UNIVERSIDAD TÉCNICA DEL NORTE

FACULTAD DE INGENIERÍA EN CIENCIAS AGROPECUARIAS Y AMBIENTALES

ESCUELA DE INGENIERÍA AGROPECUARIA

EVALUCIÓN DE TRES BIOESTIMULANTES CON TRES DOSIS EN EL CULTIVO DE ARVEJA (*Pisum sativum L.*). EN SANTA MARTHA DE CUBA - CARCHII

Tesis previa a la obtención del Título de Ingeniero Agropecuario

AUTOR:

Rubén Eliecer Vaca Patiño

Febrero 2011

INTRODUCCIÓN

- El cultivo de arveja (*Pisum sativum L.*), constituye actualmente un cultivo de alta importancia y gran demanda en el mercado nacional e internacional.
- El cultivo de arveja es vital para la seguridad y soberanía alimentaria de la población, por sus características nutritivas, por ser parte de la dieta diaria y por los ingresos que genera su comercialización.
- En la provincia del Carchi el cultivo de arveja, contempla las 1000 hectáreas con un rendimiento de 1.81 Tm/ha en verde.
- En la actualidad en el noreste de la provincia del Carchi (Julio Andrade, Huaca, Santa Martha de Cuba, Mariscal Sucre, Pioter) se está cultivando variedades de origen colombiano como es el caso de Obonuco Andina.

Dentro de la tecnología de la agricultura sostenible se encuentra el uso de los bioestimulantes, cuyo resultado al ser aplicados incrementan significativamente la productividad y calidad de los cultivos, asi como también se minorizan los costos de producción .

- ➤ El cultivo de arveja en Santa Martha de Cuba, cantón Tulcán, provincia del Carchi se ha incrementado paulatinamente ya que los agricultores en su experiencia comentan que la inversión es baja y la ganancia es mayor, además que se puede realizar 2 siembras anuales ya que la cosecha se la realiza en verde.
- Es así, que está investigación se encamina a buscar el mejor bioestimulante y dosis de aplicación al cultivo de arveja, con el propósito de aprovechar los nutrientes de estos productos a base de hormonas vegetales, extractos vegetales y aminoácidos sobre el rendimiento comercial de arveja (*Pisum sativum L.*)

OBJETIVO GENERAL

EVALUCIÓN DE TRES BIOESTIMULANTES CON TRES DOSIS EN EL CULTIVO DE ARVEJA (*Pisum sativum L.*). EN

SANTA MARTHA DE CUBA - CARCHI

OBJETIVOS ESPECÍFICOS

- ➤ Evaluar el rendimiento del cultivo de arveja (*Pisum sativum L.*) variedad Obonuco Andina con la aplicación foliar de tres bioestimulantes.
- Determinar la mejor dosis del mejor bioestimulante para la producción de arveja variedad Obonuco Andina.
- Realizar el análisis económico del tratamiento alternativo para la producción de arveja variedad Obonuco Andina.

HIPÓTESIS

La aplicación foliar de tres bioestimulantes y tres dosis en el cultivo de arveja (*Pisum sativum L.*) variedad Obonuco Andina influye en las características de la leguminosa.

MATERIALES Y MÉTODOS

CARACTERIZACIÓN DEL SITIO DE ESTUDIO

Ubicación Geográfica de la Localidad

Provincia Carchi

Cantón Tulcán

Parroquia Santa Martha de

Cuba

Localidad Llano Grande

Latitud 00⁰ 40" 00 Lat. Norte

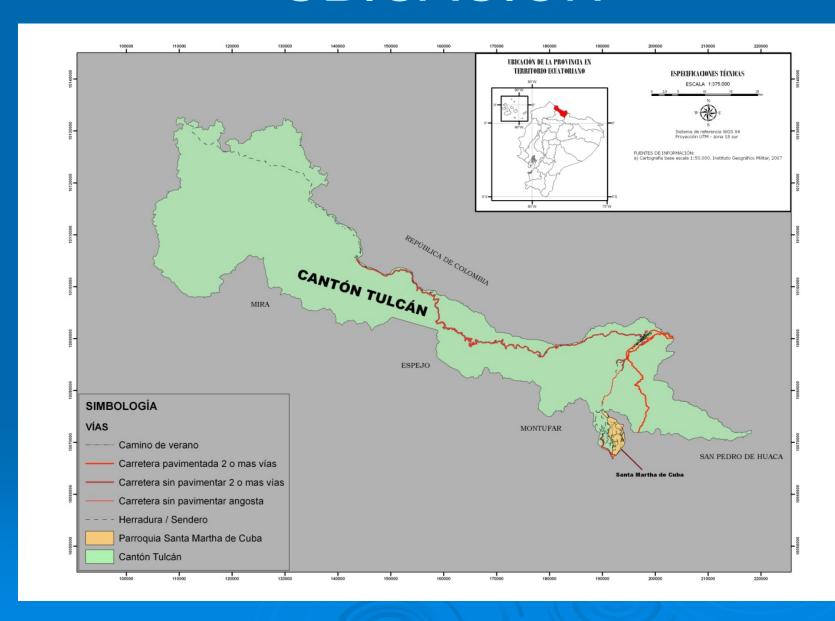
Longitud 77° 45° 00 Long. Este

Altitud 2895 m.s.n.m

Condiciones Climáticas

Precipitación 1300 mm/año

Temperatura promedio 11 °C


Humedad relativa 70 – 80 %

ESTACIÓN METEOROLÓGICA UPEC

Características Físicas del Suelo

Textura franco arenoso, Topografía ondulada y buen Drenaje, buen contenido de materia orgánica.

UBICACIÓN

MATERIALES Y EQUIPOS

Materiales de Campo

- Semillas de arveja
 (Pisum sativum) variedad
 Obonuco Andina.
- Herramientas de labranza
- Bomba de mochila
- Equipo de protección
- Fungicidas
- Bioestimulantes (Siaptom, Biotek, Ocean)
- Fertilizantes
- Insecticida

- > Herbicida
- Libro de campo
- Balanza
- Pie rey
- > Flexómetro
- > Piola
- Estacas
- Rótulos
- Materiales de cosecha (sacos, gavetas, etc.)

Equipos de Oficina

- Computadora
- > USB
- > Calculadora
- Cámara fotográfica

FACTOR EN ESTUDIO

Constituido por los siguientes Bioestimulantes; Siaptom, Biotek, Ocean en dosis baja, recomendada y alta más un testigo agricultor.

Tratamientos

Se utilizó 3 bioestimulantes de distintas casas comerciales, con los cuales se efectuó las siguientes combinaciones estratégicas.

Tratamiento	Codificación		Descripción	
t1	b1db	Siaptom	1.5 l/ ha	7.5 cm³/l
t2	b1dr	Siaptom	2.0 l/ ha	10 cm³/l
t3	b1da	Siaptom	2.5 l/ ha	$12.5~\mathrm{cm}$ 3/l
t 4	b2db	Biotek	1.5 l/ ha	7.5 cm³/l
t5	b2dr	Biotek	2.0 l/ ha	10 cm³/l
t6	b2da	Biotek	2.5 l/ ha	12.5 cm³/l
t7	b3db	Ocean	1.5 l/ ha	7.5 cm ³ /l
t8	b3dr	Ocean	2.0 l/ ha	10 cm ³ /l
t9	b3da	Ocean	2.5 l/ ha	12.5 cm³/l
t10	Testigo absolu	ito		

DISEÑO EXPERIMENTAL

Se utilizó un Diseño de Bloques Completos al Azar con un factorial 3 x 3 + 1. Se realizaron cuatro repeticiones, siendo el total de 40 unidades experimentales.

Características del Experimento

➤ Unidad experimental (5 surcos): $30 \text{ m}^2 (6\text{mx}5\text{m})$

➤ Unidad experimental neta (3 surcos): 12 m² (4mx 3m)

Número de plantas por surco: 20 plantas

➤ Número de plantas por parcela: 60 plantas

1 m Separación entre bloques:

➤ Separación entre parcelas:

≽Área total del ensayo (61 m x 29 m):

➤ Número de Unidades Experimentales:

1 m

1769 m²

40 U.E

Análisis Estadístico

Para calificar las diferencias entre tratamientos, se utilizó el análisis de varianza.

Fuentes de Variación	GL
Total	39
Repeticiones	3
Tratamientos	9
Bioestimulantes	2
b1 vrs b2 b3	1
b2 vrs b3	1
Dosis	2
Lineal	1
Cuadrática	1
B x D	4
Factorial x adicional	1
Error Experimental	27

Promedio CV%

ANÁLISIS FUNCIONAL

Se utilizó la prueba de significación de Duncan al 5% para tratamientos, Comparaciones Ortogonales para Bioestimulantes y Polinomios Ortogonales para Dosis en variables que presentaron significación estadística

VARIABLES EVALUADAS

- Días a la Floración
- > Altura de planta a la floración
- Longitud de vainas
- Número de vainas por planta en verde
- Número de granos en vaina
- Número de gradas o pisos
- > Rendimiento en verde.

MÉTODOS DE MANEJO DEL EXPERIMENTO

- > ANÁLISIS DEL SUELO
- > PREPARACIÓN DEL SUELO
- > INSTALACIÓN DEL ENSAYO
- > FERTILIZACIÓN QUÍMICA
- > SIEMBRA
- > APLICACIÓN DE BIOESTIMULANTES
- > TUTORADO Y AMARRE
- > DESHIERBAS Y APORQUES
- > CONTROL FITOSANITARIO
- > COSECHA

	Bloque I	Bloque II	Bloque	III	Bloque	e IV
	T6 b2da	T3 b1da	T5 b2dr		T2 b1dr	DISTRIBUCIÓN
	T10 Testigo	T7 b3db	T8 b3dr		T6 b2da	DE TRATAMIENTOS
Norte	T1 b1db	T10 Testigo	T2 b1dr		T1 b1db	
	T8 b3dr	T8 b3dr	T6 b2da		T5 b2dr	10%pendient
	T5 b2dr	T9 b3da	T7 b3db		T3 b1da	
	T7 b3db	T6 b2da	T9 b3da		T10 Testigo	
	T4 b2db	T2 b1dr	T10 Testigo		T8 b3dr	
	T2 b1dr	T5 b2dr	T4 b2db		T9 b3da	
	T3 b1da	T4 b2db	T3 b1da		T4 b2db	
	T9 b3da	T1 b1db	T1 b1db)))	T7 b3db	

RESULTADOS Y DISCUSIÓN

DÍAS A LA FLORACIÓN

Análisis de la varianza

			ADEVA			
F.V.	SC	GL	CM	F CAL	F tal	b 1%
Total	29.1	39			3/0	1/0
Rep	4.5	3	1.50	4.26*	2.92	4.51
Trta	15.1	9	1.68	4.77**	2.21	3.07
fuentes	7.17	2	3.58	10.18**	3.32	5.39
dosis	2	2	1.00	2.84 ns	3.32	5.39
IFxD	2.33	4	0.58	1.66 ns	2.69	4.02
TgoVs Rest	3.60	1	3.60	10.23**	4.17	7.56
Error	9.5	27	0.35			

^{** =} significativo al 1%

CV = 0.91%

X = 64.85 días

^{* =} significativo al 5%

n.s. = no significativo

Prueba de Duncan al 5% para tratamientos

Cuadro 13. Prueba de Duncan al 5%

Código	Promedios (días)	Rangos
T10(b0d0)	65.75	A
T2(b1dr)	65.50	A
T1(b1db)	65.25	AB
T3(b1da)	65.25	AB
T4(b2db)	65.00	AB
T7(b3db)	65.00	AB
T6(b2da)	64.50	BC
T5(b2dr)	64.50	BC
T9(b3da)	64.00	С
T8(b3dr)	63.75	C

Comparaciones ortogonales para bioestimulantes

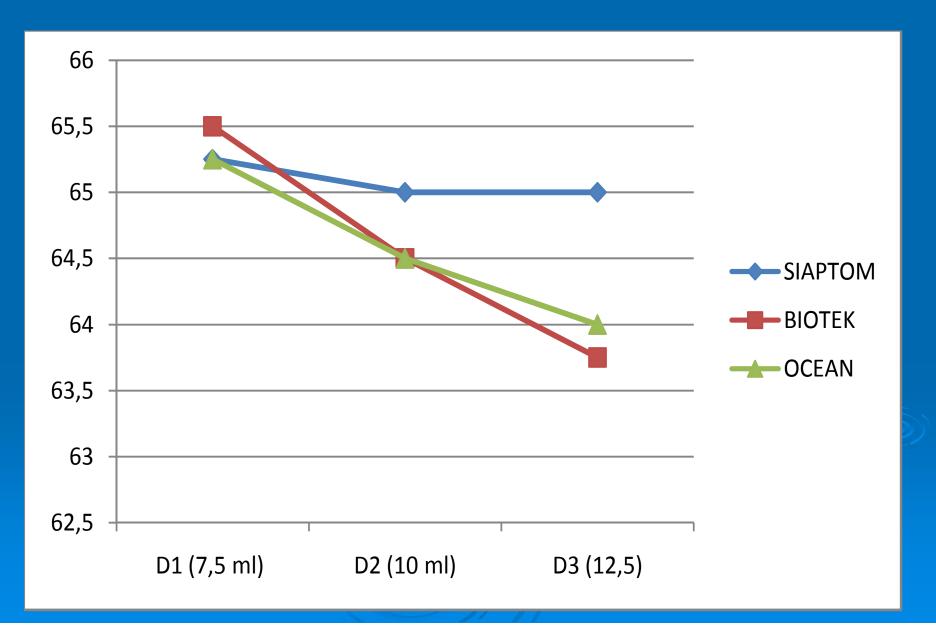
Cuadro 14. Comparaciones Ortogonales

ADEVA								
F.V.	SC	GL	CM	F CAL	F tal	b 1%		
Total	29.1	39						
B3 vs B1	7.04	1	7.04	20.00**	4.17	7.56		
Residual								

** = 1%

Entre la comparación del bioestimulante 3 y el 1 se encuentra significancia estadistica al 1%, la reacción entre el bioestimulante Siaptom y Oocean es diferente, el bioestimulante Ocean es superior al Siaptom en días a la floración

Polinomios Ortogonales para Dosis


Cuadro 15. Polinomios Ortogonales

			ADEVA			
F.V.	SC	GL	CM	F CAL	F tab	
1. 1.		CON F CAL	r CILL	5%	1%	
Total	29.1	39				
Lineal	1.5	1	1.5	4.26*	4.17	7.56
Residual						

* = 5 %

La dosis con la que se obtuvo una floración precoz corresponde a la D3 (12.5 cm³), debido a que existe un incremento de tipo lineal.

Graf 1. Interacción de Bioestimulantes x Dosis sobre los días a la floración

ALTURA DE PLANTA A LA FLORACIÓN

Cuadro 19. Análisis de la varianza.

			ADEVA			
F.V.	SC	GL	CM	F CAL	F tal 5%	1%
Total	2392.9	39				
Rep	307.9	3	102.6	1.97 ns	2.92	4.51
trta	676.3	9	75.1	1.44 ns	2.21	3.07
fuentes	119.6	2	59.8	1.15 ns	3.32	5.39
dosis	273.3	2	136.6	2.62 ns	3.32	5.39
IFxD	190.2	4	47.5	0.91 ns	2.69	4.02
TgoVsRest	93.1	1	93.1	1.79 ns	4.17	7.56
Error	1408.6	27	52.17			

^{n.s.} = no significativo

CV = 7.32%

X = 98.65cm

TECNICA ORTHON

LONGITUD DE VAINAS

Cuadro 23. Análisis de la varianza

			ADEVA			
F.V.	SC	GL	CM	F CAL	F ta	ab 1%
Total	10.8	39				
Rep	1.5	3	0.50	2.26 ns	2.92	4.51
trta	3.4	9	0.38	1.74 ns	2.21	3.07
fuentes	1.45	2	0.72	3.31 ns	3.32	5.39
dosis	0.35	2	0.18	0.81 ns	3.32	5.39
IFxD	0.87	4	0.22	0.99 ns	2.69	4.02
TgoVsRest	0.77	1	0.77	3.49 ns	4.17	7.56
Error	5.91	27	0.219			

^{n.s.} = no significativo

CV = 6.51 %

X = 7.19cm

NÚMERO DE VAINAS POR PLANTA

Cuadro 27. Análisis de la varianza

ADEVA							
F.V.	SC	GL	CM	F CAL	Ft	ab	
1.11		QL.			5%	1%	
Total	641.6	39					
Rep	148.4	3	49.47	5.55**	2.92	4.51	
trta	252.5	9	28.06	3.15**	2.21	3.07	
fuentes	95.39	2	47.70	5.35*	3.32	5.39	
dosis	32.2	2	16.11	1.81 ns	3.32	5.39	
IFxD	53.5	4	13.37	1.50 ns	2.69	4.02	
TgoVsRest	71.5	1	71.47	8.02**	4.17	7.56	
Error	240.6	27	8.91			<u>(@</u>	

^{* =} significativo al 5%

CV = 15.68 %

X = 19.03 vainas

^{** =} significativo al 1%

n.s. = no significativo

Duncan al 5% para Tratamientos

Cuadro 28. Prueba de Duncan al 5%

Código	Promedios (# vainas)	Rangos
T5(b2dr)	22.13	A
T6(b2da)	21.55	A
T4(b2db)	21.38	A
T3(b1da)	20.80	AB
T2(b1dr)	20.52	AB
T9(b3da)	19.17	ABC
T7(b3db)	17.75	ABC
T8(b3dr)	16.48	BC
T1(b1db)	15.55	-c
T10(b0d0)	15.03	С

COMPARACIONES ORTOGONALES PARA BIOESTIMULANTES

Cuadro 29. Comparaciones Ortogonales

			ADEVA			
F.V.	SC	GL.	GL CM	F CAL	F tab	
F. V.	SC	GL.			5%	1%
Total	641.6	39				
B3 vs B1	8.05	1	8.05	0.90 ns	4.17	7.56
B1B3 vs B2	87.34	1	87.34	9.80**	4.17	7.56

^{** =} significativo al 1%

^{n.s.} = no significativo

NÚMERO DE GRANOS EN VAINA

Cuadro 33. Análisis de la varianza

ADEVA						
F.V.	SC	GL	CM	F CAL	F tab 5% 1%	
Total	7.16	39				
Rep	1.42	3	0.47	4.48*	2.92	4.51
trta	2.88	9	0.32	3.03*	2.21	3.07
fuentes	0.32	2	0.16	1.52 ns	3.32	5.39
dosis	1.66	2	0.83	7.84**	3.32	5.39
IFxD	0.26	4	0.07	0.63 ns	2.69	4.02
TgoVsRest	0.64	1	0.64	6.07*	4.17	7.56
Error	2.85	27	0.106			

^{** =} significativo al 1%

CV = 5.12 %

X= 6.35 granos.

^{* =} significativo al 5%

n.s. = no significativo

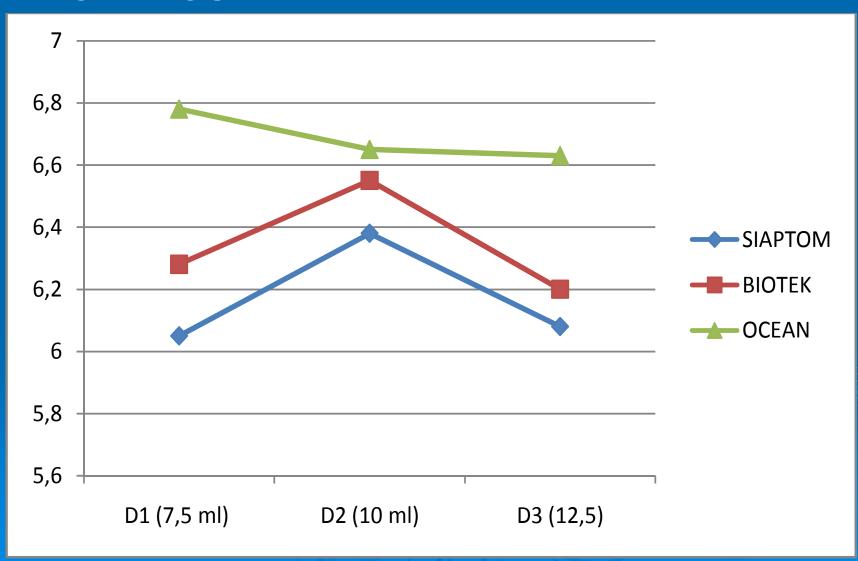
PRUEBA DE DUNCAN AL 5% PARA TRATAMIENTOS

Cuadro 34. Prueba de Duncan al 5%

Código	Promedios (granos)	Rangos
T3(b1da)	6.77	A
T6(b2da)	6.65	AB
T9(b3da)	6.62	AB
T5(b2dr)	6.55	ABC
T4(b2db)	6.37	ABCD
T2(b1dr)	6.27	ABCD
T8(b3dr)	6.20	BCD
T7(b3db)	6.07	CD
T1(b1db)	6.05	CD
T10(b0d0)	5.97	D

POLINOMIOS ORTOGONALES PARA DOSIS

Cuadro 35. Polinomios Ortogonales


			ADEVA	L.		
F.V. SC		GL	CM	F CAL	F tab	
1	SC	OL	CIVI	ГCAL	5%	1%
Total	7.16	39				
Lineal	1.60	1	1.60	15.09**	4.17	7.56
Cuadrt	0.06	1	0.06	0.57 ns	4.17	7.56

^{** =} significative al 1%

La dosis con la que se obtiene mayor número de granos en vaina corresponde a la dosis Alta de 12,5 cm³/lt. A medida que se incrementa la dosis de bioestimulante se obtiene mayor número de granos por vaina, consiguiendo un incremento de tipo lineal.

n.s. = no significativo

GRÁFICO 2. EFECTO DE LA INTERACCIÓN DE BIOESTIMULANTES X DOSIS SOBRE NÚMERO DE GRANOS EN VAINA.

NÚMERO DE PISOS O GRADAS

Cuadro 39. Análisis de la varianza

			ADEVA			
F.V.	SC	GL	CM	F CAL	F tab 5% 1%	
Total	50.06	39				
Rep	7.31	3	2.44	2.31 ns	2.92	4.51
trta	14.19	9	1.58	1.49 ns	2.21	3.07
fuentes	7.51	2	3.76	3.55*	3.32	5.39
dosis	3.12	2	1.56	1.48 ns	3.32	5.39
IFxD	1.36	4	0.34	0.32 ns	2.69	4.02
TgoVs Rest	2.21	1	2.21	2.09 ns	4.17	7.56
Error	28.55	27	1.057			((

^{* =} significativo al 5%n.s. = no significativo

CV = 7.43 %

X = 13.83 pisos.

COMPARACIONES ORTOGONALES PARA BIOESTIMULANTES

Cuadro 40. Comparaciones Ortogonales

			ADEVA				
F.V.	SC	GL	CM	F CAL	F tab		
1					5%	1%	
Total	50.06	39					
B3 vs B1	0.66	1	0.66	0.62 ns	4.17	7.56	
B1B3vsB2	6.85	1	6.85	6.48*	4.17	7.56	

n.s. = no significativo

^{* =} significativo al 5%

RENDIMIENTO EN VERDE

Cuadro 44. Análisis de la varianza

ADEVA							
F.V.	SC	GL	L CM	F CAL	F tab		
					5%	1%	
Total	3.72	39					
Rep	0.22	3	0.08	1.32 ns	2.92	4.51	
trta	1.94	9	0.22	3.74**	2.21	3.07	
fuentes	0.64	2	0.32	5.53**	3.32	5.39	
dosis	0.31	2	0.15	2.68 ns	3.32	5.39	
IFxD	0.30	4	0.07	1.30 ns	2.69	4.02	
TgoVs Rest	0.69	1	0.69	12.03**	4.17	7.56	
Error	1.55	27	0.05				

^{** =} significativo al 1% n.s. = no significativo

CV = 7.46 %

X = 3.22 kg

PRUEBA DE DUNCAN AL 5% PARA TRATAMIENTOS

Cuadro 45. Prueba de Duncan al 5%

Código	Promedios (kg)	Rangos
T3(b1da)	3.575	A
T2(b1dr)	3.425	AB
T9(b3da)	3.350	АВ
T1(b2da)	3.300	АВ
T8(b1db)	3.275	АВ
T6(b2db)	3.250	ABC
T5(b2dr)	3.225	ABC
T7(b3db)	3.100	BCD
T4(b3dr)	2.875	CD
T10(b0d0)	2.825	D

TECNICA ORDER

Comparaciones Ortogonales para bioestimulantes

Cuadro 46. Comparaciones Ortogonales

			ADEVA				
F.V.	SC	GL	CM	F CAL	F tab		
I'. V.					5%	1%	
Total	3.72	39					
B3 vs B1	0.63	1	0.63	10.86**	4.17	7.56	

^{** =} significativo al 1%

ANÁLISIS ECONÓMICO DE LOS TRATAMIENTOS

Cuadro 48. Análisis Económico de los tratamientos en la evaluación de tres bioestimulantes con tres dosis en el cultivo de arveja (*Pisum sativum L.*). En Santa Martha de Cuba – Carchi.

Codificación		Rendimiento	Costos Totales	Ingresos (USD)		RELACION	RELACION
Codif	icacion	TM/ha en verde	(USD)	Bruto Neto		B/C	Bi/Ci
T1	(b1db)	2.75	3078.31	6187.5	3109.19	1.01	
T2	(b1dr)	2.85	3084.25	6412.5	3328.25	1.07	1.08
Т3	(b1da)	2.98	3090.20	6705.0	3614.80	1.17	
T4	(b2db)	2.40	3103.45	5400.0	2296.55	0.76	
T5	(b2dr)	2.69	3157.77	6052.5	2894.73	0.91	0.86
Т6	(b2da)	2.70	3182.10	6075.0	2892.90	0.90	
Т7	(b3db)	2.58	3074.84	5805.0	2730.16	0.88	
Т8	(b3dr)	2.73	3079.63	6142.5	3062.87	0.99	0.96
Т9	(b3da)	2.79	3084.42	6277.5	3193.08	1.03	
T10	(b0d0)	2.35	3056.47	5287.5	2231.03	0.73	0.73

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- ➤ El cultivo de arveja de amarre (*Pisum sativum L.*) variedad Obonuco Andina, responde de excelente manera a la aplicación de biostimulantes, y por consiguiente tiene un gran potencial para el noreste de la provincia del Carchi como cultivo alternativo.
- Luego de los análisis de los resultados se concluye aceptar la hipótesis alternativa planteada al inicio de la investigación, ya que la aplicación de bioestimulantes si influye en las características del cultivo de arveja.
- De los tres Bioestimulantes evaluados, el de mejor respuesta en cuanto a mejorar la producción fue B1 (Siaptom), y la mejor dosis con excelentes resultados fue la dosis alta (12.5 cm³/lt de agua).
- Realizado el análisis económico, se concluye que la mejor alternativa económica es la interacción b1da (Bioestimulante Siaptom + dosis alta 12.5 cm³/lt) con un beneficio neto de 3.614,80 USD/ha y una relación Beneficio/Costo de 1,17.

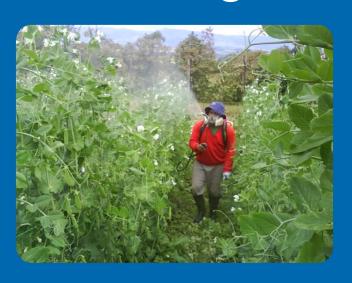
➤ Para la relación Beneficio/Costo incremental, la cual toma en cuenta la tecnología aplicada al cultivo (Bioestimulante) frente a un testigo, se observa que el Bioestimulante Siaptom a base de Aminoácidos, presenta la mejor relación Beneficio/Costo incremental con 1,08; es decir, que por cada dólar invertido en la aplicación del Bioestimulante, se obtiene 0,08 USD.

RECOMENDACIONES

- Para el cultivo de arveja de amarre (*Pisum sativum L.*), se recomienda preparar bien el suelo, el cual quede bien mullido, más la desinfección de suelo y semilla pues este es muy susceptible a pythium sp.
- Aplicar el bioestimulante Siaptom en dosis Alta (12.5 cm³/lt), especialmente durante el cuajado de frutos y como última aplicación después de la primera cosecha en dosis alta (12.5 cm³/lt) para mejorar el rendimiento de las últimas vainas terminales.
- Usar las dosis, recomendada y alta (10 y 12,5 cm³/lt) de los bioestimulantes Siaptom y Ocean, durante la etapa de desarrollo de la planta en vaina hasta el cuajado de los frutos.
- Realizar nuevas investigaciones, para el efecto de los bioestimulantes, dosis y frecuencia de uso hasta la obtención de grano en seco de éste y otros cultivos.

BIOESTIMULANTES

Preparación, diseño y siembra



Inicio de floración, aplicación de bioestimulantes y llenado de grano

Visita de tesis

Cosecha, desgrane y pesaje

Muchas Gracias

