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Abstract—The present work details the design of a control 

system for the model of an ankle prosthesis, capable of controlling 

the movement of the foot during each phase of the normal gait, 

controlling its angular position, for a low intensity walk on a flat 

surface. This system represents a stage for macro research projects 

in the development of robotic prostheses, specifically for ankle 

prostheses for cases of transtibial amputation.  

For the design of the control system, first the data were 

obtained of the trajectory, angular position, during the gait, and 

with the help of MatLab the analysis of the signals was carried out 

getting a mechanical model and a mathematical model. Using 

several methods control systems were designed that was applied to 

the mathematical model, to can compared the signal of response 

to a trajectory of reference and choose the best system that allow 

controlling the movement of an ankle prosthesis during a normal 

walk. 

Keywords—Biomechanics; control; mathematical model; 

prosthesis; ankle-foot. 

I.  INTRODUCTION 

Some studies have indicated that one of main functions of 

the human ankle is provide the right energy for the forward 

progression of the body. Therefore, passive prostheses present 

solutions with limited expectations as far as personal 

aesthetics and functionality are concerned. People with a 

mechanical prosthesis exhibit non-symmetrical gait patterns 

and a high rate of metabolic energy expenditure [1]. 

Searching to improve the quality of life of people with 

amputations of the lower limb, has opted to resort to the use 

of biomechatronics prosthesis to solve the problem, that have 

been designed and built according to certain standards, these 

prostheses are on sale abroad at prices that are out of reach of 

the economic resources earmarked for public health in our 

nation. The use of these prostheses has been considered as an 

integral and definitive solution. 

This project aims to simulate a control system for the 

movement of an ankle prosthesis during the gait, this will 

achieve greater functionality, comfort, naturalness, and 

energy saving for the user during the human gait, that is 

economically accessible and giving you a better quality of life. 

II. ANALYSIS OF THE HUMAN GAIT 

The normal gait is a biped locomotion mode that is mainly 

performed by humans. During the gait, the periods of 

monopodal and bipodal support, this allows the displacement 

of the center of gravity of the human body with a lower energy 

expenditure to any other form of human locomotion [2], 

where the weight of the body is distributed alternately by both 

legs. The gait is composed of steps that make strides, that is 

also called the basic cycle of the gait, this is equivalent to two 

steps. 

To analyze the human gait the cycle of gait is studied, a 

complete cycle is divided into two phases, the support phase 

that represents 60% of the cycle and the swing phase the 

remaining 40%, there is also the double-stand period that is 

when the two feet are in contact with the floor, it is presented 

at the beginning and at the end of the support phase (see Fig. 

1) [3]. The cycle of the gait begins when the foot comes in 

contact with the ground, heel strike, and ends when the same 

foot comes back in contact with the ground [4], [5]. 

 

Fig. 1  Normal gait cycle. 

A. Phases of the Human Gait 

The support phase can be divided in three sub-phases: 

controlled plantarflexion (CP), controlled dorsiflexion (CD) 

and powered plantarflexion (PP); While the swing phase is 

divided in: initial, middle and final swing [5], the angles of 

action of these phases are described in Table I [6]. For this 

work, four phases are taken in account that are the sub-phases 

of the support phase and the swing phase (see Fig. 2) [7], that 

are described below: 

1) Controlled Plantarflexion (CP): 

CP begins with the heel strike with the ground surface and 

goes until the foot is fully in contact with the ground. Thus, 



the CP can be considered as a linear spring response where the 

torque is proportional to the position of the ankle [8]. 

2) Controlled Dorsiflexion (CD): 

CD begins whit the foot-flat in contact with the ground 

until to where the angle that form the foot with the leg reaches 

its maximum state of dorsiflexion. can be described as a 

nonlinear spring where the force increases with the increase 

of the angular position of the ankle. During CD the ankle 

mainly stores elastic energy to propel the body upward [7]. 

3) Powered Plantarflexion (PP): 

PP starts after CD until the toe-off of the ground. In this 

phase the elastic energy accumulated during CD is discharged, 

to reach the last posture before the swing phase [7]. 

4) Swing Phase (SP) 

The swing phase is equivalent to 40% of the cycle of the 

gait and begins in the toe-off of the ground and ends in the 

heel strike of the same foot with the surface, in this phase the 

user's foot is raised to avoid the drag of the foot and the 

position of the foot is restored so that the first contact with the 

ground is with the heel (see Fig. 2) [7], [4]. 

TABLE I 

ACTION ANGLES FOR NORMAL GAIT PHASES. 
 

 

 

Fig. 2  Phases during a normal gait cycle. 

III. MECHANICAL MODEL 

For the development of the model used the tools of 
Simmechanics, in Simulink, thus the system leg-foot-ankle, 

can be analyzed in a dynamic way, taking as rigid links 

articulated with a constant length to the lower extremity. 

 

Fig. 3  Model in Simmechanics of the leg-foot-ankle system. 

In the block diagram in Simmechanics, that can be seen in 

Fig. 3, the leg is represented so that it is fixed to the knee joint, 

for it is used the Weld tool, that fixes a link end of the leg, this 

way this end will have no degree of freedom. 

 

Fig. 4  System model block diagram in Simmechanics. 

For the configuration of each link, the data to be entered 

are the mass, the location of its center of gravity (CG), the 

moment of inertia that must remain constant during the 

movement, and it is necessary to enter the coordinates systems 

(CSs), these coordinates indicate the location of the extreme 

points of the links. The anthropomorphic data of the body 

segments such as the length, weight and moments of inertia 

for each link can be seen in the Table II [5]. 

TABLE II 
ANTHROPOMETRIC DATA OF THE BODY SEGMENTS OF THE LOWER 

EXTREMITY. 

 

Normal Gait Phases Action Angles* 

Support phase 

Controlled Plantarflexion (CP) 0º -15º 

Controlled Dorsiflexion (CD) -15º 15º 

Powered Plantarflexion (PP) 15º -25º 

Swing Phase (SP) -25º 0º 

* Approximate average values 

 

 Leg Foot 

Length (0.246)𝐻  (0.152)𝐻  

Model Length * 0.39852 𝑚  0.24624 𝑚  

Mass (0.0465)𝑀  (0.0145)𝑀  

Model Mass ** 3.1155 𝐾𝑔  0.9715 𝐾𝑔  

Moment of 

inertia 

x 0.0369 𝐾𝑔. 𝑚2  0.0037 𝐾𝑔. 𝑚2  

y 0.0369 𝐾𝑔. 𝑚2  0.0037 𝐾𝑔. 𝑚2  

z 0.00268 𝐾𝑔. 𝑚2  0.0008 𝐾𝑔. 𝑚2  

 * H=1.62 m, ** M=67 Kg. 

 



The output will be given by the joint sensor block that 

allows to observe several outputs, such as the torque during 

the movement of the ankle. The scope block (Graphs) shows 

the graphs of the angular position and the torque of the ankle 

model on the Fig. 5. 

IV. MATHEMATICAL MODEL 

A mathematical model that was used in this research was 

made by Dr. Gill in 1998, see [9]. In this case the results 

obtained with this model will be compared with those 

obtained with the previous model. This mathematical model 

was adapted from the model of three degrees of freedom in 

the sagittal plane that can be observed in Fig. 6 [9]. It describes 

the movement of the lower extremity in the swing phase of the 

gait that was obtained by applying the equations of Euler 

Lagrange. 

 

Fig. 5  (a) Angular path of gait, (b) Ankle torque of the model in 

Simmechanics. 

 

Fig. 6  Model on the sagittal plane of the leg swing. 

In this case the system to control considers the leg and foot 

segment as you can see in Fig. 7 [5]. 

 

Fig. 7  Diagram of the free body of the kinetic foot model in the sagittal 

plane. 

In Simmechanics each segment of the leg and foot are 

represented as rigid links and taking the ankle as a joint, Gill's 

study equation is simplified to the following expression: 

(𝐽𝑐 + 𝑚𝑑2)θ̈ + 𝑘θ̇ + 𝑚𝑔𝑑𝑆𝑒𝑛θ = 𝑇𝑑 (1) 

  

Where: 

θ generalized coordinates 

𝐽𝑐 inertia of the body 

𝑚 m ass of the whole system 

𝑑 distance from the joint to the center of mass of the foot 

𝑇𝑑 motor torque 

The torque generated by the ankle varies from the position 

(Newton's second law for rotational movement). It should be 

considered a total torque of 𝑇𝑡 handling considering the torque 

of the prosthesis due to the friction of the joint 𝑇𝑐, quedando 

definido 𝑇𝑡 as: 

𝑇𝑡 = 𝑇𝑑 − 𝑇𝑐 (2) 

In Simulink is represented the equation, with the same data 

of the model of Simmechanics. The torque 𝑇𝑐 = 1.46 𝑁𝑚 and 

𝑘 = 0.5 were defined in the mathematical model during the 

simulations in Simulink to adapt the output of angular 

trajectory to that obtained in Simmechanics (see Fig. 8). 

 

Fig. 8  Mathematical model equation in Simulink. 

 



The equation represented in Simulink has as input data the 

torque, obtained depending on the time of the simulation in 

Simmechanics, from this data is obtained the angular position 

of the ankle (see Fig. 9). 

When comparing the entry path in Simmechanics with the 

output trajectory of the mathematical model in Simulink, to be 

observed in Fig. 10. It is noted that they tend to a natural gait 

cycle, considering that, in a normal walk, the range of 

movement of the ankle is approximately 15° of maximum 

dorsiflexion and 30° of plantar flexion. However, it can be 

observed that there is a greater difference between the angle 

of entry and the angle of exit during the support phase that in 

the swing phase. 

 

Fig. 9  (a) Model ankle torque in Simmechanics, (b) Angular trajectory of 

the mathematical model in Simulink. 

 

Fig. 10  (a) Angular trajectory of the ankle of entry to the model in 

Simmechanics. (b) Angular trajectory of the exiting ankle of the 

mathematical model in Simulink. 

V. PLANT AND ENGINE MODEL 

The representation of the linear system in the state space 

of the model plant and engine is given by the equation of states 

reduced by Villa Parra, 2011 shown below [5]. 

[

𝑥1̂̇

𝑥2̂̇

𝑥3̂̇

] =

[
 
 
 
 

0 1 0
−𝑚𝑔𝑑

𝐽𝑐 + 𝑚𝑑2

−𝑘

𝐽𝑐 + 𝑚𝑑2

𝐾𝑡

𝐽𝑐 + 𝑚𝑑2

0 −
𝐾𝑒

𝐿
−

𝑅

𝐿 ]
 
 
 
 

[

𝑥1̂

𝑥2̂

𝑥3̂

]

+ [

0
0

1
𝐿⁄
] 𝑢(𝑡) 

𝑦̂ = [1 0 0] [

𝑥1̂

𝑥2̂

𝑥3̂

] 

(3) 

With the help of MatLab, the values of the parameters of 

Tabla III are replaced and the ss2tf, command is used, which 

converts a representation into the state space of a system in an 

equivalent transfer function (4). 

TABLE III 

SYSTEM PARAMETERS 

 

 

𝐻 =
180.8

𝑠3  +  1308 𝑠2  +  10441 𝑠 +  48722
 (4) 

VI. CONTROL SYSTEMS 

The simulation of a gait cycle is performed with the 

controllers designed and through the comparison of the 

signals obtained from the systems, the control system that 

most adapts to the desired control objective is chosen. 

A. PID Control System Design 

There will be two types of control systems, starting with 

the PID type, will be used the method of tuning of Ziegler-

Nichols, and the method of the place geometric of the root. 

1) First method of tuning Ziegler-Nichols 

This method can be applied because the response of the 

plant to a unitary step input shows a curve in S shape (see Fig. 

11). 

Drawing a tangent line at the inflection point of the curve, 

the intersections of this tangent are determined with the axis 

of time and the horizontal line marking at which point the 

curve stabilizes. For which we obtained the values of 𝐿 =
0.0567 and 𝑇 = 0.3416. 

Plant parameters  Engine parameters * 

𝑱𝒄 = 𝟎. 𝟎𝟎𝟑𝟕 𝑲𝒈. 𝒎𝟐  Armature constant 𝐾𝑡 = 0.113 𝑁𝑚/𝐴 

𝒎 = 𝟎. 𝟗𝟕𝟏𝟓 𝑲𝒈  Cte. of electromotive force 𝐾𝑒 = 0.0115 𝑉/𝑟𝑝𝑚 

𝒅 = 𝟎. 𝟐𝟒𝟔 𝒎  Armor Resistance 𝑅𝑎 = 13 ohms 

𝒌 = 𝟎. 𝟓  Armature inductance 𝐿𝑎 = 0.01 ℎ𝑒𝑛𝑟𝑖𝑜𝑠 

𝒈 = 𝟗. 𝟖 𝒎/𝒔    

* Nominal values of a rotating angular motor RA29 BEI Kimco 

 



 

Fig. 11  Step response, tangent line to the tipping point. 

By applying the Ziegler-Nichols tuning rules based on the 

step response of the plant (first method), you get the values for 

𝐾𝑝, 𝑇𝑖 y 𝑇𝑑 (5), (6), (7), thus the parameters for the PID 

controller (9). 

𝐾𝑝 = 1.2
𝑇

𝐿
= 7.2296 (5) 

𝑇𝑖 = 2𝐿 = 0.1134 (6) 

𝑇𝑑 = 0.5𝐿 = 0.0284 (7) 

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) (8) 

𝐾𝑑 = 0.21 𝐾𝑝 = 7.23 𝐾𝑖 = 63.75 (9) 

Submitting the plant with the PID controller to a step 

signal, it shows a response signal (see Fig. 12), where the 

setting time is 𝑡𝑠 = 16.2𝑠. 

 

Fig. 12  Response of the plant with PID controller to a step input. 

In Fig. 13 shows the implementation of the PID control in 

Simulink block diagram, using the PID Controller block in 

which the calculated parameters are placed. 

The signals obtained after implementing the PID control 

system in the plant in Simulink can be seen in Fig. 14. Where 

the response obtained about the angular trajectory of the ankle 

is very slow, so it is necessary to design a control system by 

other methods. 

 

Fig. 13  Block diagram of the PID control system. 

 

Fig. 14  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with PID control (Ziegler-Nichols method). 

2) PID method of Place Geometric of the Root 

The design of this PID controller was performed out 

considering the following parameters as a starting point: a 

damping coefficient, μ = 0.94, and a setting time, 𝑡𝑠 = 0.2𝑠 

because you want to get a quick response to the input signal 

of the System, whereupon a system oscillation frequency was 

obtained (ω𝑛), using the equation of the time of establishment 

of second order systems. 

𝑡𝑠 =
4

μω𝑛
 (10) 

𝜔𝑛 =
4

𝜇𝑡𝑠
=

4

(0.94)(0.2)
 

𝜔𝑛 = 21.28
𝑟𝑎𝑑

𝑠
 

 

The location of the desired poles (𝑃𝑑) in closed loop can 

be determined starting from (11). 

𝑃𝑑 = −μω𝑛 ± 𝑗ω𝑛√1 − μ2 

𝑃𝑑 = −20 ± 𝑗 7.26 
(11) 

Using a shape controller (12). 

𝐺𝑐 =
(𝑠 + 𝑎)(𝑠 + 𝑏)

𝑠
 (12) 

Where the first zero is assumed, 𝑎 = 1 to proceed to 

calculate the second zero with the condition of magnitude and 



angle of the LGR; With the command angle in MatLab you get 

the angle Φ in radians, without 𝑏 of the form (13). 

Φ = 𝑎𝑛𝑔𝑙𝑒 (𝐻 ∗
(𝑠 + 𝑎)

𝑠
|
𝑠=𝑃𝑑

) 

Φ = 44.64° 

(13) 

Therefore, there is a deficiency of 135.36°,  which will be 

compensated by the remaining zero which is calculated in the 

following way (14); and finally replacing the variables and 

matching the regulator with the characteristic equation of a 

PID controller you get the parameters 𝐾𝑑, 𝐾𝑝 y 𝐾𝑖 (15). 

∡(𝑠 + 𝑏)|𝑃𝑑
= 135.36° (14) 

∡(−20 ± 𝑗 7.26 + 𝑏) = 135.36° 

tan−1 (
7.26

𝑏 − 20
) = 135.36° 

𝑏 =
7.26

tan(135.36°)
+ 20 

𝑏 = 12.65 

 

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠
=

(𝑠 + 𝑎)(𝑠 + 𝑏)

𝑠
 (15) 

𝐾𝑑 = 1 𝐾𝑝 = 13.65 𝐾𝑖 = 12.65  

Applying the plant with the controller to a step signal was 

obtained the answer that is observed in the Fig. 15, where you 

can see that the response time is very high, 𝑡𝑠 = 85.8𝑠. 

 

Fig. 15  Response of the plant with PID controller to a step input. 

Placing the parameter values in the block diagram with the 

PID controller (see Fig. 13). You get an output signal that you 

see in Fig. 16, along with the reference signal. 

Because there is an error between the reference signal and 

the output signal, as there is a delay in response it is decided 

to reduce the setting time (𝑡𝑠) of the signal, manually 

modifying the frequency of oscillation of the system (𝜔𝑛), 

because it is inversely proportional to the 𝑡𝑠 (10). 

 

Fig. 16  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with PID control (LGR method). 

This value is increased by observing the behavior suede a 

step signal reaching 𝜔𝑛 = 663, a value that offers a shorter 

time of establishment without having a maximum overdrive 

over 5% and thus being able to maintain a stable signal, 

maintaining the part Real of the desired pole (11), then you 

have a new pole, which is: 

𝑃𝑑 = −20 ± 𝑗 226.2 

Performing the same procedure before seen, it has as a 

regulator 

𝐺𝑐 =
(𝑠 + 𝑎)(𝑠 + 𝑏)

𝑠
=

(𝑠 + 1)(𝑠 + 701.25)

𝑠
 

Equalizing the regulator with the characteristic equation of 

a PID controller (15), the following values were obtained: 

𝐾𝑑 = 1 𝐾𝑝 = 702.25 𝐾𝑖 = 701.03 

Applying a step input signal (see Fig. 17) You get a setting 

time of 𝑡𝑠 = 3.39𝑠, much lower than the previously obtained, 

and you can see that there is an overdrive of 𝑀𝑝 = 4.99% in 

𝑡 = 0.30𝑠 allowing the system to grant a faster response 

without destabilizing the system. 

 

Fig. 17  Step response of the plant with PID controller (modified ω𝑛). 

Presenting a response signal with a minimum error to the 

reference signal compared to the one obtained previously 



without modifying the oscillation frequency of the system (see 

Fig. 18). 

 

Fig. 18  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with PID control (LGR method). 

B. State Feedback Control System Design 

The design of state feedback control systems was 

performed observing the responses of each system to obtain 

the best output signal, beginning with the design of state 

feedback, followed is added an observer, and finally is design 

the Integral action. 

1) Feedback of states 

The system is designed in accordance with the State 

Feedback control scheme [10] (see Fig. 19), where K is the 

status feedback gain matrix. 

 

Fig. 19  Scheme of a state feedback control system. 

Using the pole mapping method, the required starting 

parameters are proposed, a buffer coefficient of μ = 0.94 and 

a time of establishment 𝑡𝑠 = 0.2 so the obtained poles are 

𝑃𝑑 = −20 ± 𝑗7.26, the third pole must be in a position of 

such so that the first poles act as dominant, therefore, the third 

pole is placed in such a way that it is remote, in 𝑃3 = −2000. 

To find the values of the matrix K is made use of MatLab 

with the command place (A, B, P), where 𝐴 and 𝐵 are matrices 

of the transfer function and 𝑃 are the desired poles. 

Obtained the matrix 𝐾 = [4585.8 354.79 7.32], is 

implemented in the diagram of blocks of the plant in Simulink 

(see Fig. 20). 

Applying the control system designed to a step input, you 

get the signal that can be seen in Fig. 21, which is very small, 

with maximum peak of 𝑀𝑝 = 0.0151% and a 𝑡𝑠 = 0.242 𝑠. 

 

Fig. 20  Block diagram with State feedback. 

Applying the control system designed to a step input, you 

get the signal that can be seen in Fig. 21, which is very small, 

with maximum peak of 𝑀𝑝 = 0.0151% and a 𝑡𝑠 = 0.242 𝑠. 

 

Fig. 21  Response of the plant with state feedback controller to a step input. 

In the output signal of the system (see Fig. 22), it is 

observed that it has a trajectory similar to the desired one, but 

with very small values, that compared with the reference 

signal it seems that it has a value of 0 ° (see Fig. 23). 

 

Fig. 22  Response to the reference signal applied to the plant with state 

feedback controller 

After obtaining this answer that is not suitable for the 

control system because as it is observed you do not obtain a 

response signal equal to the reference signal is proceeded to 

the design of a observed. 

 

 

∫ 

 

𝐶 𝐵 

𝐴 

−𝐾 

+ 
+ 

+ 
+ 

𝑢 𝑟 𝑥̇ 𝑥 



 

Fig. 23  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with state feedback control (see Fig. 22). 

2) Feedback of States with Observer 

“The estimation of non-measurable state variables is 

commonly referred to as observation. A device (or a computer 

program) that estimates or observes state variables is called a 

state observer, or simply an observer.” [10]. 

 This design is applied assuming the case where the system 

state variables are not measurable, using the gain matrix 𝐾 =
[4585.8 354.79 7.32] previously calculated, therefore, 

the observer is applied in the form indicated in the diagram of 

blocks (see Fig. 24) [10], to try to obtain a better signal than 

that obtained only with the feedback of states. 

 

Fig. 24  Block diagram of the state feedback control system with observer. 

Where 𝐾𝑒 is the matrix of gain of the observer, to obtain 

this gain is made use of MatLab with the command Ke=place 

(A’, C’, P); where 𝑃 are the poles of the observer which is 

desired, for this case it is chosen enough high mind to make 

them faster than the dominant pole, 𝑃 =
[−3000 −3100 −3200], thus obtaining the matrix of the 

gain. 

𝐾𝑒 = [7.99𝑒03 1.84𝑒07 3.22𝑒09] 

Implementing the observer in the control system (see Fig. 

25) and subjecting to a step input signal a signal similar to the 

previous design is obtained which did not have an observer 

(see Fig. 26), giving us the same maximum peak of 𝑀𝑝 =

0.0151%. 

 

Fig. 25  Block diagram with the implementation of the observer in Simulink. 

 

Fig. 26  Response to a step signal of the plant with observer.  

Likewise, the signal obtained is maintained in a similar 

way to when the observer was not used, having a large 

difference in scale between the reference signal and the signal 

with the controller as shown in Fig. 27, in this way not 

obtaining good results, we proceed to make the feedback of 

states with integral action. 

 

Fig. 27  Response to the reference angular trajectory. (a) Comparison 

between the reference signal and the output signal, (b) output signal 

observed on a larger scale. 

 

 



3) State Feedback and Integral Action 

A constant reference tracking scheme is introduced with 

rejection properties of constant input disturbances by 

increasing the number of state variables in the plant, thus 

adding a new state 𝑥𝑎 that integrates the error of tracking (see 

Fig. 28). 

 

Fig. 28  Block diagram of the state feedback control and integral action 

system. 

To have the model with the integrator, is increased to the 

equations of state an extra state that is the output of the 

integrator. 

[

𝑥𝑎

𝑥1̂

𝑥2̂

𝑥3̂

] =

[
 
 
 
 
 
0 1 0 0
0 0 1 0

0
−𝑚𝑔𝑑

𝐽𝑐 + 𝑚𝑑2

−𝑘

𝐽𝑐 + 𝑚𝑑2

𝐾𝑡

𝐽𝑐 + 𝑚𝑑2

0 0 −
𝐾𝑒

𝐿
−

𝑅

𝐿 ]
 
 
 
 
 

[

𝑥𝑎

𝑥1̂

𝑥2̂

𝑥3̂

] + [

0
0
0

1
𝐿⁄

]𝑢(𝑡) 

𝑦̂ = [0 1 0 0] [

𝑥𝑎

𝑥1̂

𝑥2̂

𝑥3̂

] 

(16) 

In the same way replacing the parameters of the matrices 

and using the command place in MatLab, you get the profit 

matrix K. For which it is necessary to locate a pole to loop 

closed for each pole in the plant, the poles are used previously 

calculated and it is located a pole in-2500 being this faster than 

the rest of the poles. 

With the gains obtained for 𝑘𝑎 = [1.2517𝑒07] and 𝐾 =
[1.12𝑒06 28448 32.33], it is implemented in the block 

diagram in Simulink (see Fig. 29). 

 

Fig. 29  Block diagram of the state feedback control system and integral 

action. 

When applying the control system to a unit step input 

signal (see Fig. 30), it can be observed that it has a time of 

establishment of 𝑡𝑠 = 0.2𝑠 and when applying the reference 

signal of the angular position to the system (see Fig. 31), a 

signal was obtained that tends to follow  The reference 
trajectory, but with a delay in the response, because of this 

some modifications are made to obtain a better answer. 

 

Fig. 30  Response of the state feedback control system with integral action to 

a step input. 

 

Fig. 31  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with state feedback control and integral action. 

It modifies manually the imaginary part of the desired 

pole, to have a better answer, because in this way the signal 

response time is reduced (𝑡𝑟). 

𝑡𝑟 =
𝜋𝜃

𝜔𝑑
=

𝜋𝜃

𝜔𝑛√1 − 𝜇2
 (17) 

Because the natural frequency buffered (𝜔𝑑), can be 

identified as the imaginary part of the equation characteristic 

to find the desired pole, modifies only this imaginary part of 

the desired pole to obtain a value that provides a faster 

response and stable, choosing a value which shows the desired 

response signal. 

𝑃𝑑 = (−𝜇𝜔𝑛 ± 𝜔𝑛√1 − 𝜇2) (18) 

𝑃𝑑 = (−𝜇𝜔𝑛 ± 𝜔𝑑) 

𝑃𝑑 = (−20 ± 80) 
 

Performing the previous procedure, with the modification 

of the poles. 

𝑃1 = (−20 + 80) 

𝑃2 = (−20 − 80) 

𝑃3 = (−2000) 

 



𝑃4 = (−2500) 

The gains obtained with the modifications made are 𝑘𝑎 =
[1.88𝑒08] and 𝐾 = [1.27𝑒06 28483 32.32], and them 

in the system (see Fig. 29), it can be observed that by reducing 

the response time and applying a step signal, the response 

signal is sub-dampened with an overdrive of 𝑀𝑃 = 45.4%, 

that manages to stabilize in a 𝑡𝑠 = 0.17s (see Fig. 32). 

 

Fig. 32  Response to a single step signal from the state feedback controller 

and integral action. 

The response obtained to the reference signal is observed 

that it tends to follow its trajectory without having a greater 

error, presenting a quicker response than the previous one (see 

Fig. 33). So, the modification to the desired pole was of great 

help to this design. 

 

Fig. 33  (a) Reference of the angular trajectory of the ankle. (b) Angular 

trajectory of the ankle with state feedback control and integral action 

(modified pole). 

VII. RESULTS 

In Fig. 34 is summarized, the reference signal of the 

angular trajectory of the ankle along with the different signals 

of outputs obtained with each of the designs of controllers 

made. 

The best control systems offering an angular trajectory of 

the appropriate ankle are the PID control system by the place 

geometric of the root method and the state feedback control 

system and integral action. Because the signals obtained from 

the other designed systems have a much greater error, because 

they do not follow the desired trajectory and there is a high 

difference between the desired input values and the output 

values. 

 

Fig. 34  Reference signal of the angular trajectory of the ankle-foot and 

signals obtained from the control systems designed. 

The PID control system by the place geometry of the root 

method shows the best output signal, because it was modified 

by increasing the attenuated natural frequency (𝜔𝑛) n order to 

reduce the setting time (𝑡𝑠) of the signal, always keeping the 

actual part of the desired pole. resulting in a response of the 

angular trajectory of the ankle more faithful to the reference 

signal. 

On the other hand, the system of control by feedback of 

States and Integral action shows a signal that is within the 

range of a cycle of a normal human gait, Fig. 32 is the system 

response to a unitary step input, where you can see that it is a 

sub-buffered response with a maximum impulse of 45.4%, 

which produces the output signal shown in Fig. 33. 

In Fig. 35 it is possible to observe the signals obtained 

from the two systems that offer a better response by 

submitting them to a step signal, with which one can notice a 

difference, in relation to the maximum on impulse and the 

time of establishment of each one; due to these signals can be 
said that the system of control by feedback of states with 

integral action offers us a time of establishment much greater 

but with a great overdrive which distorts the signal of output, 

on the other hand the system of control PID by the place 

geometric of the root has a small envelope impulse which 

allows to obtain a more stable signal of response and with a 

low setting time is considered that this system is the most 

efficient, these data can be compared in a better way in the 

Table IV. 

TABLE IV 

COMPARATIVE TABLE OF IMPLEMENTED DRIVERS 

 

 

Control System 
Setting time 

𝑡𝑠  (𝑠) 

Maximum over-impulse 

𝑀𝑝  (%) 

PID 1er method Z-N 16.2 0 

PID LGR 3.39 4.99 

Feedback from states 0.24 0 

F. S. Observer 0.24 0 

F. S. Integral Action 0.17 45.4 

 



 

Fig. 35  Step signal of PID control systems by the place geometric of the 

root and feedback of states with integral action. 

VIII. CONCLUSION 

The study of the dynamics of the movement of the ankle 

during a low-intensity gait unveils the different phases that 

exist during the cycle, allowing to identify the angular 

trajectory of the data obtained from a normal walk of low 

intensity, the which was used as a reference signal for the 

design of the different control systems carried out. 

Working with various methods for the design of control 

systems and making modifications in some parameters made 

it possible to determine before which controller, the system 

provides a better response to a reference signal by obtaining a 

response fast, with minimal error in stable state and low times 

of establishments. 

The simulation of the systems of control to carry out them 

with the help of MatLab allowed, both to obtain the simulation 

of the mechanical and mathematical model and to compare the 

different answers achieved with the 5 different strategies of 

control making possible to realize the respective 

modifications and observe the results in a more efficient way. 

When comparing the obtained results, it was observed that 

the PID control system designed using the place geometric of 

the root was the most efficient among all, with a maximum 

overdrive of 𝑀𝑝 = 4.99% and a time of establishment of 𝑡𝑠 =

3.39𝑠, showing that it can become very effective as to your 

response to a signal. 
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