pura [41].

• Traslación y rotación

Representan movimientos independientes del cuerpo. Cada uno puede presentarse sin el otro [40], como se muestra en la figura 15.

Figura 15. Rotación y traslación de un cuerpo rígido [41].

2.11.6 Ecuación de Gruebler

Para determinar los grados de libertad de un mecanismo se debe aplicar la ecuación de Gruebler mostrada a continuación [40]:

$$M = 3(L-1) - 2J$$

Donde:

M= Grados de libertad.

L= Número de eslabones.

J= Número de juntas.

G= Número de eslabones conectados a tierra.

Esta fórmula será útil en los siguientes capítulos.

2.12 Parámetros cinemáticos

Estos parámetros son los encargados de medir el grado de movimiento dinámico de una determinada articulación durante el CMH, los parámetros a tomar en cuenta son, el desplazamiento del centro de gravedad de las articulaciones de la cadera, pelvis, rodilla y tobillo, en este caso se requiere el parámetro de la rodilla [42].

2.12.1 Centro Instantáneo de rotación (CIR)

El CIR es el punto respecto al que el movimiento de un sólido es una rotación pura en dicho instante, donde Vcir=0, es decir conde la velocidad es cero, dicho punto puede estar localizado dentro o fuera del cuerpo que se está analizando [42].

Para el caso del CIR en una articulación de rodilla, se sabe que, el eje de rotación se mueve en función de los ángulos del ciclo de flexo-extensión, por ello es que se han desarrollado mecanismos de varios ejes que permitan emular de mejor manera estos movimientos, ya que una prótesis de rodilla monocéntrica solo posee un eje de rotación fijo se comporta a manera de bisagra, mientras que los mecanismos policéntricos como los de 4, 5, 6 y más barras, permiten acercarse de mejor manera al comportamiento que tiene el CIR de una rodilla normal [43].

El CIR es la característica que mejor describe la funcionalidad mecánica de una prótesis de rodilla. Este punto se lo puede ubicar extendiendo líneas a través de los ejes posterior y anterior de la rodilla y donde se cortan esas líneas en ese instante será el CIR [39], esto se puede observar en la figura 16.

Se debe saber que al extender y flexionar la rodilla la posición del CIR cambia, el camino que describe el CIR, durante este proceso se denomina *centrode* que define la función del mecanismo de rodilla de cuatro barras [39].

Otro punto a considerar es que mientras mejor sea el CIR el paciente protésico requerirá menor esfuerzo de la musculatura del muñón además que se mejora la eficiencia de la articulación [39].

Figura 16. Ubicación del CIR y su desplazamiento según el ángulo de la rodilla.

En un estudio realizado en [20] se obtuvo el CIR de la rodilla de una persona de 175 cm de altura, durante el CMH, de donde el resultado es la curva mostrada en la figura 17, a partir de los valores de la tabla 5.

Tabla 5. Valores obtenidos en la investigación [38].

CIR IDEAL				
x(mm)	y(mm)	CIR IDEAL DE UNA		
-26,6	75,5	RODILLA		
-30,5	73,6	80 -		
-32,2	67,6			
-32	60,6	70		
-31,3	54,8	60		
-31,4	50,8			
-32,3	47,1	50		
-35,1	43	40		
-37,3	36,2	Σ (
-35	25,7			
-28,9	14,1	20		
-20,9	4,2			
-13,3	-2,6			
-7,9	-6,2	0		
-5,7	-7	-40 -30 -20 -10 10		
-2,6	-6,8	-10		
0,3	-5,4	-20		
1	-2,9			
0	0			

Figura 17. CIR de una rodilla humana.

Esta curva servirá más adelante para comparar el funcionamiento de las prótesis de estudio y la propuesta generada en esta investigación.

2.12.2 Centro de equilibrio de referencia

Los fabricantes proporcionan pautas a los profesionales para una correcta alineación de la prótesis de cuatro barras, como un peso sobre una línea provista, aunque el Centro de equilibrio de referencia (CER), es considerado como un parámetro más acertado que una línea arbitraria establecida por el fabricante [39].

Esta línea toma como referencia el centro de presión en el pie y se extiende por el centro de masa del paciente.

Al determinar la distancia a la que el CIR es posterior al CER del paciente, determina la estabilidad de la rodilla, a mayor distancia posterior del CIR mayor será la estabilidad, tal como se muestra en la figura 18.

Figura 18. CIR posterior al CER que determina la estabilidad de la rodilla [39].

2.13 Cinemática de una articulación de rodilla

En el estudio realizado en [44], se presenta el análisis cinemático de dos prótesis de rodilla una de 4 y la otra de 6 barras, con la finalidad de conocer el comportamiento de dichos mecanismos, para ello se requiere realizar la simplificación de la estructura tal como se muestra en la figura 19.

Figura 19. Simplificación de una articulación de 4 barras [44].

Posteriormente se procede al estudio del mecanismos, obteniéndose al final el modelo cinemático de la articulación de rodilla, se hace lo mismo para el modelo de seis barras, tal como se muestra en la figura 20.

Figura 20. Simplificación del mecanismo de 6 barras [44].

2.14 Materiales usados en prótesis de rodilla

En el estudio realizado en [45], se ha determinado que el aluminio 6061 y el 7075-T6, son los que mejores características mecánicas presentan para la fabricación de prótesis de rodilla en el Ecuador, así mismo en [19], se realiza la selección de materiales para una prótesis externa de rodilla, destacando que los materiales más utilizados por los fabricantes de prótesis son el acero inoxidable, el aluminio y el titanio, siendo el último el más ligero y resistente pero a la vez el más costoso, mientras que el acero inoxidable es resistente pero es el más pesado, por otro lado el aluminio es ligero y resistente, por lo que se seccionó en este estudio el aluminio 7075-T6, por sus propiedades y accesibilidad en el mercado Ecuatoriano.

2.15 Rodamientos

Los rodamientos son elementos diseñados para soportar y guiar con la mínima fricción cuerpos giratorios u oscilantes de cualquier tipo de máquina, como puede ser el caso de los ejes, ruedas, árboles de levas y transferir las cargas entre los componentes de la máquina, así también admiten velocidades de giro elevadas mientras se minimiza el ruido [46], en la figura 21 se muestra como se reduce la fricción al implementar un sistema de rodadura que a su vez es cómo funcionan los rodamientos.

Figura 21. Sistema de los rodamientos [46].

Mientras que en la figura 22 se muestra los componentes que lo conforman.

Figura 22. Componentes de un rodamiento [46].

2.15.1 Criterios para la selección de rodamientos

De acuerdo con la guía de selección de SKF [46], los criterios a tomar en cuenta para la selección de un rodamiento son:

- Rendimiento y condiciones de funcionamiento.
- Tipo de rodamiento y disposición.
- Tamaño del rodamiento.
- Lubricación.
- Temperatura y velocidad de funcionamiento.
- Interfaces del rodamiento.
- Versión de rodamiento.
- Sellado, montaje y desmontaje.

Para cada uno de estos criterios se asignan determinadas constantes que se encuentran en la guía gratuita que ofrece esta marca. Así también se puede utilizar la herramienta que proporciona SKF donde al insertar los diámetros, espesores, cargas y demás condiciones se arroja los resultados requeridos tales como los del factor de seguridad del modelo seleccionado, tal como se muestra en la figura 23.

	Select Versile: 12337			Métrico
CASA > 1	O 2 > TIPO Y DISPOSICION > TAMANO Y LUBRICACION > AJUSTES Y TOLERANCH Seleccione el tipo de rodamiento	S > RESUMEN	Filtrar por mås dimensiones	Seleccione el tipo de rodamiento
	mínimo máxim Ingrese dimensiones rangos exactos en el fittro (por ejempio, 22- 27, -40)	Agujero derecho igual que agujero izquierdo	D mínimo máxim	Ratamientas x combinaciones escluitas 🛄
	Designación de búsqueda D B C C_0 Designacion	Cojinete derecho igual que cojinete izquierdo	Designación de búsqueda D 0 8 C	C ₀ Designacion
	mm i xiv i Seleccione el tipo, las dimensiones o la designación para encontrar un rodamiento adecuado		mm i kN Seleccione el tipo, las dimension un rodamie	es o la designación para encontrar nto adecuado

Figura 23. Herramienta para selección de rodamientos de SKF.
CAPÍTULO III

Marco Metodológico

En este capítulo se presenta la estructura de la metodología de trabajo utilizada durante este proyecto de investigación, marcando de forma clara el camino a seguir para cumplir con los objetivos planteados en el capítulo 1, en la figura 24 se presenta un diagrama de la metodología.

Figura 24. Metodología aplicada.

3.1 Modelo de investigación

En este trabajo se utiliza la investigación bibliográfica, científica y aplicada, las mismas que cumplen con las características detalladas a continuación.

- **Investigación bibliográfica:** esta metodología utiliza datos existentes procedentes de distintas fuentes, para luego generar una visión general y sintetizada de la información antes dispersa, esta metodología permite cubrir una amplia gama de fenómenos ya que por su naturaleza abarca un rango de espacio tiempo mucho más amplio que otras metodologías [47].
- **Investigación científica:** esta investigación es un proceso ordenado y sistemático de indagación en el cual mediante la aplicación de una serie de métodos se persigue un objetivo, con el cual se aumenta o amplia el conocimiento de dicho tema [48].
- **Investigación aplicada:** también conocida como investigación dinámica, que se basa en la aplicación de conocimientos adquiridos para generar un nuevo producto, depende también de los descubrimientos y aportes de la investigación estratégica [49].

3.2 Estructura de la investigación

En esta sección se detallan las fases para el estudio cinemático y dinámico de una prótesis de rodilla tomando como base dos diseños previos.

3.2.1 Fase 1: Investigación

En esta fase se realiza la investigación de todo lo referente a las articulaciones de rodilla protésicas, como los tipos, la cinemática de la marcha, los movimientos que realiza, los parámetros a tomar en cuenta, entre otros que se detallan a continuación.

- Actividad 1: Investigación bibliográfica referente a prótesis de rodilla.
- Actividad 2: Investigación sobre la cinemática de la marcha humana.
- Actividad 3: Investigación respecto a las curvas características de la marcha humana.
- Actividad 4: Investigar sobre las normas ISO y ASTM para prótesis de rodilla.
- Actividad 5: Investigar sobre la antropometría humana.
- Actividad 6: Obtener información de la antropometría de la población objeto.
- Actividad 7: Investigar sobre los modelos de prótesis proporcionados por el grupo de investigación SIBI.
- Actividad 8: Investigas sobre los mecanismos que componen a dada prótesis de estudio.
- Actividad 9: Estudiar la obtención de la cinemática de una prótesis de rodilla.

3.2.2 Fase 2: Análisis cinemático y dinámico de las articulaciones de rodilla

En esta fase se ha realizado el análisis cinemático de las articulaciones de rodilla de estudio, así como la simulación para determinar la estabilidad mediante el CIR y el CER, al igual que un estudio de los datos antropométricos obtenidos en el capítulo 2, para luego realizar una propuesta de articulación en base a los datos antes mencionados que se detallan a continuación:

- Actividad 1: Estudio de los mecanismos que componen a las articulaciones de rodilla de estudio.
- Actividad 2: Obtención del modelo matemático (cinemático) de los modelos de estudio.
- Actividad 3: Validación del modelo matemático.
- Actividad 4: Obtención del CIR y CER, para determinar la estabilidad, mediante el análisis dinámico usando herramientas computacionales.
- Actividad 5: Selección de un modelo base para modificaciones.
- Actividad 6: Análisis de datos antropométricos de la población objeto.

3.2.3 Fase 3: Desarrollo de la propuesta de prótesis de rodilla

Para esta fase se ha tomado los datos obtenidos en la fase anterior, para usarlos como parámetros de diseño y generar una nueva alternativa.

- Actividad 1: Modificar el modelo de articulación de rodilla tomando los datos antropométricos como criterios de diseño.
- Actividad 2: Compara las curvas obtenidas en cada una de las modificaciones con la curva del CIR de una rodilla sana obtenida en un laboratorio de marcha humana y con el modelo base.
- Actividad 3: Realizar el análisis dinámico para verificar que resista las cargas del ciclo de la marcha humana.
- Actividad 4: Comparar los costos de la alternativa propuesta con modelos comerciales en el país.

CAPÍTULO IV

Resultados y Análisis

En este capítulo se presenta el análisis de dos prótesis de rodilla comerciales, con la finalidad de obtener sus características cinemáticas y criterios de diseño, así mismo se realiza el estudio de los datos antropométricos de la población objeto para proponer una alternativa más personalizada y acorde a las características de la población ecuatoriana predominantes.

Finalmente se propuso una alternativa que emula de mejor manera el comportamiento del centro instantáneo de rotación de una rodilla sana y se comparó con curvas obtenidas por otras investigaciones en laboratorios de marcha de una rodilla sana durante el ciclo de la marcha humana.

4.1 Análisis de articulación de rodilla Streifeneder 3A20

En esta parte se obtienen de las características cinemáticas y dinámicas de la prótesis de 4 barras, así como la curva de comportamiento del CIR respecto al CMH.

4.1.1 Condición de Grashof para Streifeneder 3A20

Analizando el mecanismo de la prótesis de rodilla Streifeneder se determinará si se trata de un mecanismo de Grashof, para ello debe cumplir con la condición indicada en el capítulo 2.

$$S+L\leq P+Q$$

Para esto se simplificó el mecanismo del modelo mencionado como se muestra en la figura 25, para así obtener las dimensiones de cada uno de los eslabones.

Figura 25. Simplificación del mecanismo de 4 barras de Streifeneder.

Tomando estos datos se procede a calcular la condición de Grashof.

S=21,5mm

L=44mm P= 34mm Q=26mm

$$21,5 + 44 \le 34 + 26$$

$65, 5 \le 60$

En base al resultado obtenido se puede determinar que no es un mecanismo de Grashof, por lo que ninguno de los eslabones podrá realizar una revolución completa con respecto a la bancada o a otro eslabón.

4.1.2 Grados de libertad para Streifeneder 3A20

También es importante conocer cuántos grados de libertad posee el mecanismo de 4 barras de la prótesis Streifeneder, para ello se utiliza el modelo simplificado del mecanismo tal como se muestra en la figura 26.

Figura 26. Mecanismo de 4 barras.

Ahora se procede a calcular los GDL, utilizando la ecuación de Gruebler.

$$M = 3(L - 1) - 2J$$

$$L = 4$$

$$J = 4$$

$$M = 3(4 - 1) - 2(4)$$

$$M = 9 - 8 = 1 GDL$$

Luego de aplicar la ecuación de Gruebler se encontró que el mecanismo posee un grado de libertad, por lo que para el análisis de movimiento se requerirá de un solo actuador.

4.1.3 Cinemática para el modelo de 4 barra de Streifeneder 3A20

Para este proceso de debe simplificar el mecanismo, luego se requiere obtener los ángulos de los diferentes enlaces entre eslabones en términos de las parejas y los ángulos conocidos de θ_{hip} y θ_{Knee} , como se muestra a continuación en la figura 27.

Figura 27. Modelo simplificado de la articulación de 4 barras Streifeneder.

A continuación se escribirá la ecuación de cierre de bucle del mecanismo mostrado en la figura 19, en forma vectorial.

$$\overrightarrow{r_2} + \overrightarrow{r_3} = \overrightarrow{r_1} + \overrightarrow{r_4}$$

Los ángulos se miden respecto al eje horizontal, todos en sentido anti-horario.

Ahora se separa la ecuación vectorial en una parte real y otra imaginaria, también se puede decir que se ha de separar en las componentes escalares del vector, como se muestra a continuación:

$$L_2 cos\theta_2 + L_3 cos\theta_3 = L_1 cos\theta_1 + L_4 cos\theta_4$$
$$L_2 cos\theta_2 = L_1 cos\theta_1 - L_3 cos\theta_3 + L_4 cos\theta_4$$

Se realiza un cambio de variable.

$$X = L_1 cos\theta_1 - L_3 cos\theta_3$$

Y se reemplaza en la ecuación anterior.

$$L_2 cos\theta_2 = L_4 cos\theta_4 + X$$

Ahora para la siguiente ecuación escalar se realiza los mismos pasos.

$$L_{2}sin\theta_{2} + L_{3}sin\theta_{3} = L_{1}sin\theta_{1} + L_{4}sin\theta_{4}$$
$$L_{2}sin\theta_{2} = L_{1}sin\theta_{1} - L_{3}sin\theta_{3} + L_{4}sin\theta_{4}$$
$$Y = L_{1}sin\theta_{1} - L_{3}sin\theta_{3}$$
$$L_{2}sin\theta_{2} = L_{4}sin\theta_{4} + Y$$

Con estas ecuaciones se obtiene los ángulos $\theta 1$ y $\theta 3$, de la siguiente manera:

$$\begin{split} \theta_2 &= sin^{-1} \frac{L_2^2 + X^2 + Y^2 - L_4^2}{2L_2\sqrt{X^2 + Y^2}} - \Phi_1 \\ \theta_4 &= sin^{-1} \frac{L_2^2 - X^2 - Y^2 - L_4^2}{2L_4\sqrt{X^2 + Y^2}} - \Phi_1 \end{split}$$

Sabiendo que:

$$\Phi_1 = tan^{-1}\frac{X}{Y}$$

Con estos ángulos, se puede proceder a determinar la posición del tobillo de la siguiente forma:

$$Xp = X_{hip} + L_0 cos\theta_{hip} - L_6 cos\theta_1 + L_2 cos\theta_2 + L_7 cos\theta_3 + L_5 cos\theta_{Knee}$$
$$Yp = Y_{hip} + L_0 sin\theta_{hip} - L_6 sin\theta_1 + L_2 sin\theta_2 + L_7 sin\theta_3 + L_5 sin\theta_{Knee}$$

Las variables del sistema son:

 $x = [\theta, \beta, l_1, l_2, l_3, l_4, l_5, l_6, l_7]$, pero pueden ser obtenidos a partir del modelo 3D de la articulación de rodilla.

4.1.4 Validación del modelo matemático del mecanismo de 4 barras

Para verificar que el modelo cinemático sea correcto se programó las ecuaciones en Matlab y se ingresaron los datos de la articulación de rodilla, y se compararon los valores medidos en SolidWorks ® con los arrojados por el programa de Matlab, tal como se muestra en la figura 28.

Figura 28. Validación del modelo matemático obtenido.

En la figura 29 se muestra como al cambiar la posición del eslabón 1 a 23.26° en el código y al realizar nuevamente la simulación se obtiene los valores de los ángulos restantes de forma precisa en comparación a los medidos en el modelo 3D.

Figura 29. Simulación del modelo matemático con un ángulo diferente.

Con estos resultados se verifica que el modelo cinemático es correcto, ya que los valores resultantes en la simulación concuerdan con los del modelo CAD de la prótesis Streifeneder.

4.1.5 Simulación del CIR para la prótesis de 4 barras

Como primer paso se introdujo la curva del ciclo de la marcha humana con los diferentes ángulos que de movimiento, tal como se muestra en la figura 30, para posteriormente simular el funcionamiento.

Figura 30. Configuración del ciclo de la marcha humana.

Al simular del desplazamiento que realiza el CIR y trazando un sistema de referencia en el centro de masa de la prótesis se obtuvo la curva mostrada en la figura 31.

Figura 31. Trazo del CIR de la prótesis de 4 barras.

De la figura 31 y la respectiva simulación se puede determinar que la prótesis alcanza los 7º de estabilidad.

En la figura 32, se muestra esta trayectoria respecto al plano (xy) del CIR, luego de realizar el análisis de movimiento, para lo cual se separó los datos de cada una de las coordenadas presentes en el archivo csv.

Figura 32. Trayectoria del CIR, en el plano xy.

Los valores para graficar la curva los puede encontrar en la tabla 15 anexo 1.

4.1.6 Análisis Dinámico de la prótesis de rodilla Streifeneder 3A20

Para este proceso se toma en cuenta los valores presentes en la figura 33 donde las cargas son máximas con los ángulos respectivos según la norma ISO.

Figura 33. Cargas anterior posterior en función del ciclo de la marcha humana.

Se toman los puntos y se colocan en la tabla 6.

Tabla 6. Cargas máximas en el ciclo de la marcha humana.

Ciclo %	Carga (N)	Grados
6	-265	4
13	110	14.5
50	-165	14.5
56	-178	29
66	52	52

Se ingresó cada uno de los datos de la carga, obteniendo los resultados indicados en la figura 34, en cada uno de los puntos donde las cargas son máximas de acuerdo al ciclo de la marcha humana.

De acuerdo con los estudios realizados M. Cely [50], los puntos con menor desplazamiento en una prótesis transfemoral son, la unión de la articulación con el tubo y la unión del tubo con el pie protésico por lo que se pueden considerar como puntos fijos para la simulación mediante herramientas computacionales.

c)

d)

Figura 34. Análisis dinámico de prótesis de rodilla Streifeneder 3A20.

En la tabla 7 se muestra el resumen de los resultados obtenidos en el proceso de simulación.

Figura	% del CMH	Factor N
26 a	4	1,4
26 b	13	2,4
26 c	50	1
26 d	56	1,2
26 e	66	2,3

Tabla 7. Resultados del análisis dinámico de la prótesis de Streifeneder 3A20.

De estos resultados presentes en la tabla 7, se deduce que la prótesis tiene factores de seguridad por arriba de 1 durante el CMH, donde el punto más crítico se encuentra en el 50% del CMH, con un factor de seguridad de 1, es decir se encuentra al borde del fallo, mientras que en el 13% del CMH el factor de seguridad sube hasta 2.4.

4.2 Prótesis de rodilla Ossur Total Knee 2000

A continuación se realiza el análisis de la prótesis de rodilla Ossur Total Knee 2000, para obtener la cinemática y características de diseño que serán compradas más adelante, tales como el comportamiento del CIR durante el CMH.

4.2.1 Grados de libertad de OSSUR 2000

Se procede a calcular el número de grados de libertad del mecanismo, para ello se utiliza un modelo simplificado de la prótesis de rodilla mostrado en la figura 35.

Figura 35. Modelo simplificado de 6 barras.

Luego se utilizando la fórmula de Gruebler se calcula de la siguiente manera: θ

$$M = 3(L - 1) - 2J$$

$$L = 6$$

$$J = 7$$

$$M = 3(6 - 1) - 2(7)$$

$$M = 15 - 14 = 1 GDL$$

El mecanismo de 6 barras tiene un grado de libertad de acuerdo a lo obtenido anteriormente, con lo cual se entiende que se necesita de un solo actuador para mover esta prótesis.

4.2.2 Cinemática para el modelo de 6 barras Total Knee 2000 de Ossur

En la figura 36 se puede ver la representación vectorial del mecanismo de 6 barras con sus respectivas notaciones, que serán usadas para determinar la cinemática de este sistema.

Figura 36. Modelo esquemático de Ossur 2000.

Primero escribimos la ecuación vectorial de cada cadena cerrada de la siguiente forma:

$$r_1 + r_2 + r_3 = r_4$$
; $r_6 + r_9 = r_7 + r_8$

Luego pasamos las ecuaciones vectoriales a la forma escalar de la siguiente manera $l_1 cos \theta_1 + l_2 cos \theta_2 + l_3 cos \theta_3 - l_4 cos \theta_4 = 0$; $l_1 sin \theta_1 + l_2 sin \theta_2 + l_3 sin \theta_3 - l_4 sin \theta_4 = 0$ $l_6 cos \theta_6 + l_9 cos \theta_9 - l_7 cos \theta_7 - l_8 cos \theta_8 = 0$; $l_6 sin \theta_6 + l_9 sin \theta_9 - l_7 sin \theta_7 - l_8 sin \theta_8 = 0$

Ahora definimos la ecuación que permitirá determinar la posición de xp y yp.

$$X_p = x_{hip} + l_0 cos\theta_{hip} + l_1 cos\theta_1 + l_2 cos\theta_2 + l_8 cos\theta_8 + l_7 cos\theta_7 + l_{11} cos\theta_6 + l_{10} cos\theta_{knee}$$

$$Y_p = y_{hip} + l_0 sin\theta_{hip} + l_1 sin\theta_1 + l_2 sin\theta_2 + l_8 sin\theta_8 + l_7 sin\theta_7 + l_{11} sin\theta_6 + l_{10} sin\theta_{knee}$$

4.2.3 CIR de la Ossur total Knee 2000

En este proceso se utilizó el teorema de Kennedy para encontrar el CIR del mecanismo de 6 barras siguiendo el método de los tendones cruzados, tal como se muestra en la figura 37.

Figura 37. CIR por el método de tendones cruzados.

Pero como el mecanismo de 4 barras fue tomado de la forma convencional, al prolongar líneas desde las barras más largas y donde se cruzan es el CIR del mecanismo se utilizara el punto C64 de la figura como CIR general del sistema.

El siguiente paso es introducir la curva del ciclo de la caminata humana en SolidWorks, para luego simular el comportamiento del CIR, tal como se muestra en la figura 38.

Figura 38. Curva de la marcha humana ingresado en SolidWorks.

Después de la simulación se obtuvo la curva mostrada en la figura 39.

Figura 39. Curva del CIR de Ossur 2000.

Al finalizar el estudio de movimiento se extrajo los valores presentados en la tabla 16 anexo 2, y se trazó la curva mostrada en la figura 40.

Figura 40. CIR de Ossur 2000, respecto al CMH.

Esta curva es usada para encontrar cuál de las dos prótesis de rodilla comercial tiene un mejor comportamiento del CIR respecto al CMH.

4.2.4 Análisis de dinámico de la prótesis de rodilla Ossur 2000

Usando los datos de la Tabla 6, se realiza el mismo procedimiento de la prótesis anterior, obteniendo el factor de seguridad en cada uno de los puntos críticos durante el CMH, tal como se muestra en la figura 41.

Figura 41. Análisis dinámico para obtener los factores de seguridad en el ciclo de la marcha humana.

De acuerdo a las cargas ejercidas durante el CMH de la norma ISO 14243-1, se ha encontrado que:

- El factor de seguridad de la prótesis es máximo al 66% del CMH con un valor de 17,1.
- El factor de seguridad mínimo de la prótesis es de 1,8 cuando la persona se encuentra totalmente erguida.

Es decir la prótesis no falla ni al aplicarle el máximo peso de una persona de 100 kg.

4.3 Comparación del CIR de las prótesis de rodilla

Al finalizar la simulación dinámica de las prótesis de estudio se ha obtenido los resultados mostrados en la figura 42 con cada uno de los CIR´s de los mecanismos y de una rodilla sana en función del CMH.

Figura 42. Comparación de CIR's en función de la marcha humana.

En la figura 43 se muestra el porcentaje de error mínimo que tiene la prótesis de rodilla de Streifeneder.

Figura 43. Comparación entre el CIR de Streifeneder 3A20 con el CIR de una rodilla sana.

En la figura 43, se observa como el error que existe entre el CIR ideal y el de la prótesis de rodilla es de aproximadamente del 20%.

En la figura 44 se observa la comparación entre el CIR de la prótesis de rodilla Ossur 2000 con el CIR de una rodilla ideal.

De acuerdo con los datos obtenidos al comparar las curvas el CIR de Ossur 2000 tiene un error superior al 60% respecto al CIR de una rodilla sana.

Según las curvas presentadas en la figura 43, se ha determinado que el mecanismo de 4 barras es el que emula de mejor manera el comportamiento del CIR de una rodilla humana durante el CMH, con un 5% de error, por esta razón se tomará en adelante a dicho mecanismo como modelo base para el desarrollo de la propuesta.

4.4 Definición de los parámetros antropométricos de la zona 1 del Ecuador

Antes de realizar la caracterización de los datos antropométricos del Ecuador, se ha realizado el análisis de la antropometría de países como USA, México, España entre otros, donde se realiza la construcción de la mayoría de prótesis de rodilla de alta gama, tales como la Ossur y Streifeneder usadas para este caso de estudio, los datos se muestran en la tabla 8.

Origen	Edades	Población	Peso promedio	Peso máximo
		objeto	kg	kg
Españoles	20-39	458	87	125
	40- en adelante	831	89	127
Estadounidenses	20-39	489	92	137
	40- en adelante	1285	91	130
Mexicanos	20-39	283	89	126
	40- en adelante	471	83	115
Asiáticos	20-39	242	80	109
	40- en adelante	425	72	94

Tabla 8. Datos antropométricos de diferentes regiones del mundo [33].

En la tabla 8, se aprecia como en los pacieses que se ha realizado el estudio antropométrico de masa corporal se encuentran por arriba del promedio de los 72 kg llegando a pesos máximos de hasta 137 kg.

En la figura 45, se muestra otro estudio realizado a personas de diferentes procedencias, del mundo [35].

Figura 45. Pesos promedios de diferentes países.

En la figura 45, se puede observar que la población griega es la que menor promedio de peso corporal tiene con 61,9 kg, seguido de los latinos con un promedio de 72,9 kg, mientras que las personas con mayor peso son los británicos con un promedio de 88,2 kg y finalmente los estadounidenses con 90,5 kg, donde por lo general se fabrican y comercializan las prótesis de rodilla de Streifeneder y Ossur.

También de los resultados de la tabla 8 y de la figura 45, se ratifica que los estadounidenses tienen un promedio de masa corporal de entre 90,5 kg a 92 kg, los mexicanos de entre 83 kg a 89 kg.

Por otra parte en la figura 46, se presentan los datos de masa corporal de la población de interés facilitada por Prótesis Imbabura, datos que fueron extraídos de la tabla 2 del capítulo anterior.

Figura 46. Datos de peso de la población de objeto.

En la figura 46, se muestra que el 70% de la población de estudio tiene un peso corporal por debajo de los 72kg mientras que solo el 30% supera dicho valor y solo el 10% de la población posee un peso de 100kg.

Al comparar los datos obtenidos en la figura 45 con los de la figura 46, se puede ver que los datos concuerdan, ya que en la figura 45 se presenta un peso promedio de 72,9 kg para la población latina y en la figura 46, se encontró que el 70% de pacientes no superan dicho valor de masa corporal.

Por esto se tomará los 75 kg como límite de peso para proponer una alternativa de prótesis de rodilla más personalizada para la población Ecuatoriana, pudiéndose interpolar a pesos menores o superiores según sea la necesidad.

4.5 Desarrollo de la propuesta de prótesis de rodilla

A continuación se detalla el proceso de elaboración de la alternativa de prótesis de rodilla realizada en esta investigación, así también una comparación con modelos comerciales en el país en cuanto a costos se refiere.

4.5.1 Selección de materiales

Para este procesos se ha realizado una investigación de campo, para conocer qué tipo de materiales estructurales aptos para su uso en prótesis existen en el mercado ecuatoriano, para ello se habló con uno de los proveedores de la ciudad de Ibarra y de Quito, donde se ha encontrado que, los materiales más utilizados para prótesis en el país, son: el aluminio 6061 y 7075-T6.

Una vez encontrados los posibles materiales se ha buscado las propiedades mecánicas de cada uno de ellos, con la finalidad de tener una ponderación respecto a que material utilizar en la prótesis de rodilla propuesto.

En la tabla 9, se muestra las propiedades mecánicas entre otras cosas, del acero inoxidable, del aluminio 7075-T6 y del 6061, datos que fueron obtenidos del software Matweb.

Material	Módulo de elasticidad	Poisson	Densidad	Costo en el mercado
Acero inoxidable	193 GPa	0.29	8.00/cc	\$ 20
<mark>Aluminio</mark> 6061	<mark>68.9 GPa</mark>	<mark>0.33</mark>	2.70 g/cc	<mark>\$ 8,90</mark>
Aluminio 7075-T6	71.7 GPa	0.33	2,81 g/cc	\$ 15

Tabla 9. Propiedades mecánicas de las alternativas de materiales.

Como se observa en la tabla 9, los materiales son similares en cuanto al módulo de Poisson, pero el acero inoxidable el que posee el mayor módulo de elasticidad con 193 GPa y una densidad superior al resto de elementos, seguido del aluminio 7075-T6 con 71,7 GPa, mientras que el aluminio 6061 con 68,9 GPa pero con la menor densidad en comparación con los otros materiales, lo que evidencia un menor peso.

De la charla realizada con los distribuidores de Aluminio de la ciudad de Quito, se obtuvo que el aluminio 6075-T6 se comercializa en el país solo bajo pedido con un costos de \$ 15 el kg, mientras que el aluminio 6061 se encuentra a \$ 8,90 y se lo adquiere de forma directa en el mercado local.

Por la similitud entre el aluminio 7075-T6 y el 6061, por la disponibilidad en el mercado, por la baja densidad y por el bajo precio se ha seleccionado al aluminio 6061 como el elemento de estudio de la propuesta de prótesis de rodilla.

4.5.2 Modificaciones para mejorar la trayectoria del CIR

En este proceso se realizó modificaciones en lo que se refiere a las dimensiones de los eslabones del mecanismo. Para ello se tomó como restricción la condición de Grashof debiéndose mantener de tal forma que $S + L \ge P + Q$, para evitar que cualquier eslabón del mecanismo pueda dar una revolución completa, obteniéndose las dimensiones mostradas en la figura 47.

Figura 47. Modificaciones en las dimensiones de los eslabones.

En este proceso se realizó la simulación de la trayectoria que tendría el CIR de cada uno de los mecanismos y se obtuvo las respectivas curvas y se compararon con la curva de una rodilla sana, tal como se muestra en la figura 48.

Figura 48. CIR de las modificaciones y de una rodilla sana.

En esta etapa se ingresaron los datos obtenidos en el análisis de movimiento de SolidWorks a una hoja de Excel, para luego acceder a estos valores desde Matlab y así graficar las curvas de forma correcta.

Al analizar las curvas obtenidas en cada modificación se observó que la que más se acerca a emular la trayectoria del CIR de una rodilla sana es cuando el eslabón 1 mide 41mm, en la figura 48, se la puede observar en color amarillo con nombre "Ed4 41", los datos de dicha curva se encuentra en el anexo 3.

En la figura 49 se muestra la comparación entre la curva del modelo propuesto con el de una rodilla sana.

Figura 49. Comparación entre el CIR de la propuesta y el de una rodilla sana.

En la figura 49, se observa como el error del CIR, paso de ser del 20% en el modelo comercial de 4 barras al 5% en la propuesta de este estudio.

4.5.3 Selección de rodamientos

Para esta etapa se utilizado la herramienta que proporciona SKF, para luego realizar la cotización en el mercado local.

Esto se hizo siguiendo las mismas condiciones del análisis dinámico en cada uno de los puntos críticos del ciclo de la marcha humana, para el rodamiento rígido de bolas SKF 619/5-2Z obteniéndose los resultados mostrados en la tabla 10.

Tabla 10. Simulación del rodamiento SKF 619/5-2Z.

Ciclo %	Carga (N)	Factor de seguridad
6	-265	1,2

13	110	3,0	
50	-165	2,0	
56	-178	1,8	
66	52	6,4	

Posteriormente se buscó este modelo en el mercado local y no se pudo encontrar este modelo, por lo que se seleccionó el rodamiento 605-ZZ 5x12x5mm al ser el más parecido en dimensiones al rodamiento anterior, la validación de este rodamiento se realizará conjuntamente con la simulación del modelo de prótesis de rodilla propuesto.

4.5.4 Selección de acoples de unión para la prótesis de rodilla

Con la ayuda del catálogo de Streifeneder se ha realizado la selección de los acoples piramidales que servirán como enlace entre la articulación de rodilla propuesta y los componentes adicionales de la prótesis transfemoral, a continuación se detalla cada una de las alternativas encontradas en el mercado, para comparar sus características y utilizarlas como base en el diseño de la alternativa de prótesis de rodilla.

• Acople piramidal de encaje

En la figura 50 se muestran la forma y características de este acople.

Figura 50. Acople piramidal de desplazamiento diagonal.

• Acople de encaje

En la figura 51 se muestra la estructura que posee este adaptador y sus diferentes características.

Figura 51. Acople de encaje.

• Acople piramidal rotativo

En la figura 52 se muestra los tipos de acoples rotativos y las características.

	 con núcleo de ajuste con rosca exterior M36 con agujero de ajuste Ø 8,5 mm para combinar con rosca interior M36 					
	Material	Peso	H montaje	máx. #kg	Referencia	
	titanio	38 g	5 mm	175 kg	10A23/T	
	acero inoxidable	63 g	5 mm	125 kg	10A23/5	
 con núcleo con rosca ex para combir 	de ajuste .terior M36 nar con rosca inte	erior M36				
Material	Peso	Hmo	ntaje m	iáx. # kg	Referencia	
acero inoxida	able 89 g	8 mm	1	50 kg	10A24/S	

Figura 52. Acople piramidal rotativo.

En la tabla 11 se muestra el resumen de las características de cada una de estas opciones de acople dentro del rango de los 75 kg.

Acoples	Material	Peso	Montaje	Máxima carga	Área que ocupa(mm ²)	Referencia
Desplazamiento diagonal	Aluminio	70g	8 mm	75 kg	2074	10A93/A
De encaje	Aluminio	44g	16mm	100 kg	2704	10A92/A
Piramidal rotativo con perforación	Acero inoxidable	<mark>63g</mark>	<mark>5 mm</mark>	<mark>125 kg</mark>	<mark>1256</mark>	10A23/S
Piramidal rotativo	<mark>Acero</mark> inoxidable	<mark>89g</mark>	<mark>8 mm</mark>	<mark>150 kg</mark>	<mark>1256</mark>	10A24/S

Tabla 11. Resumen de características de los acoples.

Al haber seleccionado el modelo de Streifeneder como base, se requiere acoples que ocupen la menor área posible, ya que el mecanismo es compacto, con esa consideración y por cuestiones de costos se ha seleccionado un acople piramidal rotativo de acero inoxidable con perforación y un acople piramidal rotativo del mismo material.

4.5.3 Propuesta de prótesis

Con la finalidad de reducir la dificultad de mecanizado de las piezas se tomó en cuenta realizar las piezas con formas geométricas sencillas que faciliten su construcción. El modelo se fue desarrollando teniendo como base la prótesis de 4 barras estudiada anteriormente y con las modificaciones para mejorar la trayectoria del CIR del mecanismo, el modelo resultante es el mostrado en la figura 53, al mismo que se le realizará el correspondiente análisis dinámico respecto al CMH, demás que en la sección de anexos se presentará los respectivos planos.

Figura 53. Propuesta de prótesis de rodilla.

Al revisar las propiedades del mecanismo se encontró que este presenta una masa de aproximadamente es de 385,47g tal en la forma mostrada en la figura 57.

4.5.4 Análisis dinámico de la propuesta

Para realizar este análisis se ha tomado los datos de la tabla 6, para que los resultados puedan ser comparados con los obtenidos en el análisis dinámico del modelo de 4 barras de Streifeneder.

En la figura 54, se muestra los resultados obtenidos al realizar el análisis dinámico de la prótesis propuesta en los puntos críticos del CMH de acuerdo a las curvas de la norma ISO de carga anterior posterior.

En la figura 54 a), se muestra como al aplicar la carga máxima del paciente de 75kg, la prótesis resiste y posee un factor de seguridad de 1.5.

En la figura 54 b), se presenta el análisis al 6% del CMH, se obtuvo un factor de seguridad mínimo de 3,2 correspondiente al eslabón de 41mm.

En la figura 54 c), se indica el análisis al 13% del CMH, obteniéndose un factor de seguridad mínimo de 3,6 y donde se aprecia que el esfuerzo máximo se realiza en el acople piramidal inferior.

En la figura 54 d), se encuentra el estudio al 50% del CMH, donde se obtiene un factor de seguridad mínimo de 2,4 correspondiente al acople piramidal inferior.

En la figura 54 e), se encuentra el estudio al 56% del CMH, donde se obtiene un factor de seguridad mínimo de 1,6 correspondiente al acople piramidal inferior.

En la figura 54 f), se encuentra el estudio al 66% del CMH, donde se obtiene un factor de seguridad mínimo de 4,6 correspondiente al acople piramidal inferior.

Figura 54. Análisis dinámico, a) Cuando la persona se encuentra totalmente erguida, en este punto se produce la máxima carga. b) En 6% del CMH. c) Para el 13% del CMH. d) 50% del CMH. e) 56% del CMH. f) 66% del CMH.

En la tabla 12, se muestra los resultados obtenidos del proceso de simulación dinámica, y los factores de seguridad en los intervalos críticos del CMH según la norma ISO 14243-1.

Ciclo %	Carga (N)	Grados	Factor de seguridad
6	-265	4	3,2
13	110	14,5	3,6
50	-165	14,5	2,4
56	-178	29	1,6
66	52	52	4,5

Tabla 12. Resultados del análisis dinámico.

De acuerdo con los resultados, el prototipo propuesto si cumple con los requerimientos de diseño, de la población objeto, al tener un factor de seguridad mínimo de 1,5 al estar totalmente erguido el paciente protésico y de 1,6 al 56% del CDM.

Como otra forma de ratificar la resistencia de la prótesis de rodilla propuesta se ha realizado el análisis a fatiga tal como se muestra en la figura 55.

Figura 55. Análisis de fatiga.

Al realizar el análisis de fatiga se ha encontrado que la prótesis resiste un total de 40.000.000 ciclos.

Teniendo estos datos se puede determinar la vida útil del modelo de la siguiente forma:

$$V_U = \frac{N_C}{N_d * N_D}$$

Donde:

ND: número de días.

Nd: número de pasos al día.

Nc: número de ciclos.

Vu: vida útil.

Los datos en esta ocasión son:

ND: 365 días.

Nc: 40.000.000

Nd: 10.000 pasos/día.

Reemplazando se obtiene:

$$V_U = \frac{N_C}{N_d * N_D} = \frac{40.000.000}{10.000 x365} = 10.9 \text{ años}$$

Se considera que una persona camina 10.000 pasos al día de acuerdo a los estudios realizados por M. Rodríguez [51].

De acuerdo con los cálculos la prótesis tiene una vida útil de 10.9 años, esta vida se reduce si el paciente realiza una cantidad mayor de actividades.

4.6 Análisis de costos

Con la finalidad de verificar la factibilidad de esta propuesta, en la tabla 13 se ha realizado el análisis de costos para producir esta prótesis de rodilla.

	Co	ostos				
	Unidad de medida	Cantidad	Va	lor unitario	Valor p	or prótesis
Materia prima directa						
Aluminio 6061	kg	0,5	\$	8,90	\$	4,45
Rodamiento 605-ZZ	Unidad	8	\$	1,50	\$	12,00
					\$	16,45
Materia prima indirecta						
Acople piramidal superior	Unidad	1	\$	50,00	\$	50,00
Acople piramidal inferior	Unidad	1	\$	60,00	\$	60,00
Tope 90 grados	Unidad	1	\$	40,00	\$	40,00
					\$	150,00
Costos de ingeniería						
Diseño e investigación	Unidad	1	\$	1.000,00	\$	1.000,00
Mecanizado CNC	Hora	10	\$	50,00	\$	500,00
					\$	1.500,00
			То	tal	\$	1.666,45
Utilidad		10%				
Precio de venta					\$	1.833,10

Tabla 13. Análisis de costos de la alternativa propuesta.

Con la ayuda de Prótesis Imbabura se ha realizado la valoración de diferentes prótesis de rodilla en el país y se comparó con la alternativa planteada, tal como se muestra en la tabla 14.

Tabla 14. Comparación de la alternativa con modelos comerciales en Ecuador.

Prótesis	Precios
Alternativa propuesta	\$ 1833,10
Rodilla neumática	\$ 15 mil
Rodilla policéntrica de 4 barras	\$ 10 mil a 12 mil
Rodilla policéntrica, para flexión extensión.	\$ 7 mil a 10 mil
Rodilla monocéntrica con bloqueo	\$ 7 mil a 8 mil

Según los resultados obtenidos la alternativa propuesta es más económica que los modelos comerciales presentes en el país.

4.6 Matriz QFD de la propuesta

En esta etapa se ha comparado los modelos comerciales mencionados anteriormente, con el modelo de prótesis desarrollado en este trabajo, además se ha realizado en colaboración con el trabajo de investigación llevado a cabo en [52], en lo que a fabricación se refiere, así mismo llevando concordancia con los requerimientos del grupo SIBI, tal como se muestra en Anexo 4.

En dicha matriz se ha llegado a determinar que la alternativa propuesta si cumple con los requerimientos especificados, y con los criterios del cliente, así como los parámetros de funcionamiento según la trayectoria recorrida por el CIR de la prótesis.

CAPÍTULO V

Conclusiones y Recomendaciones

En este capítulo se presentan las conclusiones a las que se ha llegado en esta investigación, así también las recomendaciones que se deberían tomar en cuenta para futuros trabajos.

5.1 Conclusiones

Al realizar el estudio cinemático y dinámico se encontró que el modelo de 4 cuatro barras tiene un error del 20%, mientras que el modelo de 6 barras, un error superior al 60%, respecto al CIR de una rodilla sana durante el ciclo de la marcha humana.

Durante la investigación se obtuvieron datos antropométricos proporcionados por Prótesis Imbabura, en los cuales se determinó que el 70% de la población, no supera los 75 kg de masa corporal y 170 cm de estatura, por lo que al usar prótesis diseñadas para personas de 100kg con un peso que rodea los 700g, emplean entre un 10% y 60% más de energía metabólica debido al sobre dimensionamiento que existe, mientas que con la alternativa propuesta que pesa 385,47g se requiere de casi la mitad de energía adicional en comparación al modelo comercial.

La prótesis propuesta, se basa en la cinemática y modelo matemático obtenido de la articulación de rodilla comercial, con un rango de movimiento de 0° a 120° con un ajuste en el comportamiento del CIR del mecanismo, con un factor de seguridad mínimo de 1.5 cuando la persona de 75kg se encuentra totalmente apoyada sobre la prótesis.

Se realizó la comparación de la trayectoria del CIR de la alternativa planteada con el obtenido en un laboratorio de marcha, además con las curvas de los modelos comerciales y se encontró el error de cada una de estas respecto al CIR de una rodilla sana durante el ciclo de la marcha humana, siendo del 5% para el modelo propuesto, del 20% en la prótesis de 4 barras de Streifeneder y del 60% para Ossur 2000.

5.2 Recomendaciones

Realizar un programa o aplicación que permita parametrizar el modelo de prótesis de rodilla propuesto, para poder interpolar el diseño a rangos superiores o inferiores de peso y así tener prótesis más personalizadas.

Utilizar el método de algoritmos genéticos para la obtención de la cinemática y comparar con los resultados obtenidos mediante la cinemática inversa utilizada en esta investigación como forma de ratificar los resultados presentados.

Obtener la curva de comportamiento del CIR de una rodilla sana de la población objeto en un laboratorio de marcha, y comparar con los resultados obtenidos en este estudio ya que las curvas pueden variar de un experimento a otro incluso en una misma persona.

Realizar un prototipado rápido para ver la geometría de los eslabones y determinar posibles mejoras o modificaciones que faciliten la mejora continua y la posterior construcción del modelo para realizar pruebas en un paciente que cumpla con los parámetros de masa corporal no mayor a 75 kg.

Retirar todo el material que sea posible del mecanismos para reducir aún más el peso, pero sin alterar el factor de seguridad y manteniendo una geometría fácil de mecanizar o construir.

Referencias

- A. Mohamed, A. Sexton, K. Simonsen y C. McGibbon, «Development of a Mechanistic Hypothesis Linking Compensatory Biomechanics and Stepping Asymmetry during Gait of Transfemoral Amputees,» *Hindawi Applied Bionics and Biomechanics*, 2019(4769242), pp. 1-15, doi: 10.1155/2019/4769242, 2019.
- [2] A. Silverman y R. Neptune, «Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees,» *Journal of Biomechanics*, 47(11), pp. 2556-2562, doi: 10.1016/j.jbiomech.2014.06.006, 2014.
- [3] K. Vera, A. Arias, A. Espejo y P. Martin, «Diseño de un encaje para Prótesis de miembro inferior con amputación por encima de la rodilla,» *Épsilon*, 1(3), pp. 19-28, Recuperado de: https://ciencia.lasalle.edu.co/ep/, 2007.
- [4] L. Broche-Vázquez, R. Sagaró-Zamora, C. Ochoa-Díaz, A. Padilha-Lanari-Bó y F. Martinez-Nariño, «Kinematic and dynamic analysis of transfemoral prosthesis. Clinical implications,» *Ingeniería Mecánica*, 19(3), pp. 150-157, Recuperado de http://www.ingenieriamecanica.cujae.edu.cu, 2016.
- [5] D. Lacroix y J. Patiño, « Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket,» Ann Biomed Eng, 39(12), pp. 2972-83, doi: 10.1007 / s10439-011-0389-z, 2011.
- [6] S. Roa Chejín, «Una prótesis te cambia la vida,» 2019.
- [7] CONADIS, Consejo Nacional para la igualdad de discapacidades, «Estadísticas de Discapacidad,» Ministerio de Salud Pública, Quito, 2020.
- [8] J. Sánchez, R. J. Hernández y J. E. Torres, «The mechanical design of a transfemoral prosthesis using computational tools and design methodology,» *Ingeniería e Investigación*, 32(3), pp. 14 -18. Recuperado de https://revistas.unal.edu.co/index.php/ingeinv/article/view/35934, 2012.
- [9] A. Altamirano, L. Leija, A. Vera, R. Muñoz y A. Valencia, «Low Cost Knee Bionic Prosthesis Based On Polycentric Mechanisms,» 2012 Pan American Health Care Exchanges, 26(31), pp. 89-94, doi: 10.1109/PAHCE.2012.6233447, 2012.
- [10] C. Grumillier, N. Martinet, J. Paysant, J. M. Andre y C. Beyaert, «Development of a Mechanistic Hypothesis Linking Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees,» *Journal of Biomechanics*, 41(14), pp. 2926-2931, doi: 10.1155/2019/4769242, 2008.
- [11] T. Schoppen, A. Boonstra, J. W. Groothof, J. Vries, N. Goeken y W. H. Eisma, «Physical, mental, and social predictors of functional outcome in unilateral lower-limb amputees,» *Archives of Physical Medicine and Rehabilitation*, 84(6), pp. 803-811, doi: 10.1016/s0003-9993(02)04952-3, 2003.

- [12] A. Olivares, L. Broche, C. Díaz, L. Garlobo y R. Sagaró, «Analysis of the functional qualities of trans-femoral orthopedic prostheses,» *Revista Cubana de Ortopedia y Traumatología*, 25(2), pp. 102-116, Recuperado de http://scielo.sld.cu, 2011.
- [13] P. G. Adamczyk y A. D. Kuo, «Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees,» *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 23(5), pp. 776-785, doi: 10.1109/tnsre.2014.2356722, 2015.
- [14] F. Valencia, X. Lima, D. Ojeda y D. Ortiz, «Prótesis de rodilla externa mecatrónica,» *Biomecánica*, 23, pp. 33-56, doi: 10.5821/sibb.23.1.4821, 2015.
- [15] X. Bonnet, C. Villa, P. Fode, F. Lavaste y H. Pillet, «Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: effect of walking velocity,» *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228(1)*, pp. 60-66, doi:10.1177/0954411913514036, 2014.
- [16] V. Harandi, D. Ackland, R. Haddara, E. Lizama, M. Graf, M. Galea y P. Lee, «Gait compensatory mechanisms in unilateral transfemoral amputees,» *Elsevier Ltd on behalf* of *IPEM. All rights reserved*, 77, pp. 95-106, doi: 10.1016/j.medengphy.2019.11.006, 2019.
- [17] C. Detrembleur, J.-M. Vanmarsenille, F. Cuyper y F. Dierick, «Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait,» *Elsevier B.V. All rights reserved*, 21(2005), pp. 333-340, doi: 10.1016/j.gaitpost.2004.04.005, 2004.
- [18] T. Soo, K. Choi, D. Hong y M. Mun, «Dynamic analysis of above-knee amputee gait,» *Elsevier Ltd*, 22, vol. 22, n° 1, pp. 557-566, doi: 10.1016/j.clinbiomech.2006.12.009, 2007.
- [19] F. Valencia y F. Olmedo, «Diseño y simulación de una articulación de rodilla para prótesis externa usando herramientas CAD-CAE,» *Biomecánica*, vol. 24, pp. 39-54, Recuperado de: https://core.ac.uk/download/pdf/132529284.pdf, 2016.
- [20] B. Xiao, Y. Shao y W. Zhang, "Design and Optimization of Single-degree-of-freedom Six-bar Mechanisms for Knee Joint of Lower Extremity Exoskeleton Robot," Proceeding of the IEEE International Conference on Robotics and Biomimetics Dali, China, 2019.
- [21] E. Piña-Martínez y E. Rodríguez-Leal, «Inverse Modeling of Human Knee Joint Based on Geometry and Vision Systems for Exoskeleton Applications,» *Hindawi Publishing Corporation*, vol. 2015, nº 1, pp. 1-15, doi: 10.1155/2015/145734, 2015.
- [22] Protésica S.A.S, «Prótesis ortopédicas para miembro inferior por arriba de la rodila,» DatoSalud, Bogotá, 2020.
- [23] V. Vásquez y J. Moya, «External design knee prosthesis with crank mechanism slide rod,» *IX Seminario Euro Latinoamericano de Sistemas de Ingeniería*, pp. 218-226, Doi: 10.13140/RG.2.1.2154.5442, 2013.

- [24] D. Santos, «Estudio de los centros de rotación instantáneos de la rodilla en pacientes con plastia del ligamento cruzado anterior,» Universidad de la República, 2014.
- [25] F. Hernández, «Diseño y construcción de prototipo neumático de prótesis de pierna humana,» *ResearchGate*, pp. 37-46, 2008.
- [26] D. Terán, «Diseño e implementación de un sistema para visualizar la marcha humana biomecánica en la afectación de rodilla ente una gonartrosis,» *Escuela Politécnica Nacional*, vol. 1, pp. 1-114, 2017.
- [27] J. Cardona, M. Sánchez, J. Oran, A. Gomez, A. Charlez, J. Zamora, J. Salo y J. Fernández, «Coste energético en ganartrosis y prótesis total de rodilla,» *Rev Esp Cir Osteoart*, vol. 31, nº 185, pp. 225-229, 1996.
- [28] G. Bergmann, A. Bender, F. Graichen, J. Dymke, A. Rohlmann, A. Trepczynski, M. Heller y I. Kutzner, «Standardized Loads Acting in Knee Implants,» *Plos One*, vol. 9, n° 1, pp. 1-12, doi: 10.1371/journal.pone.0086035, 2014.
- [29] X. Wang, H. Li, X. Dong, F. Zhao y C. Cheng, «Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses,» *ElSevier*, vol. 63, pp. 34-40, doi: 10.1016/j.clinbiomech.2019.02.008, 2019.
- [30] Real Academia Española, «RAE,» 2021. [En línea]. Available: https://dle.rae.es/antropometr%C3%ADa. [Último acceso: 12 abril 2021].
- [31] S. Pheasant, «Anthropometry, Ergonomics and the Design of Work,» *Ebrary*, p. Recuperado de: http://site.ebrary.com/lib/bibusfq/Doc?id=10057184&ppg=43, 1996.
- [32] F. Valencia, M. Prado y F. Nadal, «Comparative analysis of the motion and kinematics of the knee joint, developed using simulation techniques,» pp. 1-8, 2021.
- [33] C. Fryar, Q. Gu, C. Ogden y K. Flegal, «Anthropometric Reference Data for Children and Adults: United States,» n° 39, pp. 2011-2014, 2016.
- [34] National Aeronautics and space Administration, «3 Anthropometry and Biomechanics,» NASA, vol. 1, nº 3, pp. 1-76, 2020.
- [35] K. Mäaref, N. Martinet, C. Grumillier, S. Ghannouchi, J. André y J. Paysant, «Kinematics in the Terminal Swing Phase of Unilateral Transfemoral Amputees: Microprocessor-Controlled Versus Swing-Phase Control Prosthetic Knees,» Arch. Phys. Med Rehabil, vol. 91, nº 6, pp. 919-925, doi: 10.1016/j.apmr.2010.01.025, 2010.
- [36] W. Tarupi, M. Félix, Y. Lepage y M. Roelants, «Referencias de peso, estatura e índice de masa corporal para niñas y niños ecuatorianos de 5 a 19 años de edad,» *ResearchGate*, vol. 118, nº 2, pp. 117-124, doi: 10.5546/aap.2020.eng.117, 2020.
- [37] Össur, «Total Knee 2000,» pp. 1-2, recuperado de: https://www.ossur.com/en-us/prosthetics/knees/total-knee-2000, 2021.
- [38] Streifeneder Ortho Productions, «3A20 Modular 4-Bar Linkage Knee Joint -Stainless Steel,» pp. 1-3, recuperado de: https://www.streifeneder.com/op/produkt/prosthetics--lower-limb_1/knee-joints_38/3a20-modular-4-bar-linkage-knee-joint--stainless-steel-/18337, 2021.
- [39] J. Breakey y S. Marquette, «Technical Note Beyond the Four-Bar Knee,» *Journal of Prosthetics and Orthotics*, vol. 10, n° 3, pp. 77-80, 1998.
- [40] R. L. Norton, Diseño de Máquinas cuarta edición, México: Mc Graw Hill, 2009.
- [41] B. Arenas, Dinámica de un cuerpo rígido, Universidad de Antioquía, 2012.
- [42] C. Pardo, Mecánica, Cinemática del sólido rígido, Cantabria: Dpto. de ingeniería estructural y mecánica, 2016.
- [43] B. Amador, R. Torrealba, M. Rojas, J. Cappelletto y C. Müller, «Metodología para dimensionamiento de mecanismo policéntrico de rodilla utilizando análisis de marcha y algoritmos genéticos,» *Revista Ingeniería Biomédica*, vol. 6, nº 11, pp. 30-45, Recuperado de: http://www.scielo.org.co/pdf/rinbi/v6n11/v6n11a04.pdf, 2012.
- [44] N. Ghaemi, N. Dardel, M. Hassan y H. Zohoor, «Optimization of six bar Knee Linkage for Stability of Knee Prosthesis,» *Majlesi Journal of Mechatronic Systems*, vol. 1, nº 4, pp. 38-45, recuperado de: https://www.researchgate.net/publication/267336505, 2012.
- [45] F. Valencia, D. Ortiz y D. Ojeda, «Design and testing of low-cost knee prosthesis,» *IEEE Second Ecuador Technical Chapters Meeting*, vol. 1, nº 1, pp. 1-6, doi: 10.1109/ETCM.2017.8247548, 2017.
- [46] SKF, «Guia de selección de rodamientos SKF,» vol. 1, pp. 1-1152, 2019.
- [47] UNIR, «Introducción a la metodología de investigación,» Facmed, 2018.
- [48] A. Zita, «Investigación científica,» Significados, 2018.
- [49] E. Rodríguez, «Metodología de la Investigación,» Univ. J. Autónoma de Tabasco, Tabasco, 2005.
- [50] M. Cely, B. Mendoza y R. Arellana, «Diseño y construcción de una prótesis para amputación transfemoral pediátrica con un sistema de desplazamiento vertical, validado por análisis por elementos finitos,» *El hombre y la máquina*, nº 36, pp. 69-76, 2011.
- [51] M. Rodríguez, «Caminar 10000 pasos al día para mantener una buena salud y calidad de vida,» *Intersedes*, nº 24, pp. 137-145, 2012.
- [52] J. Arellano, «Proceso de Fabricación de una Articulación Policéntrica de Rodilla, Usando la Metodología de Diseño para la Fabricación y Manufactura (DFMA),» Universidad Técnica del Norte, Ibarra, 2021.

Anexos

En esta sección se presentan las tablas de datos de cada curva obtenida en la investigación, así también los planos de los elementos que conforman la propuesta de prótesis de rodilla.

Anexo 1: Tabla de valores del CIR de la prótesis de rodilla de Streifeneder

Tabla 1	5.	CIR	de	Streij	feneder.
---------	----	-----	----	--------	----------

STREIFE	NEDER
X(mm)	Y(mm)
-20,3831	76,3849519
-21,04133291	74,57248
-22,46655134	70,4598525
-23,93210258	65,9027082
-24,98964174	62,3481949
-25,39204233	60,923175
-26,469565	56,8618773
-28,3910843	48,3060927
-29,80773364	39,7781514
-30,48798388	33,741198
-30,67143048	31,4594435
-30,74437869	30,3682061
-30,87367318	27,8903004
-30,95642112	25,1442705
-30,97532127	23,0044077
-30,97138785	22,1474426
-30,97010461	22,006848
-30,96634627	21,6740982
-30,96060253	21,2815255
-30,95476633	20,9563934
-30,95204759	20,8210609
-30,95972411	21,2288846
-30,97200694	22,223517
-30,97473548	23,4530329
-30,96611981	24,5203447
-30,9593327	24,978406
-30,94720573	25,5990598
-30,90317016	27,1264286
-30,81994387	29,0415056
-30,72136878	30,7284197
-30,67143048	31,4594435
-30,61605833	32,2049939
-30,46056127	34,0437631
-30,22731053	36,3574641
-29,98694972	38,403124
-29,8727231	39,2918469
-29.61836132	41.1269582

-28,85370147	45,8391034
-27,58284574	52,1715768
-26,13085326	58,1813951
-25,39204233	60,923175
-24,98964174	62,3481949
-23,93210258	65,9027082
-22,46655134	70,4598525
-21,04133291	74,57248
-20,38312311	76,3849519
-19,68583302	78,2530032
-17,84993166	82,9492259
-15,29252071	89,0521429
-12,78511738	94,6465426
-11,61903604	97,1404084
-10,37748856	99,7302322
-7,075401963	106,333955
-2,385400737	115,137446
2,329074115	123,461865
4,565014269	127,261881
4,681287032	127,457187
4,960352938	127,925049
5,296788935	128,487445
5,581519104	128,96202
5,701704465	129,161962
4,404552963	126,991991
1,52056505	122,065942
-1,577652337	116,597173
-3,921739477	112,318145
-4,843345836	110,598149
-7,92161105	104,677607
-13,84021416	92,3335877
-18,97619981	80,1041388
-22,13944048	71,4287139
-23,22909708	68,13591
-24,20133994	65,0215897
-26,11745568	58,2327202
-27,81022341	51,1312865
-28,84653812	45,8790981
-29,19731018	43,8407529
-29,57600624	41,4162813

treifeneder.	
-30,25177033	36,1327975
-30,72858061	30,6172873
-30,92208601	26,5518935
-30,9593327	24,978406
-30,9704172	22,0393376
-30,7402816	15,9911555
-30,1686476	10,1770326
-29,55653389	6,20385842
-29,27993734	4,7350057
-28,93876961	3,1052457
-28,10527835	-0,27844504
-27,11054157	-3,56788152
-26,29869263	-5,83539709
-25,96655086	-6,67745768
-25,66684303	-7,39973483
-24,97118095	-8,95177915
-24,17605305	-10,5357273
-23,53812705	-11,6761583
-23,27782807	-12,1107383
-23,1259252	-12,3564709
-22,76918937	-12,9114274
-22,35300132	-13,5209893
-22,01177726	-13,9915445
-21,87058564	-14,1787967
-21,84895895	-14,2071001
-21,79748924	-14,2740585
-21,73624315	-14,3530022
-21,68508225	-14,4183395
-21,66366885	-14,4455231
-21,68508225	-14,4183395
-21,73624315	-14,3530022
-21,79748924	-14,2740585
-21,84895895	-14,2071001
-21,87058564	-14,1787967
-21,94647604	-14,0786834
-22,12873254	-13,8331576
-22,34872477	-13,5270472
-22,53519239	-13,2590571
-22,61399147	-13,1434141
-22,74992809	-12,9405256

-		-	-		-	-	
-23,07857118	-12,4319104		-30,15399343	10,0651559		152,784351	326,336105
-23,47951985	-11,775514		-30,80306405	16,9944861		147,9291014	320,16467
-23,82315026	-11,1801712		-30,85561509	28,304597		137,4199028	306,808579
-23,96942868	-10,9172022		-29,5327576	41,7075084		126,4999764	292,927338
-24,29091442	-10,3184784		-28,27333089	48,9006659		118,4399547	282,673699
-25,08357239	-8,71211846		-27,40697816	52,954562		115,309219	278,687829
-26,07880492	-6,39792479		-24,46179437	64,154354		86,55190035	241,906002
-26,95145548	-4,03791234		-18,50063281	81,3187027		47,44629352	190,518994
-27,3261253	-2,9086401		-9,979180731	100,547815		22,26103053	155,023786
-27,58775468	-2,07143783		-4,843345836	110,598149		8,916663729	134,431796
-28,2157215	0,13097405		-0,550883429	118,43167		4,565014269	127,261881
-28,9608624	3,20562495		13,36518734	141,501158		10,38230178	136,787479
-29,56280238	6,23898367		42,61852215	183,936532		43,13471462	184,644213
-29,80297657	7,65820924		98,0720431	256,6896			
		1		,	1		

Anexo 2: Tabla de valores del CIR de la prótesis de rodilla Ossur 2000.

Tabla 16. CIR de Ossur 2000.

OSSU	R 2000
x(mm)	y(mm)
-64,8131550251282	289,5686411212200
-64,9192648180188	288,9612787086440
-65,1498156913210	287,4714203866710
-65,3838776746474	285,6166136333920
-65,5461415660995	283,9950263526300
-65,6060772080059	283,2832573867980
-65,7447825148553	281,2149228931080
-65,8948075029106	275,8356804567720
-65,7307561213603	268,7776693399020
-65,3089600175613	262,3323508890180
-65,0452335819565	259,3808049358650
-64,9123647723941	258,0393980411960
-64,5405205890581	254,6279178103030
-64,0149162679460	250,3803077682330
-63,5036864679559	246,6655489632700
-63,2564711419027	244,9760602930240
-63,2203252104792	244,7339662496600
-63,1282266739768	244,1223940608980
-63,0140783304799	243,3744896863860
-62,9145871746730	242,7312519301210
-62,8686594351572	242,4369113910180
-62,9773398356246	243,1360519796910
-63,2544739621637	244,9626559555440
-63,5765734253292	247,1757095191900
-63,8383536730537	249,0591325699760
-63,9551378488336	249,9279815769190
-64,0694135084677	250,7974343175270

-64,3590334768195	253,0994554672440
-64,6834094480097	255,8885314168260
-64,9346750493288	258,2592456280950
-65,0439845809078	259,3678094945770
-65,1292564434105	260,2736007849850
-65,3399824447644	262,7132438382970
-65,5555786946549	265,6680272213780
-65,7012258772450	268,1749135254690
-65,7572446877237	269,3617215965330
-65,8014825873277	270,4673989720830
-65,8802758099878	273,4876770661300
-65,8838662568023	277,1022348168010
-65,7984760892406	280,1206075527690
-65,7256778518382	281,5506104573680
-65,6806748594377	282,2656297603880
-65,5243930194280	284,2354161207720
-65,2659360550082	286,6055985312020
-64,9799164329164	288,5939838878660
-64,8162976609862	289,5512531914180
-64,7297744240981	290,0180401069570
-64,4612900147727	291,3278894027910
-64,0796230681373	292,9129958354300
-63,7016466916034	294,2488514686610
-63,4952528058125	294,9019291671330
-63,3693619066041	295,2777461368680
-62,9771731874944	296,3536982148410
-62,4335146865438	297,6479044825250
-61,9067304671054	298,7277884819010
-61,6191829400957	299,2573283899630
-61,6036509031634	299,2848452740370

0,2146338464602	34,0635239378261
0,4460599284491	33,4773950903319
0,5554523582479	33,2005630549573
0,5333623329948	33,2564531975386
0,3816892980319	33,6403607598612
0,1135921867233	34,3196327088166
-0,2471769327897	35,2350738141023
-0,6676902141294	36,3041005330899
-1,0500364212989	37,2779612968872
-2,0957157318840	39,9504845172047
-3,5987112580750	43,8154115472708
-5,0802445037130	47,6528203523833
-5,9998631750719	50,0488303962828
-6,5063004261810	51,3729790729668
-8,5207844875945	56,6734248112130
-11,4629487404025	64,5132369884824
-14,3936174172839	72,4441383673529
-16,2351740931622	77,4930094207636
-17,4190623754102	80,7665257401664
-22,3892785729020	94,7611709895691
-29,5987757385758	115,8733004015240
-36,5268499230120	137,2660144506440
-40,7041641612121	150,8238406924040
-41,7860162561863	154,4320272680460
-45,0282401925344	165,5236011460850
-49,4090020129274	181,3089357342370
-53,3052275410490	196,3844153376820
-55,5377664501344	205,6347350298630
-56,4834201936962	209,7296129004050
-59,8499355703332	225,5089468902180
-63,4995485786392	246,6367644929730
-65,5031132117933	264,8881543890960
-65,8946841921866	275,0105082848620
-65,8843835450790	277,0651435376030
-65,6965343372568	282,0242167264150
-64,9976643631118	288,4834546157310
-63,8039950872797	293,9062944133410
-62,7663185660736	296,8801837221150
-61,7926228805846	298,9425855869640
-60,1447816829838	301,4589517880190
-58,5129738721484	303,1637715764440
-57,1969522868443	304,1437273294750
-56,4728313698509	304,5649420755340
-56,4057104079448	304,6002387578160
-56,5022977445356	304,5492533771460
-56,6440369306303	304,4721188493530

-61,5788216968145	299,3286149090530
-61,5468304988600	299,3846106453550
-61,5180219263433	299,4346547289290
-61,5028789917487	299,4608163948260
-61,5862295608428	299,3155852693270
-61,8528551480488	298,8299897295180
-62,1841109093869	298,1781910970140
-62,4700646832537	297,5670870760280
-62,6172749341410	297,2330470349850
-62,7367019675914	296,9515246623120
-63,1726247341983	295,8343528365900
-63,8250459443209	293,8341830530900
-64,5367660516458	290,9785844905330
-65,1591465986859	287,4051577227780
-65,3724130670270	285,7185513491190
-65,6452119160304	282,7710645920540
-65,8512492450886	278,6425699225840
-65,8927368810872	274,6241379783560
-65,8575411445592	272,3251711588370
-65,8188972510570	270,9681621679710
-65,5994548329994	266,3617235891220
-65,0973351325504	259,9298996136580
-64,4315074598992	253,7009331053550
-63,9799137501145	250,1148105918230
-63,5495086542549	246,9855976377670
-61,7557584519463	235,7208182211310
-58,6815358800597	219,7776115154440
-55,2222433681132	204,2938530574860
-53,0430860988362	195,3314239655660
-51,8731690527991	190,7057325105910
-47,6618024911031	174,8875858979960
-41,5039067026721	153,4869562629080
-35,4310764820332	133,7984635494640
-31,8809286524938	122,7871754432070
-30,4936644054621	118,5699706702920
-25,9098300849171	104,9408203669730
-19,8014208528636	87,4223532323639
-14,3067819179422	72,2073354249478
-11,2668290789501	63,9869125359059
-10,4790474936801	61,8781889426270
-8,1431143969690	55,6756122902779
-5,1069032867430	47,7221261576924
-2,4208786576404	40,7842639749625
-0,9271750873244	36,9648316713480
-0,5232264513219	35,9366039408076
-0,1184890537241	34,9083517565287

-56,7830747118134	304,3937238671800
-56,8730396491104	304,3415274572340
-57,0579272125238	304,2305461393750
-58,0945907193707	303,5083510853530
-59,5087349598447	302,1991201990150

-60,7633371670742	300,6278692769140
-61,5085003623304	299,4511225320510
-61,4859684960242	299,4899226034400
-60,2807204025249	301,2863523157310
-56,8854151893904	304,3342556802360

Anexo 3: Datos de la curva ajustada al CIR de una rodilla sana.

-34,5546133 -34,7863093 -34,9826202 -35,1430893 -35,2689661 -35,3628138 -35,428145 -35,469097 -35,4901551 -35,4959218 -35,4909277 -35,4794754 -35,4655062 -35,4524764 -35,4432284 -35,4398377 -35,41457 -35,3852613 -35,3523056 -35,3161382 -35,2772264 -35,2360618 -35,1931515 -35,1490111 -35,1041576 -35,0591032 -35,014<u>3495</u> -34,970383 -34,92767 -34,8866535 -34,8477497 -34,8113452 -34,7777952 -34,747421 -34,720509 -34,6973095 -34,6780355 -34,662862

Tabla 17. CIR de una rodilla.

Propuesta de	articulación
-27.2377772	84.9104751
-27.2686515	84.8174455
-27,3573776	84,5491737
-27,4975164	84,1226092
-27,682075	83,5553919
-27,9037835	82,8655299
-28,1553414	82,0711136
-28,4296247	81,1900681
-28,719854	80,2399467
-29,0197199	79,237767
-29,3234706	78,1998873
-29,6259626	77,1419218
-29,9226802	76,0786915
-30,2097282	75,0242073
-30,4838023	73,9916816
-30,7421425	72,9935655
-30,9824723	72,0416078
-31,2029287	71,1469328
-31,4019839	70,3201356
-31,5783619	69,571392
-31,7309503	68,9105819
-31,858708	68,347427
-31,9605679	67,8916418
-32,0353333	67,553099
-32,0815649	67,3420125
-32,0974564	67,2691396
-32,144814	67,0510058
-32,2790549	66,4245574
-32,4854871	65,4363474
-32,7469267	64,1371165
-33,0453712	62,5794812
-33,3634148	60,8159172
-33,6853228	58,8971107
-33,9977442	56,8707071
-34.2900876	54,7804485

52,6656651	-34,6519259	22,6993103
50,5610716	-34,645325	22,6451874
48,4968099	-34,6431182	22,6271425
46,4986825	-34,6427502	22,6241362
44,5885233	-34,6416475	22,6151308
42,7846615	-34,6398134	22,6001668
41,1024408	-34,6372539	22,5793112
39,5547688	-34,6339768	22,5526576
38,1526756	-34,6299926	22,520325
36,9058728	-34,625314	22,4824578
35,8233087	-34,619956	22,4392241
34,913722	-34,613936	22,3908157
34,1862047	-34,6072737	22,3374462
33,6507878	-34,5999911	22,2793502
33,3190716	-34,5921125	22,2167817
33,2049312	-34,5836647	22,1500129
32,4461397	-34,5746764	22,0793328
31,7043274	-34,5651789	22,0050454
30,9818552	-34,5552055	21,9274681
30,2808735	-34,5447916	21,8469302
29,6033301	-34,5339747	21,7637714
28,950978	-34,5227943	21,6783395
28,3253859	-34,5112917	21,5909895
27,727949	-34,4995099	21,5020813
27,1599009	-34,4874935	21,4119784
26,6223253	-34,4752885	21,3210461
26,1161685	-34,4629422	21,2296501
25,6422515	-34,450503	21,1381548
25,2012817	-34,4516778	21,1467703
24,7938647	-34,4551949	21,1725968
24,420515	-34,4610337	21,2155741
24,0816664	-34,4691595	21,2756016
23,7776818	-34,4795242	21,3525377
23,5088617	-34,4920663	21,4461995
23,275452	-34,5067118	21,5563616
23,0776518	-34,5233739	21,6827553
22,9156187	-34,5419541	21,8250677
22,7894748	-34,5623428	21,9829404

-35,4813717	35,033972	-32,7308268	64,2187868
-35,4879524	35,5291846	-32,6234772	64,7576334
-35,4928525	36,0648377	-32,4879031	65,4245934
-35,4955469	36,6345396	-32,324669	66,2088655
-35,4956003	37,2315897	-32,134279	67,0996575
-35,4926894	37,8489235	-31,9173079	68,0859689
-35,4866245	38,4790689	-31,6745278	69,1563897
-35,4773673	39,114113	-31,407033	70,2989176
-35,4650457	39,7456822	-31,1163626	71,5007906
-35,4499634	40,3649367	-30,8046185	72,74834
-35,4326037	40,9625821	-30,4745774	74,0268648
-35,4136245	41,5288993	-30,1297922	75,3205322
-35,3938452	42,0537943	-29,7746761	76,6123092
-35,3742219	42,5268701	-29,4145637	77,8839317
-35,3558117	42,9375216	-29,0557399	79,1159163
-35,3397248	43,2750527	-28,7054281	80,2876233
-35,3270644	43,5288177	-28,3717277	81,3773756
-35,3188553	43,6883836	-28,063494	82,3626412
-35,3159641	43,7437113	-27,7901506	83,2202831
-35,3118979	43,8207924	-27,5614333	83,9268783
-35,2998563	44,0442776	-27,3870633	84,4591067
-35,2797247	44,4033539	-27,276356	84,7942048
-35,2510211	44,8880456	-27,2377772	84,9104751
-35,2130063	45,4889165	-27,206812	85,0036129
-35,1647821	46,1968021	-27,1167919	85,2734443
-35,1053843	47,0025645	-26,9714075	85,7063422
-35,0338724	47,8968654	-26,7737099	86,2894308
-34,9494203	48,8699551	-26,5263254	87,0103104
-34,851408	49,9114767	-26,2316488	87,856808
-34,7395161	51,010285	-25,8920213	88,8167514
-34,6138207	52,1542841	-25,509899	89,8777623
-34,4748876	53,3302848	-25,0880121	91,0270675
-34,3238611	54,5238892	-24,6295194	92,2513259
-34,1625437	55,7194071	-24,1381551	93,5364747
-33,9934585	56,8998111	-23,6183675	94,8675925
-33,8198883	58,0467403	-23,0754471	96,2287859
-33,6458808	59,1405587	-22,5156372	97,6030996
-33,4762123	60,1604785	-21,9462234	98,9724565
-33,3163004	61,0847543	-21,3755931	100,317632
-33,1720582	61,8909546	-20,8132557	101,618268
-33,0496863	62,5563132	-20,2698167	102,852936
-32,9554013	63,0581608	-19,7568931	103,999245
-32,8951067	63,3744291	-19,2869633	105,034017
-32,8740177	63,4842197	-18,8731441	105,933516
-32,8574592	63,570129	-18,5288899	106,673744
-32,8091899	63,8191008	-18,2676154	107,230804

-34,5844199	22,1559682
-34,6080555	22,3436979
-34,6331113	22,5456269
-34,659441	22,7612021
-34,6868918	22,9898185
-34,7153056	23,2308181
-34,7445198	23,4834888
-34,7743691	23,7470641
-34,8046866	24,0207222
-34,8353054	24,3035856
-34,8660596	24,5947219
-34,8967863	24,8931438
-34,9273269	25,1978103
-34,957528	25,5076283
-34,9872436	25,8214545
-34,9901578	25,8527411
-34,9985466	25,9433286
-35,0118371	26,0884939
-35,0294138	26,2836997
-35,0506324	26,5245233
-35,0748333	26,8065932
-35,101353	27,1255306
-35,1295358	27,476898
-35,1587444	27,8561514
-35,1883708	28,2585993
-35,217846	28,6793662
-35,2466493	29,1133619
-35,2743172	29,5552579
-35,3004505	29,9994697
-35,3247201	30,4401472
-35,3468703	30,8711744
-35,36672	31,2861771
-35,3841602	31,6785423
-35,3991475	32,0414478
-35,4116943	32,3679039
-35,4218532	32,6508079
-35,4296974	32,8830097
-35,4352961	33,0573912
-35,4386858	33,1669561
-35,4398377	33,2049312
-35,441149	33,2486476
-35,4448586	33,3752701
-35,4505331	33,5783231
-35,4576386	33,8516466
-35,4655743	34,1892781
-35,4737015	34,5853458
	- ,- ,

0.19180471139,716455-23,676096594,72113710.22631642139,768414-24,633198892,24159980.25212597139,807256-25,551618989,76286880.26829499139,831582-26,426767987,29775720.27389069139,84-27,255198584,85800190.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7919026-0,61908655137,00706-30,239607574,9128979-1,0711598137,798549-30,695280573,1764997-2,16192616136,115427-30,695280573,1764997-2,77592309135,156609-30,0997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,96549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,3069238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835122,807378-34,65751559,0872556-8,9828422124,940538-33,069238462,4510926-9,83355454123,455767-34,327718254,494634-10,717755121,792923-34,640425651,919037-10,6451788122,017357-34,67929853,1491225-10,8139939121,715394-34,92940	0,14953244	139,65278	-22,6861067	97,1876312
0.22631642139,768414-24,633198892,24159980.25212597139,807256-25,551618989,76286880.26829499139,831582-26,426767987,29775720.27389069139,84-27,255198584,85800190.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7191026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,0711598137,01706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,97052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007662-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,374641460,7514388-8,48011835125,807378-34,6922853,1491225-9,43355454123,455767-34,327718254,4943634-10,1711775122,860064-34,496929853,1491225-10,4434775122,376875-34,640425651,9190937-10,6451788122,017357-34,759930850,8160119-10,7707025121,792923-34,85	0,19180471	139,716455	-23,6760965	94,7211371
0.25212597139,807256-25,551618989,76286880.26829499139,831582-26,426767987,29775720.27389069139,84-27,255198584,85800190.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7919026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007662-32,040529767,5294401-5,42554233130,918362-33,069238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,097055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,579163-34,992940148,3784406-10,717025121,792233-34,640425651,9190337-10,6451788122,017357-34,759930850,8160119-10,770725121,792233-34,640425651,9190337-10,803502121,596	0,22631642	139,768414	-24,6331988	92,2415998
0.26829499139,831582-26,426767987,29775720.27389069139,84-27,255198584,85800190.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7919026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,907055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,640425651,9190937-10,6451788122,017357-34,640425651,9190937-10,6451788122,017357-34,639248-34,9929401-11,0781749121,240879-3	0,25212597	139,807256	-25,5516189	89,7628688
0.27389069139,84-27,255198584,85800190.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7919026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,069238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,07055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454122,017357-34,640425651,9190937-10,6451788122,017357-34,6929853,1491225-10,4434775122,376875-34,640425651,9190937-10,6451788122,017357-35,0	0,26829499	139,831582	-26,4267679	87,2977572
0.21237575139,747428-28,034520982,45424790.03515645139,480319-28,763305280,0960516-0,24610034139,055118-29,440975777,7919026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,940529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,907055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,426651,9190937-10,6451788122,017357-34,640425651,9190937-10,6451788122,017357-34,640425651,9190355-10,8139939121,715394-34,934430749,0348058-10,803502121,596434-35,058916947,5919035-11,8511805119,838286	0,27389069	139,84	-27,2551985	84,8580019
0.03515645139,480319-28,763305280,0960516-0.24610034139,055118-29,440975777,7919026-0.61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,940529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,09238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,907055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,4296929853,1491225-10,4434775122,376875-34,640425651,9190937-10,6451788122,017357-34,692940148,3784406-11,0781749121,240879-35,034166447,8933366-11,0781749121,240879-35,034166447,8933366-11,081749121,240879<	0,21237575	139,747428	-28,0345209	82,4542479
-0.24610034139,055118-29,440975777,7919026-0,61908655138,488784-30,067701475,5492601-1,0711598137,798549-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,09025857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,4296929853,1491225-10,4434775122,376875-34,640425651,9190937-10,6451788122,017357-34,640425651,9190937-10,6451788122,017357-34,759930850,8160119-10,7707025121,792923-34,857316349,8509745-10,8139939121,715394-34,934430749,0348058-10,830302121,596434-34,992940148,3784406-11,0781749122,240879-35,034166447,8933336-11,437821120,652676-35,058916947,5919035-11,8511805119,838286	0,03515645	139,480319	-28,7633052	80,0960516
-0.61908655 $138,488784$ -30.0677014 $75,5492601$ -1.0711598 $137,798549$ -30.1122862 $75,3851469$ $-1,58961656$ $137,001706$ $-30,2396075$ $74,9128979$ $-2,16192616$ $136,115427$ $-30,4382608$ $74,1650767$ $-2,77592309$ $135,156609$ $-30,6952805$ $73,1764997$ $-3,41995708$ $134,141757$ $-30,9970528$ $71,9830872$ $-4,08300247$ $133,086885$ $-31,3301064$ $70,6208485$ $-4,75472971$ $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-33,746144$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,6799308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ <t< td=""><td>-0,24610034</td><td>139,055118</td><td>-29,4409757</td><td>77,7919026</td></t<>	-0,24610034	139,055118	-29,4409757	77,7919026
-1,0711598137,798549-30,112286275,3851469-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,069238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,907055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,327718254,4943634-10,1711775122,376875-34,640425651,9190937-10,6451788122,017357-34,759930850,8160119-10,7707025121,792923-34,934430749,0348058-10,8139939121,715394-34,92940148,3784406-11,0781749121,240879-35,034166447,8933336-11,4037821120,652676-35,058916947,5919035-11,8511805119,838286-35,077626647,3584764-13,077237117,568322<	-0,61908655	138,488784	-30,0677014	75,5492601
-1,58961656137,001706-30,239607574,9128979-2,16192616136,115427-30,438260874,1650767-2,77592309135,156609-30,695280573,1764997-3,41995708134,141757-30,997052871,9830872-4,08300247133,086885-31,330106470,6208485-4,75472971132,007461-31,681748269,1250305-5,42554233130,918362-32,040529767,5294401-6,08658373129,833867-32,396549665,8659422-6,72971775128,767662-32,741608164,1641214-7,34748698127,732862-33,069238462,4510926-7,93305255126,74206-33,374641460,7514388-8,48011835125,807378-33,654551559,0872556-8,9828422124,940538-33,907055857,4782817-9,4357358124,152942-34,13138955,9420956-9,83355454123,455767-34,327718254,4943634-10,1711775122,376875-34,640425651,9190937-10,6451788122,017357-34,759930850,8160119-10,7707025121,792923-34,857316349,8509745-10,8139939121,715934-34,92440148,3784406-11,0781749121,240879-35,034166447,8933336-11,4037821120,652676-35,077626647,3584764-13,077237117,568322-35,077626647,3584764-13,077237117,568322-35,007626644,63963198-14,6721591114,525453	-1,0711598	137,798549	-30,1122862	75,3851469
-2,16192616 $136,115427$ $-30,4382608$ $74,1650767$ $-2,77592309$ $135,156609$ $-30,6952805$ $73,1764997$ $-3,41995708$ $134,141757$ $-30,9970528$ $71,9830872$ $-4,08300247$ $133,086885$ $-31,3301064$ $70,6208485$ $-4,75472971$ $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,3375255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,0781749$ $121,240879$ $-35,0071226$ $47,3584764$ $-13,077237$ $117,568322$ $-35,0076266$ $47,3584764$ $-13,077237$ $114,525453$ $-35,00491$ $45,6179767$ $-14,6721591$ $114,525453$ $-35,2034491$ $45,6179767$ $-15,5765454$ $112,750824$	-1,58961656	137,001706	-30,2396075	74,9128979
-2,77592309 $135,156609$ $-30,6952805$ $73,1764997$ $-3,41995708$ $134,141757$ $-30,9970528$ $71,9830872$ $-4,08300247$ $133,086885$ $-31,3301064$ $70,6208485$ $-4,75472971$ $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,0781749$ $121,240879$ $-35,00716266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,0076266$ $47,3584764$ $-13,077237$ $114,525453$ $-35,024491$ $45,6179767$ $-14,6721591$ $114,525453$ $-35,2034491$ $45,6179767$ $-15,5765454$ $112,750824$ <	-2,16192616	136,115427	-30,4382608	74,1650767
-3,41995708 $134,141757$ $-30,9970528$ $71,9830872$ $-4,08300247$ $133,086885$ $-31,3301064$ $70,6208485$ $-4,75472971$ $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066466$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,203564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-2,77592309	135,156609	-30,6952805	73,1764997
-4,08300247 $133,086885$ $-31,3301064$ $70,6208485$ $-4,75472971$ $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,792923$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066466$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-3,41995708	134,141757	-30,9970528	71,9830872
-4,75472971 $132,007461$ $-31,6817482$ $69,1250305$ $-5,42554233$ $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,9344307$ $49,0348058$ $-10,803502$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8803502$ $121,792923$ $-35,0341664$ $47,8933336$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,893336$ $-11,0781749$ $121,240879$ $-35,0589169$ $47,5919035$ $-11,437821$ $120,652676$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,203564$ $44,6798744$ $-14,6721591$ $114,525453$ $-35,203564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-4,08300247	133,086885	-31,3301064	70,6208485
-5,42554233 $130,918362$ $-32,0405297$ $67,5294401$ $-6,08658373$ $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,9344307$ $49,0348058$ $-10,803502$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,0781749$ $122,26766$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,228545$ $43,6111133$	-4,75472971	132,007461	-31,6817482	69,1250305
-6,08658373 $129,833867$ $-32,3965496$ $65,8659422$ $-6,72971775$ $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8803502$ $121,596434$ $-34,929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,0781749$ $122,0652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,228545$ $43,6111133$	-5,42554233	130,918362	-32,0405297	67,5294401
-6,72971775 $128,767662$ $-32,7416081$ $64,1641214$ $-7,34748698$ $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,203491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-6,08658373	129,833867	-32,3965496	65,8659422
-7,34748698 $127,732862$ $-33,0692384$ $62,4510926$ $-7,93305255$ $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,9344307$ $49,0348058$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,203491$ $45,6179767$ $-14,6721591$ $114,525453$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-6,72971775	128,767662	-32,7416081	64,1641214
-7,93305255 $126,74206$ $-33,3746414$ $60,7514388$ $-8,48011835$ $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,203491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,228545$ $43,6111133$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-7,34748698	127,732862	-33,0692384	62,4510926
-8,48011835 $125,807378$ $-33,6545515$ $59,0872556$ $-8,9828422$ $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1505204$ $46,3963198$ $-14,6721591$ $114,525453$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,228545$ $43,6111133$	-7,93305255	126,74206	-33,3746414	60,7514388
-8,9828422 $124,940538$ $-33,9070558$ $57,4782817$ $-9,4357358$ $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-8,48011835	125,807378	-33,6545515	59,0872556
-9,4357358 $124,152942$ $-34,131389$ $55,9420956$ $-9,83355454$ $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,1066646$ $46,9858553$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,228545$ $43,6111133$	-8,9828422	124,940538	-33,9070558	57,4782817
-9,83355454 $123,455767$ $-34,3277182$ $54,4943634$ $-10,1711775$ $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-9,4357358	124,152942	-34,131389	55,9420956
-10,1711775 $122,860064$ $-34,4969298$ $53,1491225$ $-10,4434775$ $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,4037821$ $120,652676$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-9,83355454	123,455767	-34,3277182	54,4943634
-10,4434775 $122,376875$ $-34,6404256$ $51,9190937$ $-10,6451788$ $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,1066646$ $46,9858553$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-10,1711775	122,860064	-34,4969298	53,1491225
-10,6451788 $122,017357$ $-34,7599308$ $50,8160119$ $-10,7707025$ $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,1066646$ $46,9858553$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-10,4434775	122,376875	-34,6404256	51,9190937
-10,7707025 $121,792923$ $-34,8573163$ $49,8509745$ $-10,8139939$ $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-10,6451788	122,017357	-34,7599308	50,8160119
-10,8139939 $121,715394$ $-34,9344307$ $49,0348058$ $-10,8803502$ $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-10,7707025	121,792923	-34,8573163	49,8509745
-10,8803502 $121,596434$ $-34,9929401$ $48,3784406$ $-11,0781749$ $121,240879$ $-35,0341664$ $47,8933336$ $-11,4037821$ $120,652676$ $-35,0589169$ $47,5919035$ $-11,8511805$ $119,838286$ $-35,0672922$ $47,4880269$ $-12,4122919$ $118,80652$ $-35,0776266$ $47,3584764$ $-13,077237$ $117,568322$ $-35,1066646$ $46,9858553$ $-13,8346723$ $116,136504$ $-35,204491$ $45,6179767$ $-15,5765454$ $112,750824$ $-35,263564$ $44,6798744$ $-16,5343416$ $110,829221$ $-35,3228545$ $43,6111133$	-10,8139939	121,715394	-34,9344307	49,0348058
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-10,8803502	121,596434	-34,9929401	48,3784406
-11,4037821120,652676-35,058916947,5919035-11,8511805119,838286-35,067292247,4880269-12,4122919118,80652-35,077626647,3584764-13,077237117,568322-35,106664646,9858553-13,8346723116,136504-35,150520446,3963198-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-11,0781749	121,240879	-35,0341664	47,8933336
-11,8511805119,838286-35,067292247,4880269-12,4122919118,80652-35,077626647,3584764-13,077237117,568322-35,106664646,9858553-13,8346723116,136504-35,150520446,3963198-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-11,4037821	120,652676	-35,0589169	47,5919035
-12,4122919118,80652-35,077626647,3584764-13,077237117,568322-35,106664646,9858553-13,8346723116,136504-35,150520446,3963198-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-11,8511805	119,838286	-35,0672922	47,4880269
-13,077237117,568322-35,106664646,9858553-13,8346723116,136504-35,150520446,3963198-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-12,4122919	118,80652	-35,0776266	47,3584764
-13,8346723116,136504-35,150520446,3963198-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-13,077237	117,568322	-35,1066646	46,9858553
-14,6721591114,525453-35,20449145,6179767-15,5765454112,750824-35,26356444,6798744-16,5343416110,829221-35,322854543,6111133	-13,8346723	116,136504	-35,1505204	46,3963198
-15,5765454 112,750824 -35,263564 44,6798744 -16,5343416 110,829221 -35,3228545 43,6111133	-14,6721591	114,525453	-35,204491	45,6179767
-16,5343416 110,829221 -35,3228545 43,6111133	-15,5765454	112,750824	-35,263564	44,6798744
, , , , , , , , , , , , , , , , , , , ,	-16,5343416	110,829221	-35,3228545	43,6111133
-17,5320759 108,777885 -35,3779483 42,440101	-17,5320759	108,777885	-35,3779483	42,440101
-18,5566148 106,614394 -35,4251461 41,1939641	-18,5566148	106,614394	-35,4251461	41,1939641
-19,5954401 104,356392 -35,4616082 39,8981181	-19,5954401	104,356392	-35,4616082	39,8981181
-20,6368769 102,021332 -35,4854155 38,5759832	-20,6368769	102,021332	-35,4854155	38,5759832
-21,6702696 99,626262 -35,4955598 37,2488334	-21,6702696	99,626262	-35,4955598	37,2488334

-18,1022462	107,581317
-18,044711	107,702896
-17,9870078	107,82464
-17,8192813	108,177438
-17,548474	108,743725
-17,1803587	109,507036
-16,7199211	110,451617
-16,1717027	111,562071
-15,5401178	112,823033
-14,8297535	114,218882
-14,0456587	115,733458
-13,1936262	117,349813
-12,280467	119,049977
-11,3142755	120,814741
-10,3046796	122,623477
-9,26306764	124,453975
-8,20277967	126,282328
-7,13924783	128,082862
-6,09006763	129,828121
-5,07497877	131,488932
-4,11573338	133,034542
-3,23582978	134,43287
-2,46009311	135,650855
-1,81409056	136,654928
-1,3233792	137,411608
-1,01259838	137,8882
-0,90443585	138,053598
-0,89902012	138,061874
-0,88336176	138,085796
-0,85833855	138,124015
-0,82482284	138,175185
-0,7836838	138,237962
-0,73578941	138,311003
-0,68200823	138,392966
-0,62321101	138,482506
-0,56027197	138,578275
-0,49407003	138,678921
-0,42548965	138,78309
-0,35542161	138,889419
-0,28476345	138,996544
-0,21441975	139,103092
-0,14530219	139,207686
-0,07832935	139,308943
-0,01442626	139,405475
0,04547621	139,49589
0 10044229	139 578792

-29,0640156	-0,15326306	
-28,771988	-0,8858797	
-28,4701742	-1,62000728	
-28,163397	-2,34349271	
-27,8561988	-3,04619671	
-27,5528086	-3,71983129	
-27,2571275	-4,35774685	
-26,9727325	-4,95469231	
-26,7028949	-5,50656545	
-26,4506127	-6,01016523	
-26,2186521	-6,46295295	
-26,0095981	-6,86282501	
-25,8259091	-7,20789671	
-25,6699768	-7,49629404	
-25,5441901	-7,72594777	
-25,4510022	-7,89438214	
-25,3930032	-7,99848783	
-25,3729991	-8,03426573	
-25,3546899	-8,06695452	
-25,3019185	-8,16086407	
-25,218093	-8,30910131	
-25,1067871	-8,50417356	
-24,9716615	-8,73831299	
-24,8163945	-9,00376078	
-24,6446205	-9,29300121	
-24,4598794	-9,5989414	
-24,2655766	-9,91503772	
-24,064953	-10,2353728	
-23,8610667	-10,5546897	
-23,6567832	-10,8683914	
-23,4547748	-11,1725115	
-23,2575276	-11,4636658	
-23,0673548	-11,7389887	
-22,8864144	-11,9960608	
-22,7167314	-12,2328309	
-22.5602226	-12,4475357	
-22,4187232	-12,6386177	
-22.2940151	-12,8046428	
-22,1878569	-12,9442174	
-22,1020149	-13.0559021	
-22,038296	-13 1381229	
_21 0085836	_13 1800733	
-21,9905050	-13 2066067	
-21,9040700	-13 3//1569	
21,0700099	12 1797765	
-21,/09/939	-13,4/82203	
-21,0048118	-13,008411	

-35,4918819	35,9357578
-35,4749756	34,6537158
-35,4460713	33,417664
-35,4069121	32,2407403
-35,3596322	31,1344863
-35,3066419	30,1090987
-35,2505256	29,1736991
-35,1939516	28,3366159
-35,1395945	27,605677
-35,0900695	26,9885117
-35,0478724	26,4928657
-35,0153251	26,1269343
-34,9945177	25,8997241
-34,9872436	25,8214545
-34,9725803	25,6654339
-34,9293541	25,2183332
-34,8578156	24,5159616
-34,757564	23,5979799
-34,6281741	22,5055942
-34,4696954	21,2795697
-34,2829779	19,9586561
-34,0698227	18,5784541
-33,8329819	17,1707051
-33,5760468	15,7629527
-33,3032699	14,378506
-33,0193581	13,0366326
-32,7292704	11,7529082
-32,4380388	10,5396656
-32,1506257	9,40649155
-31,8718218	8,36073812
-31,6061827	7,40802414
-31,3580019	6,55271286
-31,1313126	5,79836108
-30,9299138	5,14814143
-30,7574134	4,60524467
-30,617285	4,17327388
-30,5129325	3,85664679
-30,4477599	3,66102718
-30,4252424	3,59381296
-30,3982423	3,51346864
-30,3203321	3,28314343
-30,1963149	2,921054
-30,0311879	2,44732496
-29,830106	1,88286028
-29,5983372	1,24836954
-29.3412044	0 56359255

-21,5620292	-13,7343488
-21,4617935	-13,8557186
-21,3644344	-13,972238
-21,2702634	-14,0836606
-21,1795737	-14,1897734
-21,0926408	-14,2903941
-21,0097225	-14,3853683
-20,9310592	-14,4745669
-20,8568739	-14,5578829
-20,7873732	-14,6352295
-20,7227466	-14,7065366
-20,6631678	-14,7717492
-20,6087942	-14,8308249
-20,5597677	-14,8837317
-20,5162144	-14,930446
-20,4782454	-14,9709513
-20,4459564	-15,0052363
-20,4194283	-15,0332937
-20,3987271	-15,0551189
-20,3839041	-15,0707095
-20,3749956	-15,0800642
-20,3720237	-15,0831825
-20,3574848	-15,0984195
-20,3430209	-15,1135481
-20,3286886	-15,1285099
-20,314544	-15,1432471
-20,300642	-15,1577039
-20,2870367	-15,1718257
-20,2737807	-15,1855597
-20,260925	-15,1988551
-20,2485189	-15,2116633
-20,2366101	-15,2239377
-20,2252439	-15,235634
-20,2144637	-15,2467104
-20,2043102	-15,2571277
-20,1948221	-15,2668493
-20,1860351	-15,275841
-20,1779824	-15,2840718
-20,1706941	-15,2915133
-20,1641978	-15,2981399
-20,1585177	-15,3039289
-20,1536751	-15,3088608
-20,1496881	-15,3129188
-20,1465716	-15,3160893
-20,1443372	-15,3183616
-20,1429932	-15,319728

-26,0533348	-6,77980127
-26,3017146	-6,30192635
-26,5333345	-5,84633243
-26,7432209	-5,42496979
-26,9262598	-5,05073197
-27,0772812	-4,73709872
-27,1911558	-4,49764973
-27,2629025	-4,3454585
-27,2878053	-4,29239193
-27,3050699	-4,25552847
-27,3550833	-4,14839808
-27,4353068	-3,97548925
-27,5433309	-3,74055926
-27,6768222	-3,44686086
-27,8334731	-3,09734491
-28,0109571	-2,69484834
-28,2068877	-2,24227459
-28,418782	-1,74277132
-28,6440298	-1,19990831
-28,8798689	-0,61785695
-29,1233675	-0,00156996
-29,3714164	0,64304157
-29,620729	1,30894013
-29,8678535	1,98781116
-30,1091938	2,66994202
-30,3410403	3,3441452
-30,5596069	3,99774294
-30,7610728	4,61663221
-30,9416217	5,18544847
-31,0974767	5,68784443
-31,2249249	6,10689468
-31,3203291	6,42562838
-31,3801277	6,62768028
-31,4008267	6,69803606
-31,4330354	6,80794373
-31,5261928	7,12883639
-31,6751263	7,65144542
-31,8745845	8,3708625
-32,11906	9,28557019
-32,4025884	10,3966278
-32,7185374	11,7069234
-33,059398	13,2204171
-33,4165964	14,9413107
-33,7803531	16,8730825
-34,1396267	19.0173315
-34,4821888	21.3723848
2.,.021000	

-21,1526064	-14,2211015
-21,1776566	-14,1920038
-21,1964106	-14,1701613
-21,2081684	-14,1564417
-21,2122391	-14,1516873
-21,2192208	-14,1435273
-21,2394249	-14,1198746
-21,2717683	-14,0818899
-21,3151965	-14,0306532
-21,3686732	-13,967193
-21,4311706	-13,8925133
-21,5016603	-13,8076172
-21,5791056	-13.7135294
-21.6624542	-13.6113167
-21.7506311	-13.5021067
-21.8425335	-13,3871043
-21,9370251	-13 267607
-22.0329326	-13 1450173
-22,1290418	-13 0208523
-22 2240968	-12 8967512
-22 3167988	-12 7744771
-22,3107900	-12 6559164
-22 489743	-12 5430714
-22,407143	-12,3430/14
-22,307173	-12,4300400
-22,0307103	-12,3430373
-22,00000000	-12,2002)37
-22 7831041	-12,1720772
22,7051041	12 1083524
22,8003114	12,1003324
-22,8145510	-12,0771232
-22,0317717	-12,0727337
22,0625525	11 8870112
23 0731000	11 7306040
23,0731999	11 53/3125
23 3691329	11 2006278
23,5091529	11 0270273
-23,3313120	10 7206101
-23,7353255	-10,7200101
-25,9755865	10,0056712
-24,2092002	-10,0036/12
-24,45/8/49	-9,00223211
-24,/109085	-9,1/184331
-24,98334	-8,/1819228
-25,2539197	-8,24588528
-25,5250868	-/,/6059405
-25,7929588	-7,26918281

-20,1425446	-15,320184
-20,1429932	-15,319728
-20,1443372	-15,3183616
-20,1465716	-15,3160893
-20,1496881	-15,3129188
-20,1536751	-15,3088608
-20,1585177	-15,3039289
-20,1641978	-15,2981399
-20,1706941	-15,2915133
-20,1779824	-15,2840718
-20,1860351	-15,275841
-20,1948221	-15,2668493
-20,2043102	-15,2571277
-20,2144637	-15,2467104
-20,2252439	-15,235634
-20,2366101	-15,2239377
-20,2485189	-15,2116633
-20,260925	-15,1988551
-20,2737807	-15,1855597
-20,2870367	-15,1718257
-20,300642	-15,1577039
-20,314544	-15,1432471
-20,3286886	-15,1285099
-20,3430209	-15,1135481
-20,3574848	-15,0984195
-20,3720237	-15,0831825
-20,3758127	-15,0792067
-20,3867711	-15,0676965
-20,4042943	-15,0492554
-20,4277856	-15,0244653
-20,4566533	-14,9938945
-20,4903078	-14,9581054
-20,5281587	-14,9176616
-20,5696134	-14,8731341
-20,6140742	-14,8251067
-20,660937	-14,7741812
-20,7095897	-14,7209809
-20,7594108	-14,666155
-20,8097688	-14,6103805
-20,8600211	-14,5543644
-20,9095139	-14,4988445
-20,9575824	-14,4445895
-21,0035512	-14,3923978
-21,0467349	-14,343095
-21,0864398	-14,2975304
-21,1219653	-14,2565723

-34,7948923	23,931636	-8,15267661	126,367887		89,4441081	237,962077
-35,0641967	26,6816092	-5,23629435	131,226765		88,5325516	237,128329
-35,2770127	29,5997877	-2,05130866	136,287282		87,6603463	236,329169
-35,4219053	32,6523063	1,41442184	141,543066		86,8380703	235,574473
-35,4906411	35,7916888	5,17108527	146,985944		86,0759295	234,87383
-35,4799836	38,954916	9,22626535	152,605751		85,3838352	234,23662
-35,393511	42,0622084	13,5841827	158,390087		84,7714906	233,67206
-35,2430887	45,0170079	18,2448136	164,324008		84,2484876	233,18929
-35,0494894	47,707676	23,2028712	170,389613		83,8244121	232,79743
-34,8415935	50,0113873	28,4466318	176,565502		83,5089615	232,50570
-34,65369	51,800511	33,9565955	182,82606		83,3120728	232,32352
-34,5207176	52,9514323	39,7039787	189,140539		83,2440654	232,260582
-34,4718291	53,3552718	45,6490598	195,471925		82,4548237	231,529384
-34,4468147	53,5582977	51,7394346	201,775596		80,2158585	229,44791
-34,3723396	54,149304	57,9083048	207,997852		76,7644565	226,21745
-34,2465288	55,1062781	64,0730038	214,074473		72,3690781	222,06190
-34,0644234	56,4126156	70,1340841	219,929551	_	67,2987833	217,20429
-33,8185099	58,0556141	75,9754073	225,475003	_	61,8011357	211,85025
-33,4991361	60,0251462	81,4657791	230,611238		56,0895665	206,17902
-33,0948907	62,3124252	86,4626816	235,229515	_	50,3386813	200,34077
-32,5930115	64,9087978	90,8185137	239,216403	_	44,6850311	194,45789
-31,9798824	67,804514	94,3893774	242,460474	_	39,2309887	188,62845
-31,241678	70,9874372	97,0458624	244,860809	_	34,0499622	182,93031
-30,3652094	74,4416709	98,6845697	246,336309	_	29,191827	177,42518
-29,3390251	78,146094	99,2385389	246,834246	-	24,687978	172,162154
-28,154808	82,0728115	99,1563385	246,760387	-	20,5557446	167,18064
-26,8090878	86,1855514	98,9191844	246,547245	_	16,8021147	162,512802
-25,3052575	90,4380633	98,541759	246,207874	_	13,4268155	158,18538
-23,6558243	94,772605	98,0392308	245,755702	-	10,424843	154,22138
-21,8847488	99,1186482	97,4270279	245,204357	-	7,7885447	150,641
-20,029624	103,391975	96,720635	244,56751	_	5,50935878	147,46435
-18,1433232	107,494399	95,9354187	243,858735	-	3,5793079	144,70952
-16,2946232	111,3144	95,0864824	243,0914		1,99234082	142,39664
-14,567215	114,728993	94,1885505	242,278572		0,74561475	140,547422
-13,0565142	117,607171	93,2558821	241,432958		-0,15918251	139,18668
-11,863834	119,815147	92,3022117	240,566856		-0,71435679	138,34367
-11,0878632	121,223431	91,3407155	239,69213		-0,90443585	138,05359
-10,8139939	121,715394	90,3839993	238,820206			

Anexo 4: Matriz QFD

Anexo 5: Planos de la propuesta de prótesis de rodilla.

DESCRIPCIÓN	CANTIDAD	
Eslabón de 34 mm	1	
Eslabón de 26 mm	1	
Eslabón de 21.5 mm	1	D
Eslabón de 41 mm	2	
Eje de 40 mm	2	
Eje de 54 mm	2	
605 ZZ (5x12x5) mm	8	
cople piramidal rotativo con erforación Acero inoxidable	1	E
Tope de 90 grados	1	
cople piramidal rotativo de Acero inoxidable	1	
PRÓTESIS DE RODILLA		
Número del dibujo TDG-0721-VS	Ċ,	
Sustitución	Ingénieri Mecatrón	nica

С

В

А

,)

8

7