

UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERÍA EN CIENCIAS APLICADAS CARRERA DE INGENIERIA AUTOMOTRIZ TRABAJO DE GRADO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ

TEMA: ANÁLISIS DE LA ESTRUCTURA DE SEGURIDAD DE UN VEHÍCULO TIPO BAJA SAE USANDO SOFTWARE CAD/CAE

AUTORES:

QUISHPE BARAJA BRYAN ALEXANDER TERÁN CARTAGENA AHNDY ALEXANDER

DIRECTOR:

ING. EDWIN SALOMON ARROYO TERÁN, MSc.

Ibarra, 2024

CERTIFICADO

ACEPTACIÓN DEL TUTOR

En mi calidad de director del plan de trabajo de grado, previo a la obtención del título de Ingeniería Automotriz, nombrado por el Honorable Consejo Directivo de la Facultad de Ingeniería en Ciencias Aplicadas.

CERTIFICADO

Que una vez analizado el plan de grado cuyo título es "ANÁLISIS DE LA ESTRUCTURA DE SEGURIDAD DE UN VEHÍCULO TIPO BAJA SAE USANDO SOFTWARE CAD/CAE" presentado por los señores: Quishpe Baraja Bryan Alexander con número de cédula 1724846215 y Terán Cartagena Ahndy Alexander con número de cédula 0401685094, doy fe que dicho trabajo reúne los requisitos y méritos suficientes para ser sometido a presentación pública y evaluación por parte de los señores integrantes del jurado examinador que se designe.

En la ciudad de Ibarra, a los 06 días del mes de febrero de 2024

Atentamente

Ing/Edwin Arroyo, MSc.

DIRECTOR DEL TRABAJO DE GRADO

UNIVERSIDAD TÉCNICA DEL NORTE BIBLIOTECA UNIVERSITARIA

AUTORIZACIÓN DE USO Y PUBLICACIÓN A FAVOR DE LA UNIVERSIDAD TÉCNICA DEL NORTE

1. IDENTIFICACIÓN DE LA OBRA

En cumplimiento del Art. 144 de la Ley de Educación Superior, hago la entrega del presente trabajo a la Universidad Técnica del Norte para que sea publicado en el Repositorio Digital Institucional, para lo cual pongo a disposición la siguiente información:

DATOS DE CONTACTO			
CÉDULA DE	0401685094	0401685094	
IDENTIDAD:			
APELLIDOS Y	TERÁN CARTAGENA AHNDY ALEXANDER		
NOMBRES:			
DIRECCIÓN:	Ibarra, Dr. Cristóbal Tobar Subía		
EMAIL:	aateranc@utn.edu.ec		
TELÉFONO FIJO:	(06)2982149	TELÉFONO	0999539602
		MÓVIL:	
DATOS DE CONTACTO			
CÉDULA DE	1724846215		
IDENTIDAD:			
APELLIDOS Y	QUISHPE BARAJA BRYAN ALEXANDER		
NOMBRES:			
DIRECCIÓN:	Ibarra, Gral. José María Córdova y pasaje		
EMAIL:	baquispeb@utn.edu.ec		
TELÉFONO FIJO:	TELÉFONO 0988281244 MÓVIL: 0988281244		

DATOS DE LA OBRA		
TÍTULO:	ANÁLISIS DE LA ESTRUCTURA DE SEGURIDAD DE	
	UN VEHÍCULO TIPO BAJA SAE USANDO	
	SOFTWARE CAD/CAE	
AUTOR (ES):	Quishpe Baraja Bryan Alexander	
	Terán Cartagena Ahndy Alexander	
FECHA:	06/02/2024	
DD/MM/AAAA		
SOLO PARA TRABAJOS DE GRADO		
PROGRAMA:	■ PREGRADO □ POSGRADO	
TITULO POR EL QUE	Ingeniería Automotriz	
OPTA:		
ASESOR /DIRECTOR:	Ing. Edwin Arroyo MSc.	

2. CONSTANCIAS

El autor (es) manifiesta (n) que la obra objeto de la presente autorización es original y se la desarrolló, sin violar derechos de autor de terceros, por lo tanto, la obra es original y que es (son) el (los) titular (es) de los derechos patrimoniales, por lo que asume (n) la responsabilidad sobre el contenido de la misma y saldrá (n) en defensa de la Universidad en caso de reclamación por parte de terceros.

Ibarra, a los 06 días del mes de febrero de 2024

EL AUTOR:

DEDICATORIA

Dedicado a mi familia entera. El camino ha sido largo, lleno de desafíos y dificultades, sin embargo, su apoyo, cariño y amor mostrado han sido esencial para llegar hasta este momento. Este trabajo es el resultado de la combinación del esfuerzo propio, la formación académica, con la combinación de su apoyo incondicional mostrado cada día.

Quishpe Baraja Bryan Alexander

A mis padres Milton y Silvia por apoyarme de manera incondicional en todos mis proyectos e ideas sin negarse nunca a pesar de todos los problemas que han pasado, les guardo gran respeto y admiración, siendo así mi inspiración principal en toda esta linda carrera. A mis hermanos Cristian y Mayra los cuales me han ayudado en sus formas tan distintas de los cuales he aprendido muchas cosas para poder salir adelante en el mundo académico, profesional y de vida.

A mis abuelitos Jorge, Olga y Rosa los cuales son los pilares fundamentales en la inspiración de mi vida personal ya que con sus apoyos y palabras de aliento han creado en mí una persona de valores y respetuosa mediante su ejemplo.

Con todo el amor y el Cariño,

Terán Cartagena Ahndy Alexander

AGRADECIMIENTO

Agradezco de todo corazón a mis padres, familia quienes han caminado este largo trecho junto a mi persona, ellos han sido toda la ayuda que necesite para lograr el objetivo de ser un profesional. Agradecer, a mis amigos, quienes a través de estos años se han convertido en familia. Por otro lado, mil gracias a la institución, que ha sido mi segunda casa, a los docentes, mil gracias por compartir sus conocimientos, consejos de vida, ayudarnos a fortalecer nuestros valores como persona y como profesional.

Quishpe Baraja Bryan Alexander

Doy las gracias a Dios y la virgen María los cuales me han dado fuerzas, resistencia, y dedicación para lograr terminar mi proyecto de titulación, en momentos más difíciles de soledad las oraciones fueron el canal para poder seguir sin desfallecer. Del mismo modo agradecer a mi tutor y mentor Ing. Edwin Arroyo Msc, el cual me ha hecho aprender muchas lecciones de vida y de aprendizaje tanto académico como en la vida profesional. Su forma de ser ha sido de vital ayuda en la culminación de este proyecto. Agradecer a mi asesor el Ing. Jorge Melo Msc, él cual me ayudado en la culminación del proyecto de titulación y a lo largo de toda mi carrera universitaria con apoyos y palabras de aliento.

Sin más agradecer a mi familia y amigos verdaderos los cuales me han apoyado y dado palabras de aliento y dedicación para poder culminar esta hermosa carrera de la universidad Técnica del Norte.

Con toda Gratitud

Terán Cartagena Ahndy Alexander

ÍNDICE DE CONTENIDOS

DEDIC	CATORIA	V
AGRA	DECIMIENTO	V
ÍNDIC	E DE CONTENIDOS	VII
ÍNDIC	E DE TABLAS	XII
ÍNDIC	E DE FIGURAS	XIII
ÍNDIC	E DE ECUACIONES	XV
RESUN	MEN	XVI
ABSTF	RACT	XVII
INTRC	DDUCCIÓN	XVIII
CAPÍT	ʿULO I	1
1. RE	EVISIÓN BIBLIOGRÁFICA	1
1.1	Planteamiento del problema	1
1.2.	Antecedentes	1
1.3.	Alcance	4
1.4.	Objetivos	4
	1.4.1 Objetivo General	4
	1.4.2 Objetivos específicos	4
1.5.	Justificación	4
1.6	Baja SAE	5
1.7	Bastidor	6

1.7.1 Tipos de bastidores7
1.8 Tecnologías7
1.8.1 Diseño asistido por computador CAD7
1.8.2 Ingeniería asistida por computador CAE8
1.9 Método de elementos finitos
1.10 Normativa del bastidor Baja SAE8
1.10.1 Reglamentación la Jaula Antivuelco8
1.10.2 Lineamientos de los miembros estructurales9
1.10.3 Elementos estructurales del bastidor10
1.10.4 Miembros de apoyo Adicionales11
1.10.5 Miembros Laterales12
1.10.6 Arco Antivuelco Trasero (RRH)13
1.10.7 Refuerzo Diagonal Lateral (LBD)13
1.10.8 Arco de antivuelco de sobrecarga (RHO)13
1.10.9 Cartelas de holgura lateral
1.10.10 Travesaño debajo de asiento (USM)14
1.10.11 Miembro de refuerzo frontal (FBM)14
1.10.12 Cartelas para RHO Y FBM14
1.10.13 Elementos de refuerzos delantero/trasero FAB14
1.10.14 Refuerzo delantero14
1.10.15 Refuerzo trasero15

1.10.16 Juntas a tope	
CAPÍTULO II	
2. MATERIALES Y METODOS	
2.1 Materiales	
2.1.1 Programas computacionales	
2.2 Metodología de la investigación	
2.2.1 Diagrama de flujo	
2.3 Procedimiento	
2.3.1 Modelado 3D/CAD	
2.3.2 Distribución de los miembros primarios y secundarios	
2.3.3 Configuración de los impactadores	
2.3.4 Generación de la topología compartida y mallado	
2.3.4.1 Criterio de malla	21
2.3.5 Unidades software CAE	
2.4 Preprocesamiento - Cartas de control	23
2.4.1 Material	23
2.4.2 Sección	25
2.4.5 Contactos	25
2.4.6 Carga	
2.4.7 Controles para generar la simulación	
2.5 Metodología en ensayos estáticos	29

2.5.1 Diseño CAD	29
2.5.2 Aplicación del material y espesores	30
2.5.3 Malla	31
2.5.4 Condiciones de borde	32
2.5.5 Condiciones de impacto frontal, lateral y vuelco	33
2.5.6 Condiciones de Vuelco	34
2.5.7 Postproceso de ensayos estáticos	35
CAPITULO III	36
3. ANÁLISIS Y RESULTADOS	36
3.1 Análisis Estructural dinámico de Impacto Frontal Aplicado Fuerza	36
3.2 Análisis estructural estático de un impacto frontal	38
3.3 Resultados de impacto Frontal en forma dinámica y estática.	38
3.4 Análisis estructural dinámico de Impacto Frontal Aplicado velocidad y masa	39
3.5 Resultados de impacto Frontal dinámico aplicado fuerza versus masa y velocidad	41
3.6 Análisis estructural dinámico de impacto Lateral Aplicado Fuerza	42
3.7 Análisis estructural estático de un impacto lateral.	43
3.8 Resultados de impacto lateral en forma dinámica y estática	44
3.9 Análisis estructural dinámico de Impacto o Condiciones de volcamiento	45
3.10 Análisis estructural estático de vuelco	47
3.11 Resultados de impacto vuelco en forma dinámica y estática.	47
3.12 Comparación entre cantidad de nodos y elementos	48

3.13 Tiempos de Postprocesamiento.	49
3.14 Simulaciones del ensamble	50
3.14.1 Análisis del Impacto Frontal	50
3.14.1.1 Resultados de impacto frontal Ensamble	52
3.14.2 Análisis Impacto Lateral	53
3.14.2.1 Resultados del impacto lateral Ensamble	54
3.15 Discusión de resultados	55
CAPITULO IV	57
4. CONCLUSIONES Y RECOMENDACIONES	57
4.1. CONCLUSIONES	57
4.2. RECOMENDACIONES	59
BIBLIOGRAFÍA	61
ANEXOS	64

ÍNDICE DE TABLAS

Tabla 2.1 Miembros estructurales de la estructura de seguridad utilizados	.19
Tabla 2.2 Dimensiones de Impactadores	.20
Tabla 2.3 Espectro de calidad de malla (Ortogonal)	.21
Tabla 2.4 Unidades utilizadas en el software CAE.	.23
Tabla 2.5 Propiedades del material acero estructural ASTM A500 grado "C"	.23
Tabla 2.6 Parámetros de simulación para los ensayos	.27
Tabla 3.1 Comparación de resultados de Impacto Frontal	.38
Tabla 3.2 Comparación de resultados de Impacto Frontal fuerza vs masa y velocidad	.41
Tabla 3.3 Comparación de resultados de impacto lateral	.44
Tabla 3.4 Comparación de resultados de Impacto vuelco	.47
Tabla 3.5 Comparativa de nodos y elementos de los ensayos	.48
Tabla 3.6 Tiempos de solución de cada ensayo	.49
Tabla 3.7 Resultados de impacto frontal del Ensamble	.52
Tabla 3.8 Resultados de Impacto lateral de ensamble	.55

ÍNDICE DE FIGURAS

Figura 1.1 Modelo reglamentario de la jaula	9
Figura 1.2 Miembros primarios del bastidor	10
Figura 1.3 Miembros secundarios del bastidor	11
Figura 1.4 Miembros de Apoyo del bastidor	12
Figura 1.5 Travesaños laterales del bastidor	12
Figura 2.1 Diagrama de flujo para ensayos dinámicos	17
Figura 2.2 Bastidor diseñado en base a las dimensiones reglamentarias	18
Figura 2.3 Designación de Tubos primarios y secundarios	19
Figura 2.4 Generación de Topología Compartida	20
Figura 2.5 Verificación del índice de calidad de malla	22
Figura 2.6 Carta de control para definir el material	24
Figura 2.7 Curva esfuerzo-Deformación	24
Figura 2.8 Carta de control SECTION-SHELL	25
Figura 2.9 Carta de control CONTACT	26
Figura 2.10 Trazado del bastidor	29
Figura 2.11 Pasos para la creación del modelado CAD	29
Figura 2.12 Bastidor diseñado con el módulo Work Bench	
Figura 2.13 Pasos para asignación del material ACERO ASTM A500 grado C	31
Figura 2.14 Element Quality de 1	
Figura 2.15 Pasos para aplicación de condiciones de borde	
Figura 2.16 Condiciones para impacto frontal	
Figura 2.17 Condiciones para impacto lateral	34
Figura 2.18 Condiciones para el impacto de Vuelco	34
Figura 2.19 Proceso para el ingreso de soluciones	35

Figura 3.1 Impacto frontal aplicado fuerza del bastidor Baja SAE	
Figura 3.2 Balance de energías Impacto Frontal Aplicado fuerza	
Figura 3.3 Impacto frontal ensayo estático	
Figura 3.4 Impacto frontal aplicado velocidad y masa	
Figura 3.5 Balance de energías aplicado velocidad y masa	40
Figura 3.6 Ensayo impacto lateral	42
Figura 3.7 Balance de energías de Impacto Lateral	43
Figura 3.8 Esfuerzo ensayo impacto lateral	44
Figura 3.9 Ensayo de vuelco	45
Figura 3.10 Balance de Energías del Ensayo de Vuelco	46
Figura 3.11 Ensayo estático de vuelco	47
Figura 3.12 Ensayo de impacto frontal del ensamble	
Figura 3.13 Balance de energías del ensayo del ensamble de impacto frontal	51
Figura 3.14 Ensayo de impacto lateral del Ensamble	53
Figura 3.15 Balance de energías del ensayo del ensamble de impacto lateral	54

ÍNDICE DE ECUACIONES

Ecuación [2.1] Aceleración	
Ecuación [2.2] Fuerza	
Ecuación [2.3] Paso de tiempo (timestep)	
Ecuación [2.4] Control de Hourglass	

RESUMEN

El presente trabajo de titulación está enfocado en el diseño y análisis del comportamiento estático y dinámico de una estructura de seguridad bajo condiciones de impacto: frontal, lateral y vuelco según la normativa Baja SAE, a través de elementos finitos usando software CAD/CAE. En este contexto, el objetivo es validar la estructura de seguridad. Para ello se investigaron conceptos básicos de estructuras de seguridad, elementos finitos y ensayos de choque de la estructura de seguridad bajo diferentes condiciones.

Los modelos CAD de la estructura de seguridad e impactadores se desarrollaron siguiendo los parámetros de la Baja SAE, LATIN NCAP y EURO NCAP, para ello se utilizaron software CAD. Por otra parte, el preprocesamiento y post procesamiento se desarrollaron igualmente siguiendo los parámetros antes mencionados, parámetros tales como cargas básicas, condiciones de contorno, y otros parámetros como propiedades mecánicas del material y discretización de malla de elementos finitos que se debieron ajustar al medio y facilidades de los ordenadores respectivamente, para ello se utilizaron software CAE.

La obtención de resultados muestra que, los esfuerzos para el análisis estático sobrepasan lo establecido, para el caso del impacto frontal. Para el caso del impacto lateral y vuelco, los esfuerzos están dentro del rango de lo permitido. En cuanto a las deformaciones, estas garantizan la seguridad estructural. Por otra parte, el análisis dinámico muestra resultados de esfuerzos sumamente altos los cuales superan lo permitido, en cuanto a las deformaciones garantizan la seguridad estructural.

PALABRAS CLAVE: Baja SAE, estructura de seguridad, ensayos dinámicos, ensayos estáticos, elementos finitos, software CAD/CAE, simulación.

ABSTRACT

This degree work is focused on the design and analysis of the static and dynamic behavior of a safety structure under impact conditions: frontal, lateral and overturning according to the Baja SAE regulations, through finite elements using CAD/CAE software. In this context, the goal is to validate the security structure. To this end, basic concepts of safety structures, finite elements and crash tests of the safety structure under different conditions were investigated.

The CAD models of the safety structure and impactors were developed following the parameters of the Baja SAE, LATIN NCAP and EURO NCAP, for which CAD software was used. On the other hand, pre-processing and post-processing were also developed following the aforementioned parameters, parameters such as basic loads, boundary conditions, and other parameters such as mechanical properties of the material and finite element mesh discretization that had to be adjusted to the environment and facilities of the computers respectively, for which CAE software was used.

The results show that the efforts for static analysis exceed what is established in the case of frontal impact. In the case of side impact and rollover, the forces are within the range of what is allowed. As for deformations, these guarantee structural safety. On the other hand, the dynamic analysis shows extremely high stress results which exceed what is allowed, in terms of deformations guarantee structural safety.

KEY WORDS: Baja SAE, rollecage, dynamic tests, static tests, finite elements, CAD/CAE software, simulation.

INTRODUCCIÓN

En el ámbito del análisis de vehículos todoterreno tipo Baja SAE, la conjunción de desempeño, seguridad y manejabilidad se convierte en un elemento crucial. Este estudio se centra en la evaluación estructural de un Baja SAE, dado que estos vehículos son sometidos a considerables esfuerzos e impactos en diversos terrenos. El objetivo es obtener resultados que permitan un análisis detallado, enfocándose especialmente en la seguridad pasiva del vehículo. La estructura de seguridad se somete a ensayos dinámicos y estáticos, lo que posibilita la comparación de resultados entre diferentes softwares CAD/CAE. Esta investigación se lleva a cabo mediante el uso de herramientas digitales que permiten simular y analizar situaciones realistas, evitando la necesidad de realizar pruebas físicas. Con condiciones preestablecidas, como impactos frontales, laterales y condiciones de vuelco, cada ensayo se configura para reflejar con la mayor precisión posible las condiciones del mundo real. Este enfoque integral busca garantizar el comportamiento del vehículo y ofrecer una visión exhaustiva de su seguridad y rendimiento en diversas condiciones, y dar a conocer cuál de estos softwares son más precisos dando margen para determinar diferentes condiciones de seguridad y rendimiento.

CAPÍTULO I

1. REVISIÓN BIBLIOGRÁFICA

1.1 Planteamiento del problema

En el desarrollo de los vehículos BAJA SAE, centrados en el análisis estructural del chasis, hay diferentes factores acoplados como el desempeño, la seguridad y la manejabilidad, por eso se centra en el comportamiento de la estructura tanto en deformaciones como absorción de energía producida por impactos basado en la seguridad que debería brindar al piloto analizando elementos finitos (FEA). Ya que estos vehículos se someten a grandes esfuerzos, hay que evaluar la integridad estructural (seguridad pasiva), modelando la estructura con diferentes cargas para obtener resultados entre los rangos permisibles dando una mejor seguridad al piloto y sin necesidad de realizarlo en un espacio físico sino basados en programas CAD/CAE.

1.2. Antecedentes

En 1976 en la Universidad de Carolina del Norte, EE. UU., nació una competencia para diseñar y construir prototipos todo terreno llamada Mini Baja SAE, la cual se realizó de acuerdo con los estándares y lineamientos establecidos por la Sociedad de Ingenieros Automotrices (SAE por sus siglas en inglés). Donde compitieron en la primera valida 10 equipos con estudiantes de Canadá y Estados Unidos con un total de 90 estudiantes (Saebajaudo, 2015). Baja SAE desafía a los estudiantes de ingeniería a delinear y construir un vehículo bien estructurado que pueda soportar el duro castigo del terreno accidentado y, en algunos casos competencias, al agua. Como en situaciones laborales reales, estos futuros ingenieros trabajan juntos como un equipo para descubrir y resolver desafíos técnicos en diseño, prueba y fabricación, así como problemas comerciales (Baja SAE, 2019). El formato de evento actual crea eventos estáticos y dinámicos durante cuatro días. La competencia comienza con pruebas estáticas en las que se revisan informes de costos y diseño (previamente enviados por los equipos a los organizadores) y se defienden o presentan las propiedades del prototipo, que aparecen en aspectos como: ergonomía, funcionalidad, entregabilidad y evaluación (Saebajaudo, 2015). Las pruebas dinámicas se encargan de probar el vehículo en condiciones todo terreno, unas de las pruebas a ser evaluadas son: frenado, aceleración, maniobrabilidad, ascenso en colina (Hill climb), paso por rocas (rock crawling), suspensión y tracción, lodo y arrastre (Velázquez Villegas, 2016). Baja SAE es un tipo especial de vehículo de cuatro ruedas que se utiliza con fines recreativos y de exploración. Está diseñado para uso fuera de carretera y para la resistencia de un terreno accidentado (Jacob, 2020).

A lo largo de la historia automotriz las estructuras de seguridad han sido un eje primordial en el avance y el sustento de la construcción de bastidores de automóviles, en la actualidad existen muchas estructuras seguras para la construcción de autos de carreras, en diversas categorías del mundo del automóvil, con un excelente desempeño, se ha logrado un buen estudio de la aerodinámica en este tipo de vehículos (Coronel, 2015). Desde los inicios en las diferentes competiciones en mundo automotor, los participantes han ido buscando mayores prestaciones en sus vehículos, de forma que optimicen las cualidades dinámicas de los mismos. Sin embargo, los niveles de desarrollo y avances experimentales en materia de motores, transmisiones, suspensiones, aerodinámica no necesariamente trajeron consigo mejoras en el ámbito de la seguridad, en cierta medida por la permisibilidad de los entes reguladores de las diferentes competencias. Fue necesario vivir lastimosos episodios de muertes y accidentes para tomar conciencia en los estándares mínimos que se debe tener en el ámbito de seguridad. El elemento más importante en las diferentes competiciones automovilísticas, que minimiza, en la medida de lo posible, las deformaciones inducidas en este tipo de vehículos como consecuencia de un impacto es la estructura de seguridad o jaula antivuelco (Luque-Rodriguez, 2013). Teniendo en cuenta la naturaleza competitiva de los

actuales vehículos de fórmula para estudiantes, es esencial concentrar los recursos en el desarrollo de herramientas y métodos que facilitan la evaluación de las características de manejo dinámico de un vehículo determinado (Palanivendhan, 2021). La dinámica del vehículo juega un papel importante en la estabilidad, el manejo, la calidad de conducción y el control del vehículo. La dinámica del vehículo también depende del chasis del vehículo y, por lo tanto, la rigidez torsional del chasis es una propiedad importante para considerar. La alta rigidez torsional da como resultado menos vibraciones y un mejor manejo (Jindal, 2022). Es importante en el momento de un choque, que la carrocería se deforma lo más posible para no transferir la energía del impacto a los ocupantes, de lo contrario es importante que la estructura se deforme lo menos posible, a fin de no cambiar las propiedades geométricas de los elementos asociados al auto (Alonso Pérez, 2002). Los equipos de estudiantes se organizan como empresas, encargadas no solo del diseño y fabricación del monoplaza conforme a especificaciones técnicas, según lo exige la normativa aplicable para un vehículo de un solo asiento, siendo la base de la competencia (Guascal Sanguña & Quiroz Dávalos, 2015), sino también de la gestión eficiente de los recursos, cumpliendo con restricciones económicas. Además, se aborda la tarea de comercializar el vehículo, involucrando áreas como diseño, producción y compras en la fabricación, seguidas por áreas de marketing y comunicación para su promoción en el mercado (Coronel, 2015). Para diseñar estructuras automotrices de manera confiable, los ingenieros deben determinar y justificar las condiciones y los niveles de validación. Estos deben provenir de un conocimiento profundo del daño estructural inducido por las condiciones de carga de servicio. A partir de historiales de carga de amplitud variable de entrada múltiple aplicados en los ejes de las ruedas de un automóvil, proponemos una descripción multidimensional de pseudo-daño para el diseño de los puntos débiles del chasis del automóvil (Baroux, 2022).

1.3.Alcance

Este trabajo de investigación se delimitará al análisis de los resultados obtenidos por medio de programas CAD/CAE del comportamiento estructural de seguridad del automóvil Baja SAE. El análisis y desempeño de este tipo de vehículo en condiciones de impacto: frontal, lateral y vuelco. Se estimarán los resultados para salvaguardar la seguridad del piloto, y que la estructura soporte diferentes cargas y pueda absorberlas de mejor manera, aplicando el modelamiento de la estructura en diferentes análisis estáticos y dinámicos, comparando resultados y dar así una fiabilidad en los análisis estructurales. Además, dejar bases del análisis estructural de tipo estático y dinámico para la construcción de estructuras de seguridad de un vehículo tipo Baja SAE en la Universidad Técnica del Norte.

1.4.Objetivos

1.4.1 Objetivo General.

Analizar la estructura de seguridad de un vehículo BAJA SAE usando software CAD/CAE para realizar análisis dinámicos y estáticos.

1.4.2 Objetivos específicos

- Realizar ensayos estáticos de la estructura de seguridad usando software CAD/CAE.
- Realizar ensayos dinámicos de la estructura de seguridad bajo condiciones de impacto frontal, lateral y vuelco mediante software CAD/CAE.
- Realizar simulaciones de impacto frontal y lateral del ensamble del vehículo tipo BAJA SAE.
- Comparar los resultados de los ensayos estáticos y dinámico.

1.5. Justificación

En esta investigación se plantea un estudio basado en el análisis de las simulaciones de la estructura de un vehículo de competición Baja SAE; mediante programas tecnológicos que ayudan a resolver el tema de a la seguridad del piloto, dando una mejor viabilidad en la

competición y adaptando este tipo de estructuras al entorno, generando interés a las próximas generaciones a crear y aplicar este tipo de vehículos, con base en los resultados obtenidos esperando los más favorables posibles. En Ecuador, en base al plan de Creación de oportunidades del periodo 2021-2025 (Secretaría Nacional de Planificación, 2021) establece los objetivos del eje social el cual va centrado el proyecto en el objetivo 7 el cual menciona potenciar las capacidades de la ciudadanía y promover una educación innovadora, inclusiva y de calidad en todos los niveles, por ello se busca evolucionar conjuntamente con las nuevas generaciones para diferentes desafíos intelectuales y más aún profesionales, para dar un mejoramiento en la investigación e innovación dentro de la universidad para poder crear nuevas opciones respecto a la competencia nacional con las demás entidades educativas. Además de utilizar programas computacionales para desarrollar la estructura, simulaciones y análisis con diferentes parámetros en impactos frontales, delanteros laterales y vuelco, para evaluar el comportamiento de la estructura. Los resultados permitirán comparar los ensayos estáticos y dinámicos del comportamiento de la estructura, y servir de referencia en investigaciones futuras para proyectos relacionados, fomentando el interés de seguir construyendo estructuras seguras para el piloto sin deformarse o causando daños físicos, considerando las especificaciones y dimensiones estipuladas por el reglamento de la fórmula BAJA SAE, e implementar competiciones de este tipo de autos en nuestra área local.

1.6 Baja SAE

Según Noorbhasha (2010) Baja SAE es una competencia interuniversitaria de diseño de ingeniería para estudiantes de grado y postgrado de ingeniería organizado por la sociedad de ingenieros automotrices (SAE).

El objetivo del concurso es simular el proyecto de diseño de ingeniería del mundo real y en diferentes condiciones. Un equipo de estudiantes ha diseñado, fabricado y competido en vehículos todo terreno propulsado por un motor briggs de 10 HP. Capacidades típicas según las que se evalúan estos vehículos en ascensos de colinas, tracción de carga, arrastre de rocas, aceleración, maniobrabilidad, y resistencia en tierra y agua.

El motor no se puede mejorar para garantizar una comparación uniforme del diseño general de vehículo. Así, gran parte del rendimiento del vehículo depende del tren de transmisión y la maniobrabilidad del vehículo. Al mejorar la eficiencia del tren de transmisión, el vehículo acelerará más rápido y alcanzará una velocidad máxima más alta. El otro factor para el rendimiento del vehículo es la aceleración y la maniobrabilidad. El peso total del vehículo, incluido el peso del conductor, tiene un impacto en el rendimiento. En general, un vehículo ligero debería funcionar mejor ya que la capacidad del motor es fija.

La seguridad del conductor es una preocupación importante en el diseño del vehículo. La parte del bastidor del chasis es la protección principal para el conductor. Entonces para garantizar la seguridad del conductor, la jaula antivuelco debe ser estructuralmente rígida.

Como el peso es crítico en un vehículo propulsado por un motor pequeño, se debe encontrar un equilibrio entre la fuerza y el peso de la fuerza, por lo tanto, el diseño del chasis se vuelve importante en el diseño de este.

1.7 Bastidor

Según Pachito & Becerra (2021) la función principal de un marco es conectar la parte delantera y trasera de la suspensión, así como también proporcionar puntos de fijación y montaje para los diferentes sistemas del automóvil (dirección, suspensión, frenos).

Esta debe ser una estructura rígida capaz de soportar grandes esfuerzos generados por impactos y el resto de los componentes a su vez garantizar la seguridad de los ocupantes. Es fundamental colocar dentro de todos los mecanismos la posición más ventajosa para distribuir las masas de forma eficaz. En el caso de un bastidor tubular es indispensable verificar el comportamiento de los elementos y sus esfuerzos, tanto en términos de torsión y de sus de materiales suficientemente resistentes para sopórtalos. Se puede decir que las funciones principales del bastidor son proporcionar rigidez tanto a condiciones de flexión o torsión; tolerar y acoplar todos los sistemas del vehículo, así como también de sus ocupantes.

1.7.1 Tipos de bastidores

• Bastidor tipo escalera

El bastidor tipo escalera consta de dos largueros en los lados conectados por refuerzos trasversales, o ambos diagonales.

Bastidor monocasco

Actualmente este tipo de carrocerías es el más usado en los automóviles, ya que el diseño estructural se lo hace mediante sistema monocasco, lo que facilita de su construcción. Este está compuesto por placas de acero dulce. Aunque tiende a oxidarse, con la ayuda de un buen aislante contribuirá a su resistencia y rigidez.

• Bastidor tubular

Este tipo de bastidor se compone de tubos acolados entre sí que forman una jaula.

1.8 Tecnologías

Los paquetes de software de un computador se usan en la aplicación de principios científicos y matemáticos para fines prácticos resolviendo todo tipo de problemas.

El uso de estas herramientas permite diseñar y simular hasta obtener resultados adecuados antes de llevar a cabo la ejecución de cualquier estudio.

1.8.1 Diseño asistido por computador CAD

La tecnología CAD permite crear y visualizar partes en 2D y 3D en una computadora, siendo de geometría compleja sin crear prototipos físicos.

Sus ventajas son la conceptualización de las piezas, identificación de problemas de acompañamiento, distancias, tolerancias y manejo de la información completa a lo largo del estudio, obteniendo modelos de las piezas finales sin la necesidad de construirlas realmente.

1.8.2 Ingeniería asistida por computador CAE

La tecnología CAE permite diseñar modelos virtuales y definir comportamientos de las partes frente a diversas condiciones y fenómenos estructurales, térmicos, electromagnéticos y campos relacionados. Los programas CAE se basan en la aproximación a la realidad mediante análisis matemáticos por medio de ecuaciones diferenciales parciales y el modo de elementos finitos.

1.9 Método de elementos finitos

El método de elementos finitos tiene gran relevancia en la solución de problemas relativos con la ingeniería. Esto permite solucionar casos que aplicando métodos matemáticos tradicionales seria de difícil resolución, por lo que se tenía que recurrir a ensayos y pruebas en modelos físicos, lo que generaba elevados costos en la construcción, además del tiempo de optimización del modelo elaborado. El método de elementos permite realizar y desarrollar un modelo matemático de cálculo más real, sencillo y económico que el desarrollo de prototipos.

1.10 Normativa del bastidor Baja SAE.

Como cada reglamento de la baja SAE, cada año este va realizando cambios para priorizar la seguridad del piloto, así como también ir mejorando el rendimiento del vehículo en cuanto se refiere a la aplicación estudiantil de la ingeniería según su nivel de experiencia y por ende enfrentando sus desafíos.

1.10.1 Reglamentación la Jaula Antivuelco

El bastidor debe de tener un diseño y una estructura la cual debe soportar diferentes cargas o sucesos como choques o volcamientos salvaguardando la integridad física del piloto, el cual se construye mediante uniones y soldadura; además esté no deberá deformarse, doblarse o presentar cualquier tipo de grietas que sean perjudiciales en toda la sección transversal.

1.10.2 Lineamientos de los miembros estructurales

Los miembros de la estructura antivuelco deben de ser de acero siendo rectos o doblados, extendiéndose en una longitud de 1016 mm o 40 in. En cada punto previamente definido. Los miembros de apoyo pueden tener una curvatura no mayor a los 30 grados, esto no pasa en un punto ya definido que no puede exceder más de 838 mm o 33 in entre los puntos, además el apoyo adicional debe de ser menor de 152 mm o 6 in y no considerar que un miembro este doblado según el ángulo.

Figura 1.1 Modelo reglamentario de la jaula (*Baja SAE*, 2019)

En la **figura 1.1** se muestra la forma correcta de conectar los puntos y los miembros de la jaula. Donde el punto D solo debe reforzarse en la curvatura como se indica. En la unión principal y los miembros secundarios descritos a continuación deben estar dentro del rango de 51 mm o 2 in y las articulaciones de los miembros debe ser mayor a 5 grados tratándolas como curvas y si son menores serán definidos como juntas a tope. Los miembros necesarios que deberán ser fabricados con varios elementos como son el SIM y LFS serán interpretados como miembros continuos de puntos despreciándolos donde se indiquen.

1.10.3 Elementos estructurales del bastidor

La estructura de un BAJA SAE está conformada por elementos primarios, secundarios y adicionales como lo dicen en el reglamento.

La figura 1.2 muestra los miembros primarios con todos sus nombres y ubicaciones

- RRH: Aro Antivuelco posterior
- RHO: Elementos superiores del aro antivuelco
- FBM: Elementos de arriostramientos delanteros
- ALC: Miembro transversal lateral copa
- BLC: Viga lateral anterior
- CLC: Travesaño lateral delantero
- DLC: Travesaño lateral SIM
- FLC: Travesaño lateral delantero inferior
- LFS: Miembros laterales inferiores.

Figura 1.3 Miembros secundarios del bastidor (Pachito & Becerra, 2021)

Los elementos secundarios se aprecian en la **figura 1.3** tanto como su ubicación y su denominación donde los cuales van acoplados a los diferentes miembros primarios.

LDB: Refuerzo diagonal lateral

SIM: Miembros de impacto lateral

FAB: Elemento de refuerzo delantero/ posterior

USM: Travesaño debajo de asiento

RLC: Travesaños laterales posteriores

1.10.4 Miembros de apoyo Adicionales

Los cuales se pueden usar cuando la jaula excede la longitud estipulada, ya que sirven de apoyo para que la estructura no se deforme, igual que estos estén conectados entre las tangentes, donde está mencionada que en ningún caso debe conectarse entre ellas. En la **figura 1.4** el bastidor contiene los puntos A, B, C, D, F, S (donde E y G en la parte frontal), así mismo P y Q en los diseños finalizados con frente de arriostramiento posterior con R.

Figura 1.4 Miembros de Apoyo del bastidor (*Baja SAE*, 2019)

1.10.5 Miembros Laterales

Los travesaños laterales deben ser de 203,5 mm o 8 in de largo, el RLC no puede tener ningún doblez; pero puede pertenecer a un sistema curvado, si se cumple la longitud mínima entre las tangentes de pliegue. Cada uno de estos miembros debe estar unido tanto a la derecha como a la izquierda, se señalan como A, B, C, D, E, F, G y R deben estar hechos de material primario (Baja SAE, 2019)

Figura 1.5 Travesaños laterales del bastidor (Baja SAE, 2019)

En la **figura 1.5** se observa la ubicación y cada travesaño lateral que refuerza al miembro estructural principal en cada lado.

1.10.6 Arco Antivuelco Trasero (RRH)

El arco está situado en la parte posterior del conductor, donde el asiento va apoyado, *Baja SAE* (2019) menciona que el arco antivuelco es netamente vertical, pero puede inclinarse hasta 20 grados con respecto a la vertical.

1.10.7 Refuerzo Diagonal Lateral (LBD)

Este refuerzo va conectado al punto BR, el cual deberá conectarse al roll Cage, donde los elementos permiten apoyar al piloto y dejar una distancia en la parte posterior (*Baja SAE*, 2019) menciona que "las uniones inferior y superior de los elementos LBD y los miembros verticales RRH no deben ser de 127 mm o 5 in de los puntos A y B"

1.10.8 Arco de antivuelco de sobrecarga (RHO).

Este elemento está conectado con el RRH, en donde los puntos deben estar fijados, además estos deben coincidir con los puntos del arriostramiento trasero. Los puntos CR y CL al igual que los puntos BR y BL, no deben ser más bajos que le extremo superior de la plantilla 1014,4 mm sobre el asiento y deberán satisfacer los requisitos de espacio lateral. El RHO se debe desplegar hasta el punto FL y FR; aunque este debe estar conectado por el CLC.

1.10.9 Cartelas de holgura lateral.

Si se emplea un escudete para sostener el RHO y RRH, este debe ser de un elemento primario, este debe estar del todo soldado alrededor de las circunferencias de los dos extremos.

1.10.10 Travesaño debajo de asiento (USM).

Este elemento necesariamente debe estar colocado de modo que el piloto no pase a la superficie del plano horizontal LFS en caso de alguna falla en el asiento, además es imprescindible para la sujeción del asiento y cinturón del conductor.

1.10.11 Miembro de refuerzo frontal (FBM).

Este elemento une los elementos RHO con los SIM y los LFS en ambos lados del marco.

1.10.12 Cartelas para RHO Y FBM.

Estos elementos se utilizan cuando la unión entre los elementos FBM y FBA no es un tubo continuo.

1.10.13 Elementos de refuerzos delantero/trasero FAB.

Los elementos RRH deben estar limitados de rotación y flexión por un sistema de brazos triangulares. Este sistema puede ser delantero como trasero el cual tiene el nombre de FAB. Los miembros empleados en este sistema no deben exceder 1016 mm de longitud sin soporte. Los ángulos de triangulación deben tener por lo menos 20 grados de amplitud.

1.10.14 Refuerzo delantero.

Se debe colocar un tubo que una los FBM con los SIM a una distancia máxima de 5 in, medidas verticalmente a partir de donde el tubo comienza a doblarse (punto C). La intersección con los SIM debe estar verticalmente soportada por miembros que unan los SIM con los LFS (*Baja SAE*, 2019).

1.10.15 Refuerzo trasero.

El refuerzo trasero del bastidor (FAB) el cual debe crear un triángulo estructural que incluya los RRH como miembros y tenga un vértice cerca del punto B de la figura siguiente y otro vértice cerca del punto S o A, unidos por un LC que, en este caso, clasificaría como miembro secundario (*Baja SAE*, 2019).

1.10.16 Juntas a tope.

Varias uniones se encuentran regidas por un tubo continuo, no obstante, en otras uniones como en el punto C se debe utilizar un ángulo menor a los 5 grados los cuales serán dichas juntas de tope. Las mismas deberán tener una longitud de por los menos del doble de diámetro del tubo a reforzar (*Baja SAE*, 2019).

CAPÍTULO II

2. MATERIALES Y METODOS

Este capítulo muestra los materiales y metodología empleados en el desarrollo del modelo CAD y modelo FEM para el análisis de la estructura de seguridad de un vehículo Baja SAE.

2.1 Materiales

Los materiales del trabajo de grado se eligieron según las necesidades y facilidades en la creación de los modelos CAD y FEM.

2.1.1 Programas computacionales

Para el desarrollo del trabajo de grado, se emplea software CAD para la fase de preprocesamiento en la creación del modelo de la estructura de seguridad del vehículo Baja SAE. Posteriormente, tanto para el procesamiento y el postprocesamiento, se utiliza software CAE.

2.2 Metodología de la investigación

Este capítulo describe los diferentes procesos y métodos para el desarrollo correcto del trabajo de grado. El método utilizado en este estudio garantiza la validez de cada proceso de ejecución y la fiabilidad de los resultados que se obtienen en diferentes procesos de la creación de los modelos CAD y FEM, así como simulación computacional de los ensayos estáticos y dinámicos de la estructura de seguridad de un vehículo Baja SAE, logrando cumplir con los objetivos previamente establecidos.

2.2.1 Diagrama de flujo

En este diagrama de flujo **figura 2.1** se detalla el proceso del diseño de la estructura de seguridad, creación del modelo FEM y simulación de los diferentes ensayos del trabajo de grado.

Figura 2.1 Diagrama de flujo para ensayos dinámicos

2.3 Procedimiento

2.3.1 Modelado 3D/CAD

El diseño 3D de la estructura de seguridad se ha modelado tomando en cuenta las dimensiones establecidas por normativa baja SAE, misma que establece los parámetros de su diseño y construcción. Los planos para el modelado 3D de la estructura de seguridad han sido tomados del trabajo de grado Pachito & Becerra (2021).

Figura 2.2 Bastidor diseñado en base a las dimensiones reglamentarias

En la **figura 2.2** se muestra el diseño 3D modelado con software CAD usando herramientas de croquis 3D, creación de planos, superficies, etc.

2.3.2 Distribución de los miembros primarios y secundarios

La normativa baja SAE establece los miembros por los cuales debe estar formado la estructura de seguridad. Esta está compuesta por miembros primarios (azul), miembros secundarios (rojo) y miembros de apoyo adicionales.

Figura 2.3 Designación de Tubos primarios y secundarios

Se agregado un color distinto a los miembros de la estructura de seguridad, por lo cual se puede diferenciar los miembros primarios (AZUL) de los miembros secundarios (ROJO) tal como se muestra en la **figura 2.3**

Además, en la **tabla 2.1** se muestra los tubos designados para los ensayos dinámicos y estáticos.

Denominación	Color	Diámetro x Espesor in x mm
Miembros Primarios	AZUL	1,25 x 1,2
Miembros Secundarios	ROJO	1 x 1,5

Tabla 2.1 Miembros estructurales de la estructura de seguridad utilizados

Nota: Dimensiones de los tubos para definir sus deferentes diámetros espesores tomado de (DIPAC, 2023)

2.3.3 Configuración de los impactadores

La configuración, disposición y medida de los impactadores se realizaron de acuerdo con la normativa de la NCAP. Estos se diseñaron usando software CAD con el uso de herramientas de creación de planos, croquis y extruir saliente. La **tabla 2.2** muestra las dimensiones de los impactadores realizados por el software CAD.

Impactadores	Alto mm	Largo mm	Espesor mm
Impactador lateral	500	1500	50
Impactador Frontal	650	1000	50
Impactador de Vuelco	1980	1000	50

Nota: Las dimensiones de cada uno de los impactadores tomado de (Euro NCAP, 2021)

2.3.4 Generación de la topología compartida y mallado

Inicialmente se generó la topología compartida en cada elemento de la estructura de seguridad. Esto permite la unión de dos o más elementos que pueden interpretarse como uniones o soldaduras.

Figura 2.4 Generación de Topología Compartida

La **figura 2.4** muestra como todos los miembros estructurales están unidos entre sí mediante la topología compartida.

2.3.4.1 Criterio de malla

El mallado es la parte fundamental en la creación de un modelo FEM, por lo que se debe considerar ciertos criterios de calidad de malla. Estos criterios se definen por parámetros geométricos en cada elemento que influye en la precisión de los resultados, por lo que la elección del criterio de calidad de malla juega un papel importante, puesto que hay que medir y cuantificar la malla generada para obtener una malla estructurada y regular en el modelo de estudio.

El criterio de calidad de malla aplicado en este estudio fue el criterio de malla "Ratio Jacobiano" **tabla 2.3.** Este viene siendo la medida de la desviación de un elemento desde su forma original. Para los elementos cuadrados la calidad igual a 1 es cuando cada uno de sus lados son paralelos formando así un ángulo de 90 grados. Para elementos triangulares la calidad perfecta con valor a 1 deberá ser que cada ángulo tenga una medida de 60 grados.

Calidad	Ratio Jacobiano
Inaceptable	0-0,001
Buena	0,2-0,69
Muy buena	0,70-0,95
Excelente	0,95-1

 Tabla 2.3 Espectro de calidad de malla (Ortogonal)

Nota: La calidad de la malla usada por medio del "Ratio Jacobiano en los ensayos fue de 0,3 que es buena respectivamente.

El valor mínimo de malla de acuerdo con el criterio jacobiano es de 0,3, como se muestra en la **tabla 2.3** sin embargo, se encontraron elementos con valores menores a 0,3, por lo que se procedió a corregirlos. La eliminación de nodos duplicados, la corrección manual permitió que estos elementos fuera de rango en el parámetro jacobiano sean del 0%.

Element Editing						×
		 Check Create Delete Composite 	 Split/Merge Modify Direction Align 			
Show Free Edges						
		 Beam Shell 	 Solid Tshell 			
Checking method						
Quality Check Duplicate Normal Free - Unattached UnderCut Curvature Gaussian Curvature						~
Shell check item	Allowable	Min. val	Max. v	ral #	violated(%)	
Max quad ang	135	***	**	*	***	^
Min tria ang	30	***	at at	*	***	
Max tria ang	120	***	**	*	***	_
Taper	0.7	***	**	*	***	
Skew	45	***	**	*	***	
Jacobian	0.3	0.315	1		0(0%)	
Char. length	1	***	**	*	***	
🗌 Area	5	***	**	*	***	
Feature angle	30	***	**	*	***	~
Frin		Locate		Repair		
Clear	Save Fai	led	Delete Failed		Report	
Fringe \vee						
		Solid Rev Ch	eck Save Failer	d		
		D	one			

Figura 2.5 Verificación del índice de calidad de malla

En la **figura 2.5** muestra en el apartado de edición de elementos el criterio de malla jacobiano con valor de 0,3

2.3.5 Unidades software CAE

El software de simulación, en su programación nos proporciona varios sistemas consistentes de unidades referenciales a la masa, tiempo, longitud, etc. **Tabla 2.4**, en ese sentido, hemos escogido el sistema de unidades que más se ajustaron y convinieron al modelado 3D de la estructura de seguridad desde su etapa inicial de modelado, con el fin de evitar errores en la etapa de preprocesamiento, post procesamiento y los resultados finales.

Para el análisis de este trabajo de grado se aplica las unidades siguientes descritas en la **tabla 2.4**.

Magnitud	Unidad
Masa	ton
Longitud	mm
Tiempo	S
Fuerza	Ν
Esfuerzo	MPa
Energía	N-mm
Densidad	$7,83e-09 \text{ ton}/mm^3$
Módulo de Young	2,07e+05 MPa
Velocidad (35[mph] - 56,3 [Km/h])	1,56e+04 mm/s
Gravedad	9,806e+03 mm/s ²

Tabla 2.4 Unidades utilizadas en el software CAE.

2.4 Preprocesamiento - Cartas de control

2.4.1 Material

Para el análisis el material acero estructural ASTM A500 grado "C" fue aplicado mismo que cuenta con las propiedades que se indican en la **tabla 2.5**.

Propiedad	Valor
Densidad del material (RO)	7,800e-09 ton/ mm^3
Módulo de Young	2,00e+05 MPa
Radio de Poisson (PR)	0,280
Límite de fluencia (SIGY)	315 MPa
Resistencia última a la tracción	425 MPa
Deformación máxima unitaria (FAIL)	0,21

Tabla 2.5 Propiedades del material acero estructural ASTM A500 grado "C"

El software requiere ingresar en su interfaz los datos del material, para ello se utilizó la carta de control "MAT_PIECEWISE_LINEAR_PLASTICITY_024", así como la curva del material con la carta de control "DIFINE_CURVE". Los datos ingresados se muestran en el **Anexo 1.1** de las cartas de control para ensayos dinámicos.

Keyword In	iput Form									
NewID			MatD	8 RefBy	Pick	Add	Accept	Delete	Default	Done
Use *Par	rameter 🗌 Con	nment				(Subsys:	1 Ensayoi	mpactofro	ntal.k)	Setting
			MAT_PIECEWI	SE_LINEAR_PL	ASTICITY_(1	TITLE) (024) (1)			
TITLE										
ASTM	A500 GRADO C									
MID	<u>R0</u>	E	PR	<u>SIGY</u>	ETAN	FAIL	TDEL			
5	7.800e-09	2.000e+05	0.2800000	315.00000	0.0	1.000e+21	0.0			
2 <u>c</u>	E	LCSS •	LCSR •	VP						
0.0	0.0	205	0	0.0 ~	•					
EPS1	EPS2	EPS3	EPS4	EPS5	EPS6	EPS7	EPS8			
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ES1	ES2	ES3	ES4	ES5	ES6	ES7	ES8			
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
			Plot	Raise	New	Pade	Ы			
Total Card:	1 Smallest ID: 5	Largest ID: 5	Total deleted	card: 0						

Figura 2.6 Carta de control para definir el material

La figura 2.6 se detallan los valores asignados para el material asignado ACERO

Figura 2.7 Curva esfuerzo-Deformación

En la **figura 2.7** se presentan los datos para la curva de esfuerzo vs deformación del material.

2.4.2 Sección

La carta de control SECTION-SHELL **figura 2.8** permite establecer los espesores a cada uno de los elementos de la estructura de seguridad e impactador. La estructura de seguridad está compuesta de tubos de diferente espesor. Por un lado, los tubos primarios tienen un espesor de 1,2 mm, los secundarios con un espesor de 1,5 mm y el impactador con un espesor de 50 mm.

K	eyword Input	Form											×
	NewID D)raw			RefBy	Sort/T1	Add	A	cept	Delete	Default	Done	1 Sección 1.2 mm
C	Use *Parame	eter 🗌 Com	ment	*	SECTION_SHEL	L_(TITL <mark>E)</mark> (3	(Subsy	/s: 1	Ensayoir	npactofro	ontal.k)	Setting	3 Sección 50 mm
	TITLE Sección 1.2	2 mm											
1	SECID	ELFORM	SHRE	NIP	PROPT	QR/IRID	ICOMP		SETYP				
	þ	2 ~	1.0000000	2	1 ~	0	0	\sim	1	~			
2	<u>T1</u>	<u>T2</u>	<u>T3</u>	<u>T4</u>	NLOC	MAREA	IDOF		EDGSET				
	1.2000000	1.2000000	1.2000000	1.2000000	1.0000000	0.0	0.0		0				
	Repeated Da	ata by Button a	nd List										
							Data Pt						
							Replac	е	b	nsert			
							Delete	-	ł	Help			
Ţ	otal Card: 3	Smallest ID: 1	Largest ID: 3	Total deleted	card: 0							4	

Figura 2.8 Carta de control SECTION-SHELL

En la **figura 2.8** se detalla los valores de espesor asignados a los miembros primarios y secundarios, los valores para que la configuración sea correcta se muestra en el **anexo 1.1**.

2.4.5 Contactos

La carta de control CONTACT-AUTOMATIC_SURFACE_TO_SURFACE **figura 2.9** permite generar contacto o interacciones entre los elementos. Por un lado, una superficie esclava que se deformará y otra superficie maestra que permanecerá rígida. Para el caso, la estructura de seguridad e impactador.

Use *Parame	eter Com	nment				(Subsys:	1 Ensavoim	pactofro	ntal.k)	Setting
	0	*CONTACT A						1)		
CID		CONTACT_A	010MAIIC_30	KTACE_10_50	MACE_(ID/ III		ILNIAL) (9		
CID	THE									
U				IPP1	MPP2			-		
IGNORE	BUCKET	LCBUCKET	NS2TRACK	INITITER	PARMAX	UNUSED	CPARM8			
0	200		3	2	1.0005		0	~		
UNUSED	CHKSEGS	PENSE	GRPABLE							
	0	1.0	0							
SSID •	MSID •	SSTYP	MSTYP	SBOXID •	MBOXID •	<u>SPR</u>	MPR			
1	2	2 ~	2 ~	0	0	0 \	- 0	~		
FS	FD	DC	VC	VDC	PENCHK	BT	DT			
0.1500000	0.0900000	0.0	0.0	0.0	0 ~	0.0	1.000e+2	20		

Figura 2.9 Carta de control CONTACT

La carta de control CONTACT funciona mediante valores asignados de 1 y 2 para el esclavo, como para el maestro estos valores se encuentran en el **anexo 1.1** en la tabla de cartas de control en la sección 18.

2.4.6 Carga

El uso de la carta de control LOAD requiere el cálculo de una fuerza. Para el cálculo de la fuerza se hace el uso de las siguientes fórmulas:

$$a = \frac{Vf - Vo}{t}$$
[2.1]

$$F = m.a$$
 [2.2]

Donde:

Vf: es velocidad final expresada en km/h

Vo: es velocidad inicial expresada en km/h

t: tiempo expresado en s

F: es fuerza expresado en N

m: es masa expresada en Kg

a: es aceleración expresada en m/ s^2

Las velocidades definidas por la EURO NCAP Y LATIN NCAP para los impactos frontal y lateral son: 64 km/h y 50 km/h respectivamente (Euro NCAP, 2021), además de considerar la masa de la estructura de seguridad de 278 kg. Por otro lado, el impacto superior o volcamiento se lo analiza como una caída libre sometida a la aceleración constante de la gravedad. La prueba del impacto de vuelco debe realizarse con sumo cuidado, ya que el conductor debe estar seguro. La carga que actúa sobre el vehículo mientras vuelca se obtiene considerando el 25% de la carga que actúa en el impacto frontal.

Una vez realizado los cálculos se tiene los parámetros descritos en la tabla 2.6

	Velocidad inicial	Tiempo	Masa	Aceleración	
	mm/s	S	t	mm/s ²	Fuerza N
Impacto frontal	17777,77	0,15	0,27	118518,51	31824
Impacto lateral	13888,88	0,30	0,27	46296,29	12500

0,15

0,27

29629,627

Tabla 2.6 Parámetros de simulación para los ensayos

2.4.7 Controles para generar la simulación

Impacto vuelco

4444,442

Hourglass: energía no física y resulta del error matemático en el proceso de solución del fenómeno no físico. Se debe controlar que esta energía sea: < 10% de la energía interna.

Control de energías (ASCII_OPTIONS): permite activar los cálculos de las energías de Hourglass durante la simulación.

7956

Configuración de datos de salida (BINARY_D3PLOT): salida de los resultados de la deformación por intervalos de tiempo, almacena resultados e indica cuantos resultados se desea visualizar. Para el trabajo de grado, se ingresó un incremento de tiempo de 0,005 s.

Control del tiempo (TERMINATION): determina el tiempo de análisis que dura el proceso de simulación. Para el estudio, la duración de la simulación fue de 0,15 s. Control del paso de tiempo (TIMESTEP): controla el intervalo de tiempo. Cálculo del TIMESTEP:

 $Time \, step = \, \frac{lm}{c} = \frac{8mm}{5240\frac{m}{s}} = \frac{8mm}{5240000\frac{mm}{s}} = 1,52 \cdot 10^{-6}s = 1,52 \, \mu s \qquad [2.3]$ $Time \, step = \, TSSFAC \cdot DT2MS$ $1,52 \cdot 10^{-6}s = \, 0,9 \cdot DT2MS$ $DT2MS = 1,69 \cdot 10^{-6}s$ $DT2MS = -1,69 \cdot 10^{-6}s$

El signo negativo le indica al software que es un análisis estructural.

Donde:

Time step: control del paso del tiempo expresado en s

lm: longitud del elemento de menor tamaño de la malla expresado en mm

c: velocidad del sonido en el material expresado en mm/s

TSSFAC: factor de escala para el periodo de tiempo calculado

DT2MS: tamaño del periodo de tiempo para soluciones a escala masiva expresado en s

2.5 Metodología en ensayos estáticos

2.5.1 Diseño CAD

Figura 2.10 Trazado del bastidor

La **figura 2.10** representa la configuración del bastidor, generada a partir de bocetos realizados en diferentes planos. Estos bocetos sirven como punto de partida para la aplicación de los componentes estructurales. La utilización de software CAD simplifica considerablemente la creación de líneas y planos los cuales serán exportados al módulo del Work Bench para continuar con su modelado CAD, y este proceso se puede dividir en los siguientes pasos:

Figura 2.11 Pasos para la creación del modelado CAD

En la **figura 2.11** muestra los pasos para la creación de la estructura de seguridad solamente en líneas previamente definida.

Se ha logrado obtener exitosamente el modelo CAD que incorpora la forma del chasis propuesto tal como se muestra en la **figura 2.12**. El empleo de software CAD brinda la capacidad de generar geometrías específicas en un modelo. En este proceso, el diseñador traduce sus ideas usando diversas herramientas de diseño disponibles en el software CAD.

Figura 2.12 Bastidor diseñado con el módulo Work Bench

2.5.2 Aplicación del material y espesores

La selección específica del material que se usa en la simulación es el ACERO ATSM A500 grado C el cual es comercializado en Ecuador. Con el fin de recrear una simulación que se adapte al país, a modo de identificar de manera efectiva los fenómenos relacionados con las diversas propiedades especificas presente en dicho material el cual es el mismo para los ensayos dinámicos respectivamente.

Para un correcto análisis en el software CAE se requiere la asignación adecuada del material, un paso fundamental para obtener las reacciones y comportamientos de cada material en sus respectivas geometrías como se muestra en la **tabla 2.13**. Esto se lo logra a través de:

Figura 2.13 Pasos para asignación del material ACERO ASTM A500 grado C

En la **figura 2.13** se presentan los pasos para asignar el material Acero ASTM A500 grado C y los espesores respectivos de la tabla de los espesores de los miembros primaros y los secundarios respectivamente. La asignación de estos datos se realiza de manera secuencial en las superfícies que se generan en el árbol de diseño.

2.5.3 Malla

La generación de la malla desempeña un papel fundamental en el análisis, ya que la malla debe ser lo más refinada posible. Una malla refinada permite una visualización más precisa de la deformación, lo que significa que se pueden detectar con mayor precisión las distorsiones en cada uno de sus elementos. En el proceso de creación de malla para elementos de tipo tubulares y para ensayos estructurales no es necesario aplicar controladores ni métodos adicionales para mejorar su calidad.

En la etapa de mallado, se busca obtener resultados significativos, esto es recomendable para que la malla resultante proporcione datos de mayor confiabilidad, la cual está evaluada mediante el método conocido como "Element Quality".

Figura 2.14 Element Quality de 1

En la **figura 2.14** se representa la geometría junto con la malla respectiva y los datos proporcionados por el módulo de mallado y el Element Quality entre ellos el número de nodos y elementos, las estadísticas muestran que se tiene un valor de 1 esto se debe a que las superficies de la estructura están diseñadas de manera que proporcionan una distribución optima de elementos en la malla. Esto a su vez, resulta en elementos que poseen una geometría definida totalmente. Al mantenerse dentro de los parámetros estadísticos recomendados se busca obtener resultados de alta calidad y relevancia para la aplicación.

2.5.4 Condiciones de borde

Las condiciones de borde son las variables que influyen en el comportamiento del material, es decir, son responsables de inducir la deformación en ubicaciones especificas con respecto a su punto de aplicación. Esto se lo logra mediante:

Figura 2.15 Pasos para aplicación de condiciones de borde

La variable que simulará la aplicación de la carga en el bastidor es la fuerza la cual es ingresada para cada uno de los ensayos mediante los pasos mencionados en la **figura 2.15**

La limitación de movimiento de los cuerpos es esencial en este contexto, este comportamiento se logra usando la herramienta de FIXED SUPPORT, aplicada en la superficie rectangular. Esta restricción se introduce de acuerdo con el método especificado previamente, de forma directa.

2.5.5 Condiciones de impacto frontal, lateral y vuelco

La condición esencial es la aplicación de la fuerza en las diferentes secciones del bastidor con las diferentes variables de soporte, así como también los diferentes valores de fuerza que va a soportar el bastidor simulando las condiciones de choque.

Figura 2.16 Condiciones para impacto frontal

La **figura 2.16** ilustra las condiciones de contorno aplicadas en el análisis de un choque frontal. En el cual se emplearon los parámetros de aplicación de fuerza la cual es equivalente a 31824 N se muestra con la etiqueta B. Utilizando de soporte los vértices de la parte posterior del bastidor que se muestran con la etiqueta A en la **figura 2.16**.

Figura 2.17 Condiciones para impacto lateral

Para la simulación del estudio en el impacto lateral donde la magnitud de la fuerza y la dirección cambian respectivamente en el eje Y con 12500 N aplicados en las aristas de la parte lateral izquierda, así como también con los soportes fijos aplicados en los vértices en la parte lateral derecha del bastidor como se muestra en la **figura 2.17**.

2.5.6 Condiciones de Vuelco

Figura 2.18 Condiciones para el impacto de Vuelco

En lo que respecta a la simulación de vuelco, se ha aplicado una carga de fuerza de 7956 N en la parte superior del bastidor, distribuida en cada una de las aristas previamente seleccionadas como lo muestra en la **figura 2.18**.

Para garantizar la máxima fiabilidad en los resultados, los soportes han sido ubicados utilizando la opción "Fixed Support". Este enfoque busca proporcionar una representación precisa y realista de las condiciones de vuelco, asegurando así la integridad y validez de los resultados obtenidos en la simulación.

2.5.7 Postproceso de ensayos estáticos

La elección del tipo de análisis depende del usuario, ya que es la responsable de definir las necesidades de visualización o las respuestas que se desea obtener en la solución de los fenómenos.

Figura 2.19 Proceso para el ingreso de soluciones

La **figura 2.19** detalla el proceso de ingreso del tipo de los resultados que se desee obtener, la cual se repite en todos los análisis para obtener los resultados específicos.

CAPITULO III

3. ANÁLISIS Y RESULTADOS

En este capítulo, se presentan en detalle los resultados derivados de las simulaciones computacionales. Estos resultados posibilitan un análisis exhaustivo del comportamiento de la estructura del vehículo frente a los diferentes ensayos de impactos.

En este análisis se evalúa el esfuerzo y deformación de la estructura de seguridad en diferentes situaciones de carga de cada ensayo, siendo dinámico y estático.

3.1 Análisis Estructural dinámico de Impacto Frontal Aplicado Fuerza

En el primer ensayo dinámico del impacto frontal, se muestra el comportamiento del bastidor antes, durante, y después del impacto, con lo que se destaca la deformación por el material aplicado en el software CAE para análisis dinámicos.

Figura 3.1 Impacto frontal aplicado fuerza del bastidor Baja SAE

En la **figura 3.1** ilustra como el esfuerzo principal de Von Mises además con un criterio de malla jacobiano de 0,3 que es bueno respectivamente. Considerando las propiedades mecánicas del acero ASTM A500 grado C, y la fuerza con la que impacta en la pared rígida, de 31824 N a lo largo del eje transversal X.

Figura 3.2 Balance de energías Impacto Frontal Aplicado fuerza

En la **figura 3.2** se presenta el balance de energías correspondiente al primer ensayo de simulación de impacto, revelando valores de 1,86 e +04 kN para la energía interna y 1,16e+03 kN para la energía de Hourglass a un tiempo de 150 ms. Una vez obtenidos estos valores, se procede al cálculo del porcentaje de dicha energía con respecto a la energía interna usando la siguiente ecuación.

$$H = \frac{Energia \ de \ Hourglass}{Energia \ interna} x100\%$$

$$H = \frac{1,16e + 3 \ kN}{1,86e + 4 \ kN} x100\%$$

$$H = 6,24 \ \%$$

$$H < 10\%$$
[2.4]

Donde:

H: es el control de Hourglass

Energia de Hourglass: se expresa en kN

Energia interna: se expresa en kN

Dado que la energía de Hourglass es inferior al 10% de la energía interna, se comprueba que las condiciones establecidas para este ensayo de simulación son válidas.

3.2 Análisis estructural estático de un impacto frontal

Para este análisis se simula un impacto frontal sobre la estructura del vehículo con la ayuda de Software CAE. Para esta situación se consideró una carga de 31824 N la cual se distribuye sobre los cuatro tubos delanteros del chasis: GLC, ELC y FBM

Figura 3.3 Impacto frontal ensayo estático

En la **figura 3.3** se muestra el resultado de la deformación de la estructura del vehículo el cual fue asignado el Acero ASTM A500 grado C como material para la estructura con la aplicación de la fuerza en la dirección del eje transversal X.

3.3 Resultados de impacto Frontal en forma dinámica y estática.

La **tabla 3.1** detalla los valores de esfuerzos y deformaciones del impacto frontal de forma dinámica vs estática.

Ensayo	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Impacto					
dinámico	328,334	43,82	5,2	22,53	45,821
Frontal					
Impacto					
estático	499,08	19,14	6,797	29,94	31,71
Frontal					

Tabla 3.1 Comparación de resultados de Impacto Frontal

En la **tabla 3.1** de comparación de resultados de la estructura del vehículo se tiene como valor del esfuerzo máximo de 328,344 MPa en el elemento número 59745 durante el impacto en el ensayo dinámico. Así mismo como valor máximo encontrado en el ensayo estático fue de unos 499,08 MPa, dichos valores en los dos escenarios superan el límite elástico del material teniendo una deformación permanente, además de existir una diferencia porcentual entre esfuerzos de un 34% por lo que existe una gran variación en los resultados obtenidos de un software a otro.

Además, se observa la existencia de una deformación de 31,71 mm en total en el ensayo estático y en el ensayo dinámico se tiene una deformación de 45,821mm como se muestra en la **tabla 3.1** pero con un valor de esfuerzo mucho menor pero aun así se tiene un aumento de 14 mm en la deformación.

3.4 Análisis estructural dinámico de Impacto Frontal Aplicado velocidad y masa

Figura 3.4 Impacto frontal aplicado velocidad y masa

En el análisis sobre la aplicación de parámetros de velocidad implica asignar una velocidad equivalente a 64 km/h, orientada perpendicular al plano de la pared rígida, esta velocidad se aplica uniformemente a lo largo de toda la estructura, además se asigna una masa de 270 kg distribuida uniformemente en el bastidor durante un tiempo de simulación de

150 ms, con las condiciones de mallado del anterior ensayo. Como se muestra en la figura3.4 se tiene un comportamiento de deformación en la estructura en todo lo que integra la estructura tanto como miembros primarios y miembros secundarios.

Figura 3.5 Balance de energías aplicado velocidad y masa

Para confirmar la precisión de los resultados en la gráfica del balance de energías **figura 3.5**, se aplica la ecuación para calcular el porcentaje de la energía de Hourglass. Con los datos específicos, la energía interna es 3,81 e+7 kN, mientras que la energía de Hourglass es de 1,54 e +6 kN dichos valores están en la **figura 3.5**. La aplicación de la ecuación proporcionara una evaluación más completa de la validez de los resultados obtenidos.

$$H = \frac{1,54e + 6 KN}{3,81e + 7 KN} x100\%$$
$$H = 4,04\%$$
$$H < 10\%$$

Dado que el porcentaje resultante es inferior al 10%, se comprueba la veracidad de los resultados de la simulación, así como la validez de las condiciones establecidas para dicho ensayo.

3.5 Resultados de impacto Frontal dinámico aplicado fuerza versus masa y

velocidad.

La **tabla 3.2** muestra los datos de esfuerzos y deformaciones del impacto frontal dinámicos aplicados fuerza versus masa y velocidad

Ensayo	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Impacto aplicado fuerza	328,344	43,82	5,2	22,53	45,821
Impacto aplicado masa y velocidad	927,192	483,458	122,171	109,045	483,69

Tabla 3.2 Comparación de resultados de Impacto Frontal fuerza vs masa y velocidad

En la **tabla 3.2** de comparación del mismo impacto frontal, pero con diferentes parámetros aplicados en software CAE se tiene como máximo esfuerzo de 927,192 MPa al bastidor que es aplicado una masa de 270 kg por lo que se puede decir que la estructura sola con masa y la fuerza aplicada por la velocidad no podría soportar dicho esfuerzo y llegaría a fragmentarse y deformarse en su totalidad. En el impacto con fuerza se obtiene un valor de 328 MPa a comparación del ensayo que implica la masa de la estructura da un error relativo porcentual del 64% por lo que existe una gran diferencia en cuanto a los parámetros aplicados en cada análisis.

La comparación de los resultados de los desplazamientos en los tres ejes del plano revela información valiosa sobre el comportamiento estructural del modelo simulado. En el eje X, se observa un desplazamiento promedio de diferencia de hasta 439,639 mm en dirección al eje trasversal, demostrando la influencia predominante en dicha dirección. Por otro lado, en el eje Y, se registra un desplazamiento de diferencia 116,97 mm en dirección al eje transversal, finalmente, en el eje Z, se evidencia un desplazamiento de diferencia de hasta 86,515 mm en dirección al eje longitudinal vertical.

Esta comparación resalta las variaciones en los desplazamientos a lo largo de los ejes, proporcionando una comprensión integral de cómo la estructura responde a las condiciones y cargas específicas aplicadas durante la simulación. Estos resultados son esenciales para evaluar la estabilidad y la integridad estructural, así como para realizar ajustes o mejoras necesarios en el diseño, como es la aplicación de masa y fuerza contra solo la aplicación netamente de fuerza.

3.6 Análisis estructural dinámico de impacto Lateral Aplicado Fuerza

El tercer ensayo dinámico es el impacto lateral, se muestra el comportamiento del bastidor antes, durante, y después del impacto, con lo que se destaca la deformación por el material aplicado en el software CAE para análisis dinámicos.

Figura 3.6 Ensayo impacto lateral

En la **figura 3.6** ilustra como el esfuerzo principal de Von Mises además con un criterio de malla jacobiano de 0,3 que es bueno respectivamente. Considerando las

propiedades mecánicas del acero ASTM A500 grado C, y la fuerza con la que impacta en la pared rígida, de 12500 N a lo largo del eje transversal Y.

Figura 3.7 Balance de energías de Impacto Lateral aplicado Fuerza

En la **figura 3.7** de balance de energías del ensayo de impacto lateral se obtiene los valores de 1,48 e+6 kN de energía interna y 2,72 e+4 kN de la energía de Hourglass a un tiempo de 150 ms respectivamente. Aplicando la misma ecuación de los ensayos anteriores se procede a calcular el porcentaje de la energía de Hourglass frente a la energía interna.

$$H = \frac{2,72e + 4kN}{1,48e + 6 kN} x100\%$$
$$H = 1,84\%$$
$$H < 10\%$$

Dado que el porcentaje de energía de Hourglass es inferior al 10% de la energía interna, se comprueba la validez de las condiciones establecidas para este ensayo respectivamente.

3.7 Análisis estructural estático de un impacto lateral.

En el análisis de impacto lateral, se aplica una carga de 12500 N, la cual se distribuye entre los miembros SIM, LFS, RRH y FBM. Se ha seleccionado el acero ASTM A500 grado

C como material, garantizando propiedades mecánicas adecuadas para el escenario de estudio.

Figura 3.8 Esfuerzo ensayo impacto lateral

Además, se ha empleado un mallado de calidad de elementos de valor 1, aplicado de manera consistente en cada uno de los ensayos estáticos. Este enfoque asegura resultados confiables y adaptados a la realidad, proporcionando una base sólida para la evaluación del impacto lateral como se muestra el máximo esfuerzo en la **figura 3.8**.

3.8 Resultados de impacto lateral en forma dinámica y estática.

Los resultados del impacto lateral simulados en forma dinámica y estática se detallan en la **tabla 3.3**.

Ensayo	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Impacto dinámico	1046,06	46,936	145,51	26,1432	168,75
Impacto estático	306,61	1,602	9,144	2,468	9,26

Tabla 3.3	Comparación	de resultados	de im	pacto lateral
-----------	-------------	---------------	-------	---------------

En la **tabla 3.3** de comparación de resultados de la estructura del vehículo se tiene como valor del esfuerzo máximo de 1046,06 MPa en el elemento número 41214 durante el impacto en el ensayo dinámico. Así mismo como valor máximo encontrado en el ensayo estático fue de unos 306,61 MPa, que está por debajo del límite elástico. Con estos valores se tiene una diferencia porcentual del 70%, con lo que la diferencia de resultados fluctúa enormemente.

En cuanto a los desplazamientos de la estructura en el plano, se registra un desplazamiento máximo en el eje Y durante el ensayo dinámico, alcanzando los 145,51 mm, en comparación con los 9,144 mm del ensayo estático. Esta diferencia podría ser por la calidad del refinamiento de la malla para obtener estos resultados.

La deformación total en el ensayo estático es de aproximadamente 9,26 mm en la zona de aplicación de la carga, dentro de los límites permitidos y sin afectar la seguridad del piloto, como se muestra en la **figura 3.8**. Por el contrario, en el ensayo dinámico, el desplazamiento total llega a 168,75 mm en el arco antivuelco posterior, resultando en una deformación permanente.

3.9 Análisis estructural dinámico de Impacto o Condiciones de volcamiento

Figura 3.9 Ensayo de vuelco

El análisis de impacto de vuelco **figura 3.9** se centra en evaluar la capacidad estructural y la resistencia de dicha estructura con acero ASTM A500 grado C. Durante este estudio, se simula las condiciones de impacto que podrían dar lugar a una situación de vuelco con una fuerza de impacto de 7956 N que representa el 25% de la fuerza del impacto frontal, así como el estudio de cambios bruscos de dirección o desplazamientos laterales significativos.

Figura 3.10 Balance de Energías del Ensayo de Vuelco

En la **figura 3.10** del balance de energías del impacto de vuelco, se obtienen valores de 1,28 e+3 kN para la energía interna y 101 kN para la energía de Hourglass en un tiempo de 150 ms. Para calcular el porcentaje de la energía de Hourglass con respecto a la energía interna, se aplica la misma ecuación utilizada en ensayos anteriores.

$$H = \frac{101kN}{1,28e + 3 kN} x100\%$$
$$H = 7,89 \%$$
$$H < 10\%$$

Dado que el porcentaje de energía de Hourglass es inferior al 10% de la energía interna, se comprueba la validez del ensayo respectivamente.

3.10 Análisis estructural estático de vuelco

Figura 3.11 Ensayo estático de vuelco

El ultimo análisis simula un vuelco **figura 3.11**. Para ello se aplicó una carga de 7956 N que es el 25% de la fuerza aplicada en el impacto frontal respectivamente en la parte

superior del chasis, en los miembros: RHO, BLC y CLC.

3.11 Resultados de impacto vuelco en forma dinámica y estática.

En la **tabla 3.4** muestra los datos obtenidos durante la simulación dinámica y estática del impacto de vuelco.

Ensayo	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Impacto dinámico	117,448	11,324	1,271	21,810	22,2
Impacto estático	137,83	1,939	2,99	2,945	3,45

Tabla 3.4 Comparación de resultados de Impacto vuelco

En el ensayo de vuelco dinámico, como se refleja en la **tabla 3.4**, se registra un esfuerzo de Von Mises de 117,448 MPa en el elemento 70982 durante el impacto. Como no

sobrepasa el valor del límite de fluencia la deformación versus el esfuerzo se comporta de manera lineal.

En comparación, el valor máximo del esfuerzo en el ensayo estático fue de 137,83 MPa, lo cual está por debajo del límite de fluencia del material, garantizando así la seguridad del piloto aun así obteniendo una diferencia porcentual de 14%. La deformación total en el ensayo dinámico es de 22,2 mm, mientras que, en el ensayo estático, la deformación máxima es de aproximadamente 3,45 mm. En ambos casos, estas deformaciones no afectan la seguridad del piloto, ya que la distancia entre el piloto y el marco de seguridad es siempre superior a los 50 mm según (Coronel, 2015) . En cuanto a los desplazamientos en cada uno de los ejes, se observa el mayor desplazamiento en el eje vertical Z durante el ensayo dinámico, alcanzando 21,810 mm, en comparación con el ensayo estático que registra solo 2,945 mm. Esto subraya la influencia de las cargas dinámicas, las cuales varían con el tiempo y generan respuestas estructurales distintas a las cargas estáticas.

3.12 Comparación entre cantidad de nodos y elementos

En la **tabla 3.5** detalla los datos de la cantidad de nodos y elementos obtenidos en los softwares CAD/CAE.

Ensayos Estáticos	Nodos	Elementos
Impacto Frontal		
Impacto Lateral	572	301
Impacto vuelco		
Ensayo Dinámicos		
Impacto Frontal	40560	42404
Impacto Lateral	40127	41955
Impacto Vuelco	41318	42470

 Tabla 3.5 Comparativa de nodos y elementos de los ensayos

En relación con los programas de simulación CAE, es importante destacar que existen diferentes parámetros para el refinamiento de la malla. Para los ensayos dinámicos, la malla cuenta con una validación jacobiana de 0,3, lo que representa una calidad de malla considerada buena dentro del rango del criterio jacobiano. Esta validación se logra al exportar la malla de un software previo antes del procesamiento de cada uno de los ensayos.

Para los ensayos estáticos, la exportación se realiza únicamente previo a un plano o trazos que conforman el bastidor, donde la colocación del mallado ocurre en el mismo programa. Esto resulta en un Element Quality de 1, indicando una calidad de malla excelente con elementos de forma geométrica perfecta. En consecuencia, se reduce la cantidad de elementos y nodos, optimizando la eficiencia del análisis.

3.13 Tiempos de Postprocesamiento.

El tiempo de resolución de cada una de las simulaciones varía de acuerdo con la complejidad del diseño, tamaño de malla, características de la computadora etc. Para el trabajo de grado características del ordenador fueron estos:

- Nombre del dispositivo DESKTOP-BJ1B5GJ
- Procesador Intel(R) Core (TM) i7-8550U CPU @ 1.80GHz 1.99 GHz
- RAM instalada 8,00 GB (7,90 GB usable)
- Tipo de sistema: Sistema operativo de 64 bits, procesador basado en x64

Donde en la **tabla 3.6** se detallan los tiempos de solución de cada uno de los ensayos dinámicos y estáticos.

Ensayos Dinámicos	Tiempo
Impacto Frontal	23 minutos 18 segundos
Impacto Lateral	25 minutos 27 segundos
Impacto vuelco	26 minutos 9 segundos

Tabla 3.6 Tiempos de solución de cada ensayo

Impacto Frontal ensamble	1 hora 55 minutos 55 segundos		
Impacto Lateral ensamble	1 hora 53 minutos 27 segundos		
Impacto Frontal velocidad	17 minutos 24 segundos		
Ensayos Estáticos	Tiempo		
Impacto Frontal	9.07 segundos		
Impacto Lateral	10.21 segundos		
Leener de Marchen	756 accurdes		

3.14 Simulaciones del ensamble

El ensamble en el bastidor integra los componentes principales, como la suspensión, motor, dirección, ruedas y asiento. Estos elementos, compuestos por un solo material, simplifican la simulación y optimizan el preprocesamiento. La utilización de un único material facilita la aplicación de análisis de optimización, mientras que la inclusión de elementos, como las uniones nodales rígidas (Nodal Rigid Body), tales como rótulas y sujeciones, contribuye a una simulación más precisa y cercana a la aplicación real. Esta aproximación refinada permite obtener resultados más fiables y detallados en los análisis realizados.

3.14.1 Análisis del Impacto Frontal

Figura 3.12 Ensayo de impacto frontal del ensamble

En el análisis de impacto frontal **figura 3.12**, se utiliza un impactador según la normativa EURO NCAP la que se encuentra en la **tabla 2.2**, posicionado a lo largo del eje X como se muestra en la figura 3.12, de acuerdo con las especificaciones. El ensamble presenta una calidad de mallado de 0,3 según el criterio Jacobiano, que se considera bueno. Este ensamble será impactado con una fuerza aplicada de 31824 N durante un tiempo de simulación de 150 ms. Estos parámetros están diseñados para cumplir con los estándares y normativas aplicables, asegurando así la representación precisa de las condiciones del impacto frontal en la simulación.

Figura 3.13 Balance de energías del ensayo del ensamble de impacto frontal

En la **figura 3.13**, que representa el balance de energías del impacto frontal en el ensamble, se registran valores de 5,97 e+4 kN para la energía interna y 127 kN para la energía de Hourglass durante un lapso de 150 ms. Para calcular el porcentaje de la energía de Hourglass en relación con la energía interna, se aplica la misma ecuación empleada en ensayos previos.

$$H = \frac{127kN}{5,97e + 4 kN} x100\%$$
$$H = 0.22\%$$

H < 10%

La validez del ensayo se comprueba al observar que el porcentaje de energía de

Hourglass es menor al 10% de la energía interna correspondiente.

3.14.1.1 Resultados de impacto frontal Ensamble

La **tabla 3.7** detalla los resultados del ensamble sometido a un impacto frontal en forma dinámica

Tipo de simulación	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Dinámica	325,272	78,439	11,60	48,699	80,64

Tabla 3.7 Resultados de impacto frontal del Ensamble

La tabla 3.7 presenta el valor del esfuerzo máximo de Von Mises 325,272 MPa durante la simulación, el cual sobrepasa el límite de fluencia del material. Pero cabe destacar que este esfuerzo máximo se localiza en el elemento 20967 en la mesa delantera izquierda del vehículo. En un escenario práctico, este punto sería crítico ya que recibiría el mayor impacto en una situación real, por lo que el bastidor solo llegaría a tener una deformación elástica ya que los componentes son los primeros en tener contacto con el impactador. Este posicionamiento estratégico en los neumáticos contribuye eficazmente a la disipación de la energía generada por la fuerza aplicada, fortaleciendo la resistencia del ensamblaje frente al impacto.

Con relación a las deformaciones registradas en la **tabla 3.7**, destaca el valor de 78.4392 mm en el eje de acción del ensayo X, el cual corresponde al conjunto de la suspensión delantera donde existen además mínimos desplazamientos en direcciones de los ejes restantes. Este dato indica que la suspensión absorbe y disipa parte de la energía del impacto antes de que llegue al bastidor principal. Esta característica es fundamental, ya que contribuye significativamente a la disipación de la energía transmitida por la fuerza aplicada durante la simulación. Como resultado, la estructura no experimenta deformaciones permanentes, sino más bien comportamientos plásticos que preservan su integridad estructural.

3.14.2 Análisis Impacto Lateral

Figura 3.14 Ensayo de impacto lateral del Ensamble

Para llevar a cabo el análisis de impacto lateral del ensamble, se consideró que el impactador incidiera con una fuerza de 12500 N, en una línea de acción situada en el eje lateral "Y" en un tiempo de 300 ms como se muestra en la **figura 3.14**. Este impacto se ubica en el arco posterior de seguridad, en la parte lateral derecha, cumpliendo con las especificaciones de la normativa EURO NCAP. Las dimensiones y características del impactador, detalladas en la tabla, abarcan todo el casco donde se encuentra ubicado el piloto.

Al igual que en el ensayo anterior, la simulación se realiza con los mismos parámetros, incluyendo calidad de malla y material, con el objetivo de mantener consistencia en la metodología y facilitar la comparación de resultados entre distintas pruebas de impacto.

Figura 3.15 Balance de energías del ensayo del ensamble de impacto lateral

En la **figura 3.15**, que ilustra el balance de energías del impacto lateral en el ensamble, se observan valores de 9,88 e+5 kN para la energía interna y 2,01e + 4 kN para la energía de Hourglass durante un período de 150 ms. Para calcular el porcentaje de la energía de Hourglass en comparación con la energía interna, se emplea la misma ecuación utilizada en ensayos anteriores.

$$H = \frac{2,01e + 4kN}{9,88e + 5 kN} x100\%$$
$$H = 2.03\%$$
$$H < 10\%$$

La validez del ensayo se comprueba ya que el porcentaje de energía de Hourglass es menor al 10% de la energía interna correspondiente.

3.14.2.1 Resultados del impacto lateral Ensamble

La **tabla 3.8** muestra los resultados obtenidos en la simulación del impacto lateral del ensamble del vehículo en forma dinámica.
Tipo de simulación	Esfuerzo Max MPa	Deformación Eje X mm	Deformación Eje Y mm	Deformación Eje Z mm	Deformación Total mm
Dinámica	377,604	24,2695	91,11	29,98	91,693

 Tabla 3.8 Resultados de Impacto lateral de ensamble

Los resultados del ensayo se presentan en la **tabla 3.8**, destacando un máximo esfuerzo de 377,604 MPa en el elemento 277465, el cual forma parte de la estructura de la rueda posterior derecha, además de sobrepasar el límite de fluencia del material este elemento con el máximo esfuerzo registrados demuestra que los componentes del ensamble, igual que en el ensayo de impacto lateral, pueden recibir y disipar la energía en sus elementos individuales.

Con relación a los desplazamientos en el eje transversal Y, se registra un valor de 91,11 mm. Este resultado sugiere que el vehículo, sometido a este ensayo, no experimenta deformaciones significativas. La estructura ensamblada demuestra una distribución segura y eficiente de la fuerza, lo que contribuye a la integridad y estabilidad del vehículo durante el impacto lateral.

3.15 Discusión de resultados

Según Ward (2021) por medio de pruebas de impacto frontal, lateral y vuelco implementadas en su diseño de la estructura de seguridad, encontró resultados en la simulación de impacto frontal y vuelco referente a los esfuerzos máximos equivalentes, esfuerzos que no excedieron el límite establecido para los esfuerzos admisibles 300 MPa, 257,22 MPa y 107,6 MPa respectivamente. Para los resultados de simulación del impacto lateral, se encontró un esfuerzo equivalente máximo superior al esfuerzo admisible, 447,99 MPa. Para el caso de las deformaciones en los ensayos frontal, lateral y vuelco, encontró valores de 4,89 mm, 12,58 mm y 5,09 mm respectivamente, con lo cual garantiza la seguridad del piloto. Los resultados encontrados en esta investigación, respecto al ensayo de vuelco, el valor de esfuerzo 137,83 MPa, relativamente se acerca al valor comparado 107,6 MPa. En cuanto valor del esfuerzo en ensayo frontal en esta investigación simulación sobrepasa el límite de fluencia, para ellos el valor de esfuerzo 447,99 MPa que sobrepasa el límite de fluencia es en el ensayo lateral. Por otro lado, las deformaciones en esta investigación 31,71 mm, 9,26 mm y 3,45 mm también garantizan la seguridad del piloto. Esto siguiere, que aun cuando ambas investigaciones el desarrollo del modelo geométrico de la estructura siga los parámetros de construcción de la Baja SAE. La distribución de los tubos, los diámetros adoptados, el material aplicado, el criterio de validación de malla influye en los resultados obtenidos.

Por otro lado, Noorbhasha (2010) en su diseño preliminar de la estructura de seguridad, realizó una simulación de elementos finitos para un impacto frontal con una carga de 33,362 N con un factor de diseño de seguridad 1,25 en el marco de la estructura de seguridad y un tamaño de malla de 4,24 mm. Los resultados obtenidos fueron un desplazamiento máximo de 25,1 mm y un esfuerzo máximo de 958,37 MPa, que es mayor que el límite elástico del material usado en el diseño de la estructura de seguridad. Los resultados de esta investigación para el ensayo frontal fueron de 499,08 MPa, lo que sobrepasa el límite de fluencia, pero el valor es el doble de menor con una aplicación de carga mayor, 31824 N. En cuanto a la deformación en esta investigación se tiene un valor 31,71 mm más alto en comparación, pero garantiza la seguridad del piloto.

CAPITULO IV

4. CONCLUSIONES Y RECOMENDACIONES

4.1. CONCLUSIONES

- Se estudió el comportamiento estático de la estructura de seguridad de un vehículo de • competición Baja SAE. Para la evaluación del desempeño estructural de la jaula de seguridad, se aplicaron diferentes situaciones de cargas estáticas. Se modelaron considerando la evaluación de esfuerzos y deformaciones que somete la estructura de seguridad en diferentes condiciones, impactos: frontal, lateral y vuelco. En el caso de los impactos lateral y vuelco los resultados muestran valores de esfuerzos de 306,61 MPa y 137,83 MPa respectivamente los cuales no sobrepasan el límite de fluencia del material. Por otro lado, el esfuerzo máximo obtenido del ensayo frontal 499,08 MPa excedió el límite, incluso superando el límite del último esfuerzo. En cuanto a las deformaciones, en todos los ensayos, frontal, lateral y vuelco, los resultados muestran deformaciones muy pequeñas estas garantizan la seguridad estructural 31,71 mm, 9,26 mm y 3,45 mm respectivamente. Estos resultados sugieren que la distribución de los tubos con la que se diseñó la estructura de seguridad y los diámetros adoptados no fueron suficientes para garantizar la integridad estructural para el caso del ensavo frontal.
- Para el comportamiento dinámico las cargas aplicadas varían con el tiempo y pueden generar respuestas estructurales constantes, frente a las estáticas. La naturaleza dinámica de las cargas puede provocar efectos inerciales y dinámicos que no se experimentan de manera directa en situaciones estáticas. Para la evaluación del desempeño estructural de la estructura de seguridad, se aplicaron diferentes situaciones de cargas dinámicas. Se modelaron considerando la evaluación de esfuerzos y deformaciones que somete la estructura de seguridad en diferentes

condiciones, impactos: frontal, lateral y vuelco. Los resultados del análisis dinámico muestra resultados de esfuerzo para el caso del ensayo lateral 1046,06 MPa sumamente alto el cual supera tanto como el límite de fluencia como el último esfuerzo llegando a la ruptura. Para el caso del ensayo frontal y vuelco los esfuerzos resultantes fueron 328,33 MPa y 177,44 MPa respectivamente, lo cual indica que están dentro de la curva de esfuerzo versus deformación del material. Respecto a las deformaciones se muestran resultados de 45,82 mm, 168,75 mm y 22,2 mm para los ensayos frontal, lateral y vuelco respectivamente. Para el caso de la deformación en el impacto lateral la deformación no garantiza la seguridad piloto. Estos resultados sugieren que la distribución de los tubos con la que se diseñó la estructura de seguridad y los diámetros adoptados no fueron suficientes para garantizar la integridad estructural para el caso del ensayo lateral.

En lo que respecta al ensamblaje del vehículo, se observaron máximos esfuerzos en diversas partes que constituyen la estructura. En el escenario de impacto frontal, el esfuerzo máximo a lo largo de toda la simulación se registró en el elemento 20967, alcanzando un valor de 325,272 MPa. Por otro lado, en el caso del impacto lateral, donde el impactador se dirige específicamente a las ruedas laterales derechas, tanto delanteras como traseras, se identificó el máximo esfuerzo de 377,604 MPa en el elemento 277465, parte integral de la estructura de la rueda posterior. Es importante destacar que estos esfuerzos superan el límite de fluencia del material, aunque se concentran en los elementos que conforman los sistemas del automóvil, como la suspensión. Estos componentes son fundamentales en la disipación de la energía generada durante el impacto, lo que contribuye a conservar la forma del bastidor siempre. A pesar de experimentar una deformación permanente y no regresar a su

forma original, estos elementos preservan la integridad del bastidor, desempeñando así un papel crucial en la seguridad física del piloto.

Los tiempos de simulación de los ensayos estáticos respecto a los dinámicos varían • considerablemente, esto debido a que la cantidad de número de nodos y elementos respecto uno de otro. Por un lado, en los ensayos estáticos el número de nodos es de 572 y el número de elementos es de 301. Esto está relacionado al criterio de validación malla usado, Element Quality y software empleado en la simulación. Para análisis estructural el software emplea elementos en 1 dimensión, y el criterio de mallado recomendado para este tipo de análisis es el Element Quality. Por el contrario, para los ensayos dinámicos, el número de nodos para impacto frontal, lateral y vuelco es de 40560, 40127 y 41318 respectivamente; con respecto al número de elementos es de 42404, 41955 y 42470 ya que existe variación de nodos y elementos por la exportación de la malla. Todo esto, viene relacionado al igual que en los ensayos estáticos donde los elementos son cuadrados con 90 grados en cada uno de sus vértices. En los ensayos dinámicos, el análisis estructural se modelo con elementos tipo Shell donde se considera elementos de tipo cuadrados y elementos triangulares donde sus vértices son de 60 grados aplicado un criterio de validación de malla de Ratio Jacobiano.

4.2.RECOMENDACIONES

- Considerar una mejor distribución de los tubos en el diseño de la estructura de seguridad, implementar diferentes diámetros de tubos, colocar refuerzos en las zonas con mayores esfuerzos, considerar un tamaño de malla menor y probar con un material distinto.
- La investigación actual considera una sola opción de material para el ensamble general de la estructura de seguridad, por lo que para una continuación del trabajo de

grado se sugiere el uso de diferentes materiales para cada elemento que lo conforma, de modo que se vea el comportamiento de cada elemento en conjunto con la estructura de seguridad y al igual que las anteriores recomendaciones, considerar mejores distribuciones de los tubos, colocar refuerzos.

 Se recomienda el uso de ordenadores de mayores capacidades, el uso de otros criterios de validación de malla, e incluso el uso de softwares, que su preprocesamiento vaya incluido en el programa para realizar diferentes análisis estructurales.

BIBLIOGRAFÍA

Alonso Perez, J. Manuel. (2002). Tecnicas del automovil : motores. In *TÉcnicas del AutomÓvil. Motores*.

Baja SAE. (2019). https://www.bajasae.net/

Baroux, E., Delattre, B., Constantinescu, A., Pamphile, P., & Raoult, I. (2022).
Analysis Of Real-Life Multi-Input Loading Histories For The Reliable Design Of Vehicle Chassis. *Procedia Structural Integrity*, 38(C), 497–506.
https://doi.org/10.1016/J.PROSTR.2022.03.050

Coronel, J., Ramiro, A., Vigil, V., & Roberto, N. (2015a). ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE MECÁNICA ESCUELA DE INGENIERÍA AUTOMOTRIZ "DISEÑO Y CONSTRUCCIÓN DEL CHASIS DE UN VEHÍCULO DE COMPETENCIA FÓRMULA 'SAE' PARA LA ESCUELA DE INGENIERÍA AUTOMOTRIZ" Previa a la obtención del Título de: INGENIERO AUTOMOTRIZ.

Coronel, J., Ramiro, A., Vigil, V., & Roberto, N. (2015b). ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE MECÁNICA ESCUELA DE INGENIERÍA AUTOMOTRIZ "DISEÑO Y CONSTRUCCIÓN DEL CHASIS DE UN VEHÍCULO DE COMPETENCIA FÓRMULA 'SAE' PARA LA ESCUELA DE INGENIERÍA AUTOMOTRIZ" Previa a la obtención del Título de: INGENIERO AUTOMOTRIZ.

DIPAC. (2023). https://dipacmanta.com/producto/tubos/tubo-estructural/tubo-estructural-redondo-negro/

Euro NCAP. (2021). https://www.euroncap.com/en/for-engineers/technical-papers/

Guascal Sanguña, E. J., & Quiroz Dávalos, L. A. (2015). Diseño y construcción de un chasis para el vehículo tipo fórmula SAE. http://repositorio.espe.edu.ec/jspui/handle/21000/9413

Historia | saebajaudo. (2015). https://udoracing.wixsite.com/saebajaudo/comienzo

Jacob, S., Thiruvarasan, V., Surendhar, S., & Senthamizh, R. (2020). Design, analysis and optimization of all terrain vehicle chassis ensuring structural rigidity. *Materials Today: Proceedings*, 46, 3786–3790. https://doi.org/10.1016/j.matpr.2021.02.023

- Jindal, R., Arora, R., Papney, R., Patel, M., Chander Saini, R., & Rana, R. (2022).
 Torsion test for a BAJA chassis using gyroscopic sensor and validation of
 CAE results. *Materials Today: Proceedings*, 56, 3774–3779.
 https://doi.org/10.1016/J.MATPR.2022.01.019
- Luque-Rodriguez, P., Álvarez-Mántaras, D., & Orueta, A. M. De. (2013). Análisis de la seguridad pasiva de los vehículos de rally mediante ensayos de impacto virtuales. *Dyna (Spain)*, 88(4), 453–461. https://doi.org/10.6036/5443
- Noorbhasha, N. (2010a). Computational analysis for improved design of an SAE BAJA frame structure. UNLV Theses, Dissertations, Professional Papers, and Capstones, 736.
- Noorbhasha, N. (2010b). Computational analysis for improved design of an SAE BAJA frame structure. UNLV Theses, Dissertations, Professional Papers, and Capstones, 736.
- Pachito, P. D., & Becerra, A. D. (2021a). *Diseño y construcción del bastidor y sistema de suspensión de un vehículo según la normativa baja SAE*. 149.
- Palanivendhan, M., Joshua Paul, E., Philip, J., Tiwari, M., & Sasikumar, S. (2021). Steady state dynamic analysis and testing of an FSAE vehicle. *Materials*

Today: Proceedings, 45, 6987–7000.

https://doi.org/10.1016/j.matpr.2021.01.440

Plan-de-Creación-de-Oportunidades-2021-2025-Aprobado compressed. (2021).

- Velázquez Villegas, F. (n.d.). UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DISEÑO Y CONSTRUCCIÓN DEL CHASIS DEL VEHÍCULO BAJA SAE UNAM 2015.
- Ward, P. A. da C., Orlando, D., & Pereira, A. H. (2021, March 26). Structural analysis of the baja SAE vehicle from UERJ Technology Faculty. https://doi.org/10.4271/2020-36-0012

Anexo 1.1 TABLA DE CARTAS DE CONTROL LS-DYNNA

	Tabla cartas de Control LS-DYNA						
N°	Nombre Carta Control	Función	Entidades por seleccionar	Descripción	Valor		
1	Title	Define el nombre del Estudio			Ensayo Impacto Lateral		
	Section Shell		SECID	ID de la sección	1 2 3		
2		El espesor de las partes implicadas en el estudio (Miembros primarios,	T1-T4	Espesor de la carcasa en el nodo 1-4	2mm 1.5mm 50mm		
		secundarios e impactador)	NLOCK	Ubicación de la superficie de referencia	1 1 -1		
3	Set Node List	Agrupa los nodos seleccionados (Impactador y el bastidor en las zonas de suspensión)	SID	Set de nodos elegidos para dar un ID	1 2		

4	Part	Define las partes implicadas en el estudio con un numero de ID para poder colocar sus propiedades como el material	PID	ID De la parte	1 2 3
		y el espesor (Impactador, Miembros secundarios y primarios)	SECID	ID de la sección	3 2 1
			MID	ID del material	2 1 1
5	Node	Agrupa los nodos exportados desde el software ANSA de manera general	NID	ID de nodos	1
			MID	ID del material	2
6	Mat_Rigid_020	Asignar un material que sea indeformable en este caso	RO	Densidad de la masa	7.80E-09
		(inpactador)	E	Módulo de Young	2.07E+05
			PR	Ratio de Poisson	0.3

			MID	ID del material	1
	Mat_Piecewise_Linear_Plasticity_024	Asigna un material mediante una curva de esfuerzos (Miembros Primarios y	RO	Densidad de la masa	7.80E-09
7			Ε	Módulo de Young	2.07E+05
		secundarios)	PR	Ratio de Poisson	0.3
		-	SIGY	Límite de Fluencia	345
			LCSS	ID de curva de carga	1
	Load Rigid Body	Hace que un elemento o cuerpo sea rígido (Impactador)	PID	ID del cuerpo rígido	1
8			DOF	Grados de libertad en el plano	2
			LCID	ID de la curva de fuerza	2
			SF	Factor de escala de la curva	-1
9	Element Shell	Agrupa todos los elementos (42312) de la malla de manera general	EID	ID del elemento	1

10	Define Curve	Compila los datos ya sea de tablas o curvas en relación con el esfuerzo ys deformación	LCID	ID de la curva de fuerza	1 2
		(Acero ASTM A500 grado C y La fuerza de impacto)	A1	Valores de abscisas	valores de esfuerzos y deformación
			01	Valores de ordenadas	
11	DataBase Ascii Option	Contiene la mayor de ítems a ser calculados que requiera ser tabulados o ya sean graficas	BNDOUT	Mostrar condiciones de fuerza y energía	Seleccionar
			GLSTAT	Estadísticas globales como energías, desplazamientos, etc.	Seleccionar
			DT	Intervalo de tiempo en generar resultados	0.001 s
12	DataBase_Binary_D3plot	Extrae resultados en un determinado intervalo de tiempo	DT	Intervalo de tiempo en almacenar resultados	0.005 s

			HGEN	Calcula la energía de Hourglass	2
13	Control Energy	Calcula la parte de energías	RWEN	Calcula la disipación de energía	2
			SLNTEN	Calcula la energía de interfaz	2
			RYLEN	Opción de disipación	2
14	Control Hourglass	Calcula el error el matemático durante la simulación	IHQ	Es estándar para todo tipo de simulación en LS- DYNNA	1
			QH	Coeficiente de Hourglass	0.1
15	Control Shell	Controla la estabilidad de la malla en todo el modelo respetando la forma del elemento	WRPANG	Verifica los ángulos internos de deformación de cada uno de los elementos	20
16	Control Termination	Es de carácter obligatorio ya que controla el tiempo de simulación	ENDTIM	Tiempo de terminación del estudio	0.15 s
17	Control Timestep		TSSFAC	Factor de escala para el time step	0.9 s

		Cada que tiempo necesita calcular o mostrar resultados	DT2MS	Tamaño del time Step para soluciones a escala masiva	- 0,001696
18	Contact Automatic Surface to Surface	Se usa para que el Impactador	SSID	ID parte a ser asignada como maestro (bastidor)	2 3
		impacte al bastidor dando identificacion de esclavo (Bastidor; Miembros primarios y secundarios) y maestro (Impactador)	MSID	ID parte a ser asignada como maestro (Impactador)	1
			SSTYP	Parte o conjunto para asignar como esclavo	3
			MSTYP	Parte a conjunto ser asignada como maestro	3
19	Boundary SPC SET	Con el conjunto de nodos creados ayuda a dar restricciones a los nodos	NSID	Set de nodos elegidos sean los del bastidor o del impactador para dar un ID	1 2
		seleccionados	DOFX	Restricción de traslación en el eje X	1

DOFY	Restricción de traslación en el eje Y	1 0
DOFZ	Restricción de traslación en el eje Z	1
DOFRX	Restricción de rotación en el eje X	1
DOFRY	Restricción de rotación en el eje Y	1
DOFRZ	Restricción de rotación en el eje Z	1

Anexo 2.1 Comparación de resultados de todos los ensayos

Tipos de ensayo	Esfuerzo Max	Deformación	Deformación	Deformación	Deformación
	MPa	Eje X mm	Eje Y mm	Eje Z mm	Total, mm
Ensayo frontal –	499,08	19,14	6,797	29,94	31,71
Fuerza - Estático					
Ensayo frontal –	328,334	43,82	5,2	22,53	45,821
Fuerza - Dinámico					

Ensayo frontal –	927,192	483,458	122,171	109,045	483,69
velocidad y masa					
Ensayo lateral –	306,61	1,602	9,144	2,468	9,26
Fuerza - Estático					
Ensayo lateral –	1046,06	46,936	145,51	26,1432	168,75
Fuerza - Dinámico					
Ensayo Vuelco –	137,83	1,939	2,99	2,945	3,45
Fuerza - Estático					
Ensayo Vuelco –	117,448	11,324	1,27153	21,8102	22,2
Fuerza - Dinámico					
Ensayo frontal	325,272	78,4392	11,60	48,699	80,64
ensamble					
Ensayo lateral	377,604	24,2695	91,11	29,98	91,693
ensamble					