
FICA, VOL. 01, NO. 1, JUNIO 2013 1

Study design patterns in Java Platform Enterprise

Edition version 6 for web application development

Acosta, Maricruz

North Technical University -UTN, Ibarra, Imbabura

jmary_86@hotmail.com

Abstract. In the ongoing quest to improve the quality and

design of software, techniques and technologies have

evolved. Various strategies have been developed, several

improvements are the result of previous strategies. Design

patterns are probably the most versatile strategies consist

reuse solutions, not only of source code, but provide

solutions to recurring problems in software development.

Importantly JEE design patterns, collected a set of best

practices that have been developed in recent years for the

development of web systems. The presence of design

patterns leads to standard solutions, easily understandable

and maintainable by developers.

The main focus of this work is the knowledge of design

patterns JEE 6, and that despite the benefits it generates

implementation, are often treated as J2EE patterns,

blocking the functionality of the design patterns and

platform.

Keywords

Patterns, JEE6, Design, Applications, Web.

Resumen. En la búsqueda constante por mejorar la

calidad y el diseño del software, técnicas y tecnologías han

evolucionado. Se han desarrollado diversas estrategias y

habilidades, varias son producto de mejoras realizadas

sobre estrategias anteriores. Los patrones de diseño

probablemente son las estrategias más versátiles, consisten

en la reutilización de soluciones, no solamente de código

fuente, sino que constituyen soluciones integrales a

problemas repetitivos en el desarrollo del software.

Es importante señalar que los patrones de diseño JEE,

recopilan un conjunto de buenas prácticas que se han

venido desarrollando en los últimos años para el

desarrollo de sistemas web. La presencia de patrones de

diseño conduce a soluciones estándares, fácilmente

comprensibles y mantenibles por parte de los

desarrolladores.

El enfoque principal de este trabajo es el conocimiento de

los patrones de diseño JEE 6, ya que a pesar de los

beneficios que su implementación genera, son tratados a

menudo como patrones J2EE, obstruyendo la

funcionalidad de los patrones de diseño y de la plataforma

en sí.

Palabras Claves

Patrones, JEE6, Diseño, Aplicaciones, Web.

1. Introduction

Since the 90s, when the Internet began to spread

worldwide, begins the search tactics and skills so as to take

advantage of new technologies and provide solutions that

suit the environment. This propagation, made the engineers

and software developers will gradually leaving behind

some architectures that, though they remain in force, tend

to disappear over the years. The problem is not that the

technologies change, but the ability that the developer has

to adapt to them. Precisely this has been one of the

principal obstacles in the development of software for the

Web.

Design patterns originated as civil architecture

concepts by architect Christopher Alexander [1]. Then the

book is published Core J2EE Patterns [2], focused on best

practices and design strategies for enterprise applications.

Ultimately, the designs use of patterns or not, should be

translated into code, so that the book is published Real

World Java EE Patterns - Rethinking Best Practices [3],

which is a rethinking of design patterns are now used in

applications JEE. Due to the great reception that took its

release, the book Real World Java EE Night Hacks [4], is

published as a complement to the previous book, it reflects

the use of patterns in web applications.

Although the existence and extensive use of design

patterns, there is still a degree of ignorance about the

existence and benefits of using design patterns for Java

2 STUDY DESIGN PATTERNS IN JAVA PLATFORM ENTERPRISE EDITION VERSION 6 FOR WEB APPLICATION DEVELOPMENT

Enterprise Edition 6 Web application development. A

considerable number of developers using J2EE patterns

JEE applications, which makes it impossible the

appropriate use of the platform and the improvements it

offers to the design and production of systems, increasing

in a way, the development and delivery time thereof.

This work is intended as a guide that allows choose

design patterns Java EE 6 platform best suited for web

application deployment, taking into account the main

features each has and the benefits they offer.

2. Theorical Frame

Several questions may arise when starting the

development of a Web project. These projects often

delimited critical delivery times and must be executed by

decreasing expenses. They should be light systems in

consumption of resources scalable and able to exchange

information. Maintainability is also critical in this type of

projects.

This paper focuses on the best practices of Web

application development, given a certain level of ignorance

on the subject, we will analyze each design pattern Java EE

platform version 6, therefore, the realization of this study

seeks to the reader acquires a certain level of knowledge of

design patterns and possible implementation seeks to

highlight, the benefits of using design patterns JEE 6, and

intended as a guide for choosing appropriate patterns.

Java Enterprise Edition there since 1998 as an

initiative of a group of engineers from Sun Microsystems,

and in more than 10 years of development has become one

of the most robust architectures for building information

systems. JEE was a pioneer in the development of design

patterns, publishing the March 8th 2001, its own catalog of

patterns that was very popular, and subsequently diffuses

BluePrints patterns and incorporates vital concepts in the

systems as scalability and performance.

Opted Into the analysis of JEE design patterns,

because the primary sources of Web patterns used this

implementation platform, although in practice, the patterns

are sufficiently independent of the platform.

2.1 Layer model

The Java EE platform adopts an approach

distributed multi-tier applications for enterprise

applications, where application logic is divided into

components according to function. Using a programming

logic developed in levels or layers, which allows separate

or encapsulate application elements in defined parts, to

simplify the development and to clarify the responsibility

of each of the components of an application.

Figure. 1. Multilayer Applications1

2.2 Features and services of JEE

The fundamental objective of the Java EE 6

platform is to simplify the development by providing a

common basis for different types of components of the

Java EE platform. Developers benefit from the productivity

improvements with more annotations and less XML

configuration. It has new features like: profiles, contexts

and dependency injection, new features for EJBs, Servlets

and JSF components.

Among the services that JEE provided and that

can be used in any application server that follow this

standard include: Java Transaction API (JTA), Java

Persistence API (JPA), Java Message Service (JMS),

JavaMail, Java EE Connector Architecture (JCA), Java EE

Connector Architecture (JCA), among others.

2.3 What is a Desing Pattern

The design patterns can be defined as predefined

schemas or set of strategies applicable in various situations,

so that the analyst makes sure that the design you are using

has certain qualities that give quality.

The Design Patterns book proposes the following

definition for pattern design: "The design patterns are

descriptions of communicating objects and classes that are

adapted to solve a general design problem in a particular

context" (Erich Gamma, 1994). Therefore, the patterns are

centered on the micro-structure of the applications, that is,

classes and objects.

2.4 Why are they useful Design Patterns

The main objective of design patterns is to capture

best practices to improve the quality of system design,

identifying objects that support useful roles in a specific

context, encapsulating the complexity and making it more

1 Figure obtained from the JEE 6 Tutorial (OracleCorporation, pág. 41).

FICA, VOL. 01, NO. 1, JUNIO 2013 3

flexible. The benefits resulting from the use of a pattern

can be measured in many ways, for example:

Contribute to reuse design, identifying key aspects

of the structure of a design that can be applied in different

situations. The design reuse is important because it reduces

development efforts and maintenance, improve safety,

efficiency and consistency of designs.

Improve flexibility, modularity and extensibility,

internal factors and closely related to the quality perceived

by the user, in addition, increase the design vocabulary of

developers, helping to design from higher levels of

abstraction.

2.5 What are JEE design patterns

With the appearance of JEE version 6, a new

design pattern catalog was released, providing the benefits

of this platform and solutions for problems typically

encountered by architects and designers in the process of

application development.

"JEE design patterns are the best solutions to help

developers design and build applications on the JEE

platform" (Bien, Real World Java EE Patterns – Rethinking

Best Practices, 2009).

2.6 Design of web applications with design

patterns

The design of web applications based on JEE

patterns is intrinsically organized around the use of several

elements: a front controller, dispatcher, composite views,

static views (JSPs) and helpers of dynamic views formed

with JavaBeans. This may be reflected in figure 2, which

illustrates a design based on these mechanisms.

 Figure. 2. Design based on JEE patterns2

2 Figure taken the manual Web Application Design (Díaz, 2003).

2.7 Design patterns JEE 6 catalog

Most of the Java EE 6 projects continue using

J2EE patterns but this platform was intrusive, the

separation of technical infrastructure and business logic

needed the mandatory introduction of patterns, which were

mostly solutions for deficiencies of J2EE.

The functionality of this new version of the Java

Enterprise platform, demand a rethinking of the design

patterns used in J2EE and the elimination of superfluous

code required to implement applications on that platform.

Taking into account the previous point and following the

logic of the GoF design patterns, a series of specific

patterns of Web world is divided into three layers:

Presentation, Business and Integration.

a) Patterns of presentation layer. This layer

includes Servlets, JSPs and other interface elements that

generate server-side user.

The design patterns of this layer are part of the

J2EE catalog but can be used in JEE, however we must not

forget the benefits this platform version 6 offers, so that the

use of patterns in this layer should be adequately justified.

In this study, the following patterns are mentioned:

Intercepting Filter. This pattern handles various

types of requests that require specific processing, is applied

especially in session validation processes. It relates to the

Front Controller and Decorator patterns.

Front Controller. The Front Controller pattern

accepts all requests from a client and routed to the

appropriate handlers. It is related to View Helper,

Intercepting Filter, Service to Worker and Dispatcher View

patterns.

View Helper. Charge of to encapsulate the access

logic databases. It relates to the Business Delegate, Front

Controller, Service to Worker and Dispatcher View

patterns.

Composite View. Used when required common

subviews, such as headers and footers, multiple views, that

can occur in different places within each page layout. It

relates to the View Helper pattern.

Service to Worker. This pattern is similar to the

MVC architectural pattern, uses the Front Controller

patterns to the Controller and View Helper for the view

with a dispatcher component.

Dispatcher View. This pattern is similar to

Service to Worker, but the controller does not perform

actions on the helper.

a) Patterns of the business layer. This layer

exposes the logic required for the user through the

interface, to interact with the functionalities of the

application.

4 STUDY DESIGN PATTERNS IN JAVA PLATFORM ENTERPRISE EDITION VERSION 6 FOR WEB APPLICATION DEVELOPMENT

The Java EE platform defines the use of EJB

business components to abstract the business logic of other

general problems like concurrency applications,

transactions, persistence and security. In this study, the

following patterns are mentioned:

Service Facade. It is the improved version of the

Application Service pattern. It is a stateless session bean

with a local business interface that should be provided

remotely only if you will use outside the Java Virtual

Machine (JVM), and will not injected into a Servlet,

backing bean, or another web component. It relates to the

patterns: Application Service, Session Facade, Gateway,

Service, Data Access Object, Data Transfer Object.

Service. Is the new name Session Facade pattern,

is procedural and performs activities or threads. Its main

objective is to make building business logic reusable and

easier to maintain. A service is coordinated by Service

Facades or Gateways, call DAOs and can produce DTOs.

Persistent Domain Object. Persistent Domain

Object pattern (PDO) is a persistent entity. Relationships

and status changes are automatically synchronized with the

persistence at the end of the transaction. Interacts with the

Composite Entity, Domain Store, Business Object, Data

Transfer Object design patterns.

Gateway. A Gateway provides an entry point to

the root of the PDOs. It relates to the patterns: Composite

Entity, Domain Store, Business Object, Data Transfer

Object, Service Facade, Service.

Fluid Logic. The changing algorithms often

require re-compilation and even redeploy the entire

application. Fluid Logic pattern is a specific Service.

Patterns removed. The patterns which are

detailed below are removed from the principal applications

of Java EE 6, but could be used for special purposes or for

migrating J2EE to Java EE 6.

Service Locator. It was a pattern binding in J2EE

applications. The main reasons for withdrawal are:

Dependency Injection is available in most Java EE

components. The JNDI lookups are no longer necessary to

access other session beans or resources.

The creation of an initial interface is optional, and

consequently the creation of local and remote interfaces.

Code complexity infrastructure was greatly reduced by the

EJB specification 3.0. You should use the Dependency

Injection whenever possible and only in exceptional cases,

the implementation of a generic Service Locator.

Composite Entity. Represents a scheme of objects.

The main reasons for withdrawal are:

The persistence CMP 2.1 does not support

perfectly relationships. CMP entities had start interfaces

which were used similarly to EntityManager.

With the advent of JPA, the implementation of the

relationships became naturally.

JPA entities are domain objects that are persistent.

You can apply any pattern desired without any overload.

The Composite Entity pattern was degraded in JEE to a

design pattern Composite GoF catalog.

Value Object Assembler. It was a pattern

dedicated to merge, transform or extract data from different

data sources. The main reasons for withdrawal are:

The EntityManager implements part of the

original intention of the Value Object Assembler: it is

capable of returning a submodel from a scheme of

interconnected entities.

The creation of sub-models and the conversion of

attached entities within Transfer Objects, is the

responsibility of Service Facade or Service. There is no

need for a specific component or pattern for implementing

the conversion. In most cases, it could unravel the use of

dedicated Transfer Objects and spend separate entities and

bonded layers or levels.

Business Delegate. It was used to hide

implementation details of the business and to reduce the

coupling between it and the presentation layer. The main

reasons for withdrawal are:

No longer necessary to use this pattern to separate

business logic from the presentation because the business

interfaces can be injected directly into the majority of

presentation components.

With EJB 3.0 business interface is identical to the

external interface of the Business Delegate. The Business

Delegate pattern was using Service Locator to find the

initial interface and internally created local or remote

interface. In EJB 3.0, the source interfaces are optional,

business interfaces can be retrieved directly from JNDI.

Domain Store. This pattern was used to

transparently persist an object model and is independent of

the model. His retirement is because the Entity Manager in

JEE is considered a pattern Domain Store.

Value List Handler. This pattern was used to

provide iteration between data and client. The reasons for

withdrawal are:

Since the introduction of JPA, entities can be

easily separated without additional effort. The

implementation of the Value List Handler is not relevant,

because it is the application of the Iterator pattern
3
.

3 Iterator, lets users make routes on composite objects regardless of the
implementation of these.

FICA, VOL. 01, NO. 1, JUNIO 2013 5

The Value List Handler became strategy of the

Paginator pattern.

a) Patterns integration layer. This layer gathers

connection components with other systems, connectors

with services, courier services and others. In this layer

patterns are numbered as follows:

 Data Access Object. It is used to separate the

business logic from data access. In a Java EE 6, is reduced

to an interface and a class with specific EJB annotations.

The DAO session bean is annotated whit @

TransactionAttribute, so that all DAO methods can be

invoked in an existing transaction. It must be invoked from

a component of the business logic and not directly from the

display.

The use of a dedicated DAO is optional, can be

replaced with EntityManager injected to a Service. A DAO

is used for Service or Service Facade and may use Generic

JCA owners to access the legacy resources.

Transfer Object y Data Transfer Object. The

primary responsibility of these patterns is to optimize data

transfer. The patterns Data Access Object, Service Facade

and Service can consume and produce DTOs.

In J2EE, its use was recommended to hide the

specifics of the container managed persistence, at present,

JPA transferring data between layers, especially in a single

JVM. The TOs are structurally similar to JPA entities, then,

each change driven by a request arrives to the JPA entities.

Legacy Pojo Integration. There is a need to

integrate POJOs and developed a Java EE application, and

access them easily and without friction.

The POJO inherited is deployed as an EJB 3 to

easily participate in transactions and be managed by the

container. It could also be injected into a existing session

bean.

Generic JCA. A JCA connector can access each

resource incompatible EJB is portable, standardized, easily

accessible and managed by the application server. It is a set

of interfaces API y SPI connection oriented.

Is composed of two interfaces, four classes, and an

XML file. It is completely transparent to the developer.

The connectors can be accessed by the Service and Service

Facade patterns.

Asynchronous Resource Integrator. The pattern

Asynchronous Resource Integrator is a Service Activator

with a scope and expanded responsibilities, although its

main objective remains incompatible resource integration.

The asynchronous invocation of synchronous services

covered by the EJB 3.1 specification.

This pattern can work directly with DAOs and

Services may be invoked by sending JMS messages.

b) Patterns of infrastructure and utilities. There

are difficult to classify patterns that can be used in all

layers, or not all are relevant in a general context and can

be omitted from the description of the architecture. The

patterns of infrastructure and utilities that can be used in

the development of the applications are:

 Service Starter. Su uso debe satisfacer las

siguientes necesidades: Se necesita una forma portable para

iniciar los servicios con impaciencia y la solución debe

proporcionar enlaces extensibles mediante los cuales, beans

de sesión sin estado existentes pueden ser inicializados.

The pattern Starter Service acts as a wrapper, to

initialize a session bean should be injected reference and

call the desired method, this will make injects container

and initialize the bean.

Invokes Service, Service Facade or Gateway to

produce its initialization, it is technically identical to the

Singleton pattern.

Singleton. Their responsibility is to provide shared

state and concurrency management. Can access to Service

Facades existing, services and resources for serch

information needed and caching afterwards.

Bean Locator. The Bean Locator Pattern is

responsible for locating EJBs and building global JNDI

names. Returns beans local or remote with stateful,

stateless and Singleton, and should only be used in classes

where Dependency Injection does not work or is not

available.

Dependency Injection can be considered as a Bean

Locator 2.0, because it uses a generic version of this

pattern, configured with metadata derived from

conventions, class files, annotations and XML. The J2EE

Service Locator pattern is related to the Bean Locator, its

implementation was limited due to the lack of global JNDI

names and annotations.

Thread Tracker. The use of this utility, you must

resolve the following requirements: The solution should be

portable across servers. The expansion of control

capabilities must be clearly separated from business code.

Additional control functionality should be easy to remove

before deployment in production.

It can connect to a given class using annotations

or XML. Help to find potential bottlenecks and slow

methods. For more flexible control and search of access

points could be deployed Services with ThreadTracker.

Dependency Injection Extender. The Dependency

Injection Extender (DIE) is practical for small fragments

reuse of existing functionality.

The interceptor plays the most important, is the

bridge between EJBs and legacy components. It is reusable

across services and Service Facades.

6 STUDY DESIGN PATTERNS IN JAVA PLATFORM ENTERPRISE EDITION VERSION 6 FOR WEB APPLICATION DEVELOPMENT

Payload Estractor. Before the method is invoked,

receives and detects the actual message type. Depending on

the type, throw the message, extract its contents, and

invokes the consumption method using reflection.

From the point of view of implementation, the

Payload Extractor pattern is similar to Dependency

Injection Extender. Forwards the message content to

services, which are injected into the message-driven bean.

Resource Binder. The resources folder is

responsible for: The initialization of resources needed

before any invocation of business logic. Life cycle

management of custom resource. Register the resource in

the JNDI tree of the application server. Resource cleanup

and cancellation of registration at the time of shutting down

the server.

The resources exposed by this pattern are

consumed in session beans and therefore the patterns

Services, Service Facades and DAOs.

Context Holder. It is provided by the container or

Java SE. In both cases, it is started before the first business

method invocation of a Service Facade or Gateway. This

can be done with an interceptor, dynamic proxy or servlet

filter that is the injector.

Is used by the Service Façade pattern and their

interceptors for data transport to services and DAO.

Because the Context Holder uses interceptors, this pattern

is similar to patterns Thread Tracker, Payload Extractor,

and Dependency Injection Extender.

2.8 Applicative

With the aim of apply learning in the course of the

study, it was decided the development of a small hotel

system using as development tools NetBeans IDE version

7.2.1, Postgresql 9.0 and GlassFish Application Server 3.1,

and for the documentation RUP methodology.

 Figure. 3. Modules hotel system 4

4 Source: Author

Reservation Module. This module allows: Check

the availability of cabins. Entering customer data. Inquiries

reservations. Register and cancel reservations. Providing

payment services online.

Receiving Module. This module allows: Perform

guest registration with or without reservation. Modification

of reservation and receiving data. Check availability of

cabins. Inquiries reservations.

Billing module. This module is responsible for

issuing the corresponding receipt.

Security Module. Creating and deleting users.

System access management.

Reports Module. Generate the listing of

reservations and room occupancy.

For the service of on-line payments considering

the use of PayPal to be the system most widely used online

payment market.

Figure. 4. User Interface: Project Login 5

3. Results

Web applications are often constructed in which

each JSP page manages security services, content retrieval,

and navigation. This creates a model with a high

maintenance costs due to the existence of duplicate code,

usually, by the use of the technique of copy and paste.

It can significantly improve the quality of these

applications centralizing and encapsulating some

mechanisms, making the application much more

maintainable, simple, and clean. To achieve these

objectives there is nothing better than the condensed

experience of many years of development and design: JEE

design patterns.

The JEE platform offers various design

possibilities. However, the use of the MVC architectural

5 Source: Author

FICA, VOL. 01, NO. 1, JUNIO 2013 7

pattern and JEE Design Patterns 6 give scalability to

applications, facilitating future expansions, migrations and

changes in general. This could be verified in the course of

developing the applicative where they were used

principally Data Access Object, Services and paginator

patterns.

4. Conclusions

The study of design patterns generates a range of

implementation possibilities for all kinds of applications.

A design pattern is the collection of given

solutions to a problem encountered during development.

The primary objective of the design patterns is to

simplify the development, providing applications

scalability, flexibility and reusability.

The use of design patterns JEE 6 in conjunction

with the functionalities that this platform provides,

generates robust applications with very little effort.

There is more benefit to the develop a distributed

application layered using JEE design patterns, it facilitates

the maintenance of the application.

A system based on design patterns and correctly

implemented, it will require major changes when there are

changes in the requirements as to the create a system using

patterns, the basic structure is flexible and reusable

software as they have been taken into account in the design

stage, the possible changes that may arise in the future for

the application.

There are large numbers of design patterns and

strategies to implement them, the choice will depend on the

complexity of the system and developer skills.

The design patterns JEE 6 platform evolved so

that they are more powerful and provide greater benefits

than J2EE patterns.

Although the functionality of J2EE patterns is

minimal compared to the benefits of the design patterns

JEE 6 and the platform itself may be used yet this will

depend on the judgment of the developer.

5. Recommendations

Continue researching, studying and applying the

different design patterns to obtain the benefits of these.

Is recommended the inclusion of design patterns

in the development of Software by need and solve

problems present at system being developed, but not add

without much knowledge of them.

No design patterns applied indiscriminately, as

this may complicate the design and implementation of a

system. The patterns are intended to create reusable

systems, portable, scalable, readable code, but achieving

these objectives can lead to greater problems in design and

implementation, if not applied in the right way.

Is recommended to read the documentation of the

pattern, especially the section consequences, because it will

give an idea of the result you get when you use the pattern

in a given context.

The implementation strategies expressed in this

document and forming a part of the original description of

each pattern, are not a rule to follow. Its use is

recommended if the application development warrants.

It is recommended, when you want to include a

design pattern in a system, use a developer with experience

in handling patterns, demand for its proper use have some

practice in this regard.

Promote the development of web and enterprise

applications using design patterns.

The use of Java Platform Enterprise Edition, for

all the features and functionality offered.Se recomienda el

uso de la plataforma Java Enterprise Edition, por todas las

características y funcionalidades que ofrece.

Acknowledgements

I want to extend a sincere thank you to North

Technical University staff especially Professor of

Engineering Degree in Computer Systems Engineers

represented by Jorge Caraguay, Mauricio Rea and José

Luis Rodríguez, Thesis Director, who with his advice and

expertise made be the culmination of my work.

Bibliographical References

[1] Alexander, C., Ishikawa, S., Silvertein, M., Jacobson, M.,
Fiksdahl-King, I., & Angel, S. (1977). A Pattern Language:

Towns/Builder/Construction. New York: Oxford University Press.

[2] Deepak Alur, J. C. (2003). Core J2EE Patterns: Best Practices
and Design Strategies. California: Sun Microsystems, Prentice

Hall.

[3] Bien, A. (2009). Real World Java EE Patterns – Rethinking Best
Practices. Kentucky.

[4] Bien, A. (2011). Real World Java EE Night Hacks — Dissecting

the Business Tier.

[5] Óscar Belmonte, C. G. (2012). Desarrollo de Proyectos

Informáticos con Tecnología Java. Universitat Jaume I.

8 STUDY DESIGN PATTERNS IN JAVA PLATFORM ENTERPRISE EDITION VERSION 6 FOR WEB APPLICATION DEVELOPMENT

[6] Miguel Abarca C., G. D. (2009). Desarrollo Básico de

Aplicaciones en la Plataforma J2EE. Obtenido de

http://xxito.files.wordpress.com/2008/05/manualj2ee.pdf

[7] OracleCorporation. (s.f.). The Java EE 6 Tutorial. Obtenido de

http://docs.oracle.com/javaee/6/tutorial/doc/javaeetutorial6.pdf

[8] Gracia, L. M. (s.f.). Un poco de Java. Obtenido de
http://unpocodejava.wordpress.com/2011/01/10/tecnicas-de-

bloqueo-sobre-base-de-datos-bloqueo-pesimista-y-bloqueo-

optimista/

[9] Torrijos, R. L. (s.f.). Programación en Castellano. Obtenido de

http://www.programacion.net/articulo/catalogo_de_patrones_de_di

dise_j2ee_i_-_capa_de_presentacion_240

[10] Sun Microsystems, Inc. (2002). ORACLE. Obtenido de

http://www.oracle.com/technetwork/java/catalog-137601.html

[11] Universidad de Alicante. (13 de 10 de 2011). Servicio de
Informática. Recuperado el 21 de 09 de 2012, de

http://si.ua.es/es/documentacion/asp-net-mvc-3/2-

dia/razor/helpers.html

[12] William Crawford, J. K. (2003). J2EE Design Patterns (1st

Edition ed.). California: O’ Reilly.

[13] Beck, K., Cunningham, W., Inc, A. C., & Inc, T. (1987). Using
Pattern Languages for Object-Oriented Programs. Orlando.

[14] Erich Gamma, R. H. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software. Massachusetts: Addison
Wesley.

[15] Martin Fowler, D. R. (2002). Patterns of Enterprise Application

Architecture. Massachusetts: Addison Wesley.

[16] Riehle, D., & Züllighoven, H. (1996). Understanding and using

patterns in software development. John Wiley & Sons, Inc.

[17] Gabriel, R. P. (1996). Patterns of Software: Tales from the
Software Community. Oxford University Press, Inc.

[18] Coplien, J. (1996). Software Patterns. SIGS Books.

[19] Díaz, M. (2003). MOISESDANIEL.COM.
http://www.moisesdaniel.com/es/wri/disaplicj2ee.html

[20] Mejía, D. P. (s.f.). Recuperado el 4 de Noviembre de 2012, de

http://delta.cs.cinvestav.mx/~pmejia/softeng/Patrones.ppt

Reference source Wikipedia

[21] http://es.wikipedia.org/wiki/ASP.NET

[22] http://es.wikipedia.org/wiki/Java_EE

[23] http://es.wikipedia.org/wiki/PHP

[24] http://es.wikipedia.org/wiki/Sun_Microsystems

[25] http://es.wikipedia.org/wiki/Java_Community_Process

[26] http://es.wikipedia.org/wiki/SDK

[27] http://es.wikipedia.org/wiki/JavaBean

[28] http://es.wikipedia.org/wiki/Plain_Old_Java_Object

[29] http://es.wikipedia.org/wiki/Java_Servlet

[30] http://es.wikipedia.org/wiki/Java_Archive

[31] http://es.wikipedia.org/wiki/WAR_(archivo)

[32] http://es.wikipedia.org/wiki/Enterprise_JavaBeans

Other sources

[33] http://www.programacion.com/articulo/catalogo_de_patrones_de_
diseno_j2ee__i__capa_de_presentacion_240.

[34] http://cursoj2ee.blogspot.com/2009/02/controlador-frontal.html

[35] http://www.corej2eepatterns.com/Patterns2ndEd

[36] http://migranitodejava.blogspot.com/2011/05/patrones-de-diseno-

de-gof.html

About the Author

Author-Maricruz ACOSTA Graduated from the School

of Computer Systems Engineering from the Technical

University of the North.

http://docs.oracle.com/javaee/6/tutorial/doc/javaeetutorial6.pdf

